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Abstract

Concurrent object-oriented programming languages are an attractive ap-
proach for programming massively-parallel machines. However, exploiting
object-level concurrency is problematic as the linkage and communication
overhead can overwhelm the benefits of the fine-grained concurrency. Our
approach achieves efficient execution by tuning the grain size, matching the
execution grain size to that efficiently supportable by the architecture. To
verify the feasibility of grain-size tuning, we study the invocation locality
of a collection of object-oriented programs. The results suggest that local
constraints on placement combined with code specialization can produce a
significant increase in execution grain size. We describe several compile-time
analyses which identify opportunities to increase grain size. These analyses
identify static relationships between objects and enable transformations to
reduce invocation cost. Some initial measurements are presented.

1 Introduction

Concurrent object-oriented languages based on the Actor model [2] have received a great
deal of attention as an approach for scalable programming of massively-parallel machines
because concurrency control and modularity are naturally and conveniently captured in

objects.

Two critical implementation inefficiencies have prevented concurrent object-oriented

languages from realizing their potential. First, the fine-grained object-level concurrency
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Figure 1: A retargetable, multilingual optimization system for Actor-based languages.

specified in these languages is difficult to implement efficiently, even with hardware support.
Second, while allowing objects to be placed and migrated freely gives maximal flexibility for
load balancing, oblivious mapping schemes scatter the objects over the system, producing
excessive communication and linkage overhead. The ad hoc techniques which are commonly
used to address these problems force programmers to explicitly specify granularity and
placement of the objects.! Though explicit specifications improve execution efficiency on a

particular machine, they do so at the cost of portability.

We are developing techniques to analyze and optimize object invocation relations, au-
tomatically tuning the execution grain-size to achieve efficient execution. A system based
on these techniques would allow programs to be expressed with maximal fine-grained con-
currency, thereby providing maximum scalability and portability. Grain-size tuning is a
critical element of portability, as it improves processor utilization by reducing the over-
heads due to scheduling, communication, synchronization, context switching and procedure

invocation. A high-level view of the system we are developing is shown in Figure 1.

The cost of an invocation in concurrent object-oriented programs executing on dis-
tributed memory machines is typically quite high due to the overheads of message-passing,
scheduling, context-switching, type-dependent dispatch, procedure linkage, and the move-
ment of data required for an invocation. In fine-grained object-oriented languages, this
overhead can easily dominate the overall cost of the computation. Our approach focuses

on developing program analysis methods which identify data locality and transformation

!Emerald [5], Rosette [16], and Concurrent C++[15] all distinguish between active (first-class, mobile)
and passive(private to an active object) objects.
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Figure 2: Naive implementation of a call-return sequence between A and B.

techniques which co-locate or merge objects to take advantage of this locality.

An Example is given in Figure 2. A naive implementation which places objects A and B

on separate nodes would produce an average grain size of fifty instructions. However, the
average grain size could be increased to 150 instructions (less the now unnecessary message
passing overhead) by co-locating A and B on the same node. This optimization can be
done statically or dynamically and can impact both the execution grain size and program

concurrency. 2

Rather than require programmers to explicitly annotate which objects should be local,
our static analysis and run-time techniques deduce this information which is then expressed
as a run-time constraint on object placement. Placement constraints allow the compiler to
use cheap, local invocation and access mechanisms, improving execution efficiency of the
overall computation. In the best case, objects which are wholly contained in another object
can be absorbed, allowing the invocation to be replaced with inlined code. Our grain-size
tuning techniques optimize control-flow and data locality simultaneously, grouping fine-

grained concurrency into larger grains containing only local operations.

If our approach is to be effective, applications must exhibit locality in invocations (i.e.,
a pair of objects should be involved in a series of invocations). Invocation locality provides
leverage, allowing a few transformations to affect a large number of invocations. Co-
locating or merging two objects reduces the overhead for all the invocations between the
pair. Depending on when invocation locality in a program can be identified, either static
(at compile-time) or dynamic (at run-time) techniques can be used. Object migration and

dynamic compilation are necessary to exploit the dynamic locality.

In this paper, we have presented the framework for a grain-size tuning system for

concurrent object-oriented languages. In Section 2, we describe quantitative studies of

?The co-location is an additional constraint on execution concurrency as the processing capacity at
each node is finite.
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Figure 3: Traces of invocation targets from a particular object.

invocation locality in concurrent object-oriented programs. Section 3 describes a variety of
static analysis techniques for identifying object relationships at compile-time. The status
of a prototype implementation of the grain-size tuning system is detailed in Section 4.

Finally, Sections 5 and 6 describe some related work and summarize the paper.

2 Quantitative Studies of Invocation Locality

We define invocation locality as the tendency for tasks active at an object A to invoke tasks
at objects on which they have recently invoked tasks. The objects on which invocations
take place due to tasks of object A are referred to as the neighbors of object A. In essence,
invocation locality is temporal locality in the targets of invocations from a particular object.
For example, the invocation traces shown in Figure 3 illustrate invocation traces with and

without locality.

Invocation locality is critical for reducing invocation overhead. With locality, it is pos-
sible to specialize common invocation sequences, reducing overhead. There are a number
of reasons to expect invocation locality: static hierarchies, data locality, fixed or slowly
varying interconnections, and at worst, locality arising from the limited quantity of state an
object can address. This section details the results of our quantitative studies of invocation

locality, characterizing the locality present in typical object-oriented applications.

The studies cover a collection of concurrent object-oriented programming systems and
programs.” The invocation patterns in the programs were traced by recording the invoking
object, the invocation target, and the message type involved, for each invocation-return
sequence. The traces were first analyzed to obtain a per-object view of the locality. Invo-
cations originating from the object are categorized according to the invocation target, and
the neighbors of the object are ordered on the basis of the cumulative number of invoca-
tions, identifying the most preferred neighbors (frequently communicated with). Summing

the invocations to the preferred neighbors for each object, and normalizing by the num-

3We have examined CST [12], CA [8], ABCL [18], POOL [3], Rosette [16], and Presto [4] programs.



ber of invocations, yields the overall invocation locality over the program. This aggregate
measure of communication to preferred neighbors approximates the reduction in commu-
nication which can be obtained by specializing the invocation sequence between an object

and its preferred neighbors.

The results of the invocation locality studies are presented in Figure 4. This data is from
a wide range of concurrent object-oriented programs written by a variety of programmers.
Results of invocation locality for programs in the other systems are not presented due
to either a lack of available large programs (POOL, Rosette). For each application, the
corresponding row in the table lists the total number of messages in the application, and
the fraction of this number that is observed in communications to preferred neighboring

objects.

We observe from Figure 4 that significant invocation locality is present in all the ap-
plications. For example, the statistics for the ABCL program, nbody_I (a tree-code for
the n-body interaction problem), show that about half the messages in the system can be
eliminated if it were possible to co-locate an object with its first two preferred neighbors.
Co-locating objects has the effect of eliminating an remote message send which is the dom-
inant cost in any invocation sequence. From the Figure, it can be seen that a reduction
of 20 — 40% in the number of messages is reliably possible for all the applications, just by
co-locating an object with its most preferred neighbor.* This improvement can be as high

as 7T0% and is typically in the range of 50% of the total number of messages.

The number of messages to preferred neighbors can be translated into an equivalent
reduction in invocation overhead under the assumption of optimal pairings of objects;
however, such pairings may not be realizable. However, given that the above statistics are
for a statically determined preferred neighbor of an object (and not the set of preferred
neighbors over an object’s lifetime), we are optimistic that this observed invocation locality
can be translated into significant reductions in invocation and message-passing overhead

for object-oriented programming systems.

3 Static Analysis

Our analysis techniques must identify safe invocation relations to optimize since grain-size
transformations must preserve program semantics. Due to the known difficulty of data-

flow and aliasing analysis in the presence of pointers [17, 13], the static analysis techniques

4This number is conservative for CA programs in general because the use of aggregates and their
randomized interface dissipates invocation locality. Locality can be enhanced by reducing the randomness
of the interface.



1INVOCATION LOCALITY IN ABCL PROGRAMS

I nbody_|
nbody_B
Invocation Locality in ABCL: 0.8 —Zj;:y?rsim
Application | # msgs | % of msgs to i'" neighbor 0.6
1 2 3 rest
nbody_I 273,157 1 0.29 | 0.20 | 0.15 | 0.35 0.4
nbody_B 463,722 | 0.30 | 0.21 | 0.15 | 0.33
parser 1,610 | 0.70 | 0.06 | 0.05 | 0.20 0.2
event sim. 94,965 | 0.54 | 0.20 | 0.17 | 0.09
1 2 3 4 5 other

1 INVOCATION LOCALITY IN CST PROGRAMS

-circuwt sim
nqueens
Invocation Locality in CST: 08 I rgesum
Application | # msgs | % of msgs to i'" neighbor 06
1 2 3 rest
circuit sim. | 14,909 | 0.51 | 0.33 | 0.06 | 0.16 04
nqueens 68,887 | 0.23 | 0.22 | 0.12 | 0.43
rangesunm 6,003 | 0.33 | 0.33 | 0.08 | 0.15 02
1 2 3 4 5 other
1 NVOCATION LOCALITY IN CA PROGRAMS
-Iogic sim
nultigrid
Invocation Locality in CA: 08 I ptrovtor
Application | # msgs | % of msgs to i'" neighbor 06
1 2 3 rest
logic sim. | 219,788 | 0.42 | 0.26 | 0.13 | 0.19 04
multigrid 582,913 | 0.33 | 0.19 | 0.10 | 0.38
pcbrouter | 116,883 | 0.26 | 0.10 | 0.06 | 0.59 0.2
1 2 3 4 5 other

Figure 4: Invocation Locality in Object-Oriented Programs.



described here exploit the structured access and control-flow information available in con-
current object-oriented languages. Our approach focuses on identifying several common
compositional structures for objects. If these structures can be identified, execution re-
lating to each part can often be co-located or merged together, increasing the effective
grain size. Some of the most promising opportunities for optimization are present with
static object relations and recursive data structures. We discuss specialized analysis and
transformation techniques for these cases which exploit the object-oriented expression of

the program.

3.1 Static Object Relations

When static relationships are present between objects in some part of the computation,
transformations can be applied at compile-time to increase the execution grain-size. Our
analysis focuses on finding static relationships between an object and one of its state
variables which are initiated at object-creation time. We limit our analysis to situations
where the state variable is assigned an object in the initializer of the parent class. Two
cases exist: (¢) the child (state variable) object is explicitly created in the initializer of the
parent class, and (¢2) it is created outside the initializer of the parent class and a reference

is passed into the initializer of the parent class.

To simplity the discussion, we define the following terminology:

write-once variable: An object state variable is write-once if there exists only one
assignment to that state variable over the entire execution of a program.

internal variable: An object state variable is internal to a class if no statement in any

of the methods exports any references to the state of the variable outside the class
methods. Thus, given the statement,

result = var — methi(...)

all references to the state variable var must satisfy one of the following constraints:

e methl does not return any reference to the state of var whenever meth1 returns
a result.
e methl returns a reference to the state of var, and result is a local state variable

of the object which is internal to var.

external variable: An object state variable that is not internal.




3.1.1 Created in the Initializer

The code fragment shown below illustrates subcases where static relations can be identified

and optimized. We adopt a C++-like syntax.

class A {
.; field b;

initMeth(...) {
b = new B(...);
}
Meth1(...); Meth2(...); ...; MethN(...);
}

Write-Once and Internal: If b is a write-once and internal variable, there exists a static

object relation between the parent object of class A and the child object b. Note that
neither global control-flow nor data-flow information is required since local control-flow
information in the initialization code allows us to determine that the field b is assigned
with a reference to a newly created object, and a class-wide analysis of all the methods for
A allows us to determine that the relation is a static one. Co-locating b with the parent
object of class A enables replacing all remote invocations from class A methods to class B

methods with local invocations (i.e., ordinary procedure calls).

Write-Once and External: If bis a write-once and external variable, there exists a static

object relation between the parent object of class A and the child object b. Co-locating b
with the parent object of class A reduces invocation overhead between the pair; however,
this may not translate to an overall improvement in the run-time overhead since references

to b are being exported.

Write-Many and Internal: If b is a write-many and internal variable, the field b may be

written to many times, and only a temporary static relationship exists between the parent
and child objects. Although the child object is not present for the entire lifetime of the
parent object, co-locating the parent and child objects for the duration of the child object’s

lifetime results in a reduction of remote invocations.

3.1.2 Created Outside the Initializer

In the code fragment shown below, an object of class B is created externally and then

passed in as a parameter to the initializer for class A. This type of programming idiom is



common in the use of objects as polymorphic containers such as lists and sets and creates

static relationships as shown in Figure 5.

outer_method(...) { class A {
: .; field b ;
c = new B;
f =new A(..., c, ...); initMeth(..., d, ...) {
} b = d;
}
Meth1(...); Meth2(...); ..., methN(...);
}

Two subcases exist:

Private: If outer method() does not use c except as shown, then the child object of class
B is effectively private to class A. Thus, the creation of the child object of class B can be
pushed inside the initializer for class A. Because the container object of class A may be
used for several different types, it must be type-split[7], and new specialized versions of the
container (parent) class code must be created. As a result, each type-split version of the

container (parent) class becomes a possible site for the optimizations discussed in Section

3.1.1.

Shared: If (¢) outer method() has other references to c, or (ii) c is a state variable for
the class containing outer method(), and c is referenced in the other methods, then its
creation cannot be pushed into the initializer code for class A. However, the parent class A
can still be type-split, and all remote invocations to the child object can be replaced with

local invocations.

tO = new circle; tO = new triangle;
t1 = new container(t0); t1 = new container(t0);

Figure 5: A polymorphic container, used at two points in a program. For any particular
object, it contains a reference to only one object type.




t = type of current class Traversal Directions
F = {fields for the class} R={1}
C = {code bodies of the class} for each f in F do
R = {recursive fields} for each ¢ in C do
E = {code bodies with if ¢ contains a recursive
extension calls} call on f
then insert(f,R)

Type Inference end
for each class do end

based on the initialization

code and other assignments, Extension Calls

compute the approximate for each ¢ in C do

types of all fields. if ¢ contains an allocation of t

then insert(c,E)
end

Figure 6: Finding Recursive Data Structures

3.2 Recursive Data Structures

Exploiting class-level structure in object-oriented programs allows us to identify recur-
sive data structures such as lists and trees[10] and transform their grain size. Typical
implementations of recursive data structures in Actor languages localize the interesting
control-flow information in the methods for one class. Consequently, we can analyze and
optimize recursive data structures by the following steps: (7) examine the object code to
identify recursive data structures, (¢¢) identify recursive axes which are traversed, (i:1)
identify allocation and extension points in the code, (¢v) use the information to choose a
representation which merges (one or more) objects along a traversal direction, yielding a
larger grain size and finally, (v) transform the code to reflect the new representation. An

outline of this analysis is sketched in Figure 6.

For example, in a set implementation based on a list of pairs, the code will contain the
traversal direction, extension, and truncation operations on the list which can be identified
by a class-wide analysis. Repeated transformation by grouping objects along a traversal
direction gives rapid increase in grain size. The program may be transformed along several
recursive axes simultaneously when there are multiple recursive fields, as in a binary tree.
In Figure 7, the effects of transforming a list and a binary tree are illustrated. The binary
tree has been transformed twice along the left-child axis. Subsequent transforming along

the right child axis would merge each macro-object with two others.

Program Transformation: After identifying the recursive axes and the degrees of trans-
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Figure 7: The basic and transformed representations of a recursive list and a binary tree.
Modifications to the structures can be handled by preserved pointers.
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formation, we must transform the code to reflect these decisions. The transformation steps
are (2) color the object instances co-located in the new representation, and (i¢) specialize

method code for each color by type-splitting.

Object grouping can be achieved by merging the allocation points and producing place-
dependent code for each member. The increase in code size is, in general, moderated by
the fact that all internal group members reuse the same code. Thus, a transformed list
would require two code versions: one for the internal objects in a group, and one for the

last one.

4 Prototype Implementation and Measurements

This section describes the implementation of a prototype of the grain-size tuning system,
and the results of some initial experiments with it. The grain-size tuning system is based
on a generic intermediate format which can be used with a variety of concurrent object-

oriented languages.

4.1 Expressing Locality

The relative location of objects must be determined to deal with locality issues at compile
time. In addition, to optimize locality, it must be possible to change the relative location
of objects. Traditional approaches [11] define regular mappings from the index space of
arrays to the set of memories. These direct mappings tfully define the data placement in
the machine and can be exploited to specialize code to that particular mapping. Direct

mappings are inappropriate for fine-grained object systems because they they provide no



control over the relative location of objects and leave the run-time system little flexibility.
So, instead of using a system which specifies object placement precisely, we use a system
which constrains the placement of objects to be co-located. A co-location constraint spec-
ifies that both the objects will be on the same computing node (i.e. local to each other).
Co-location constraints produce a two-level locality model: objects that are guaranteed to
be local and others that are not; the distinction about communication being required for
remote objects is captured in the model. In addition, using a system of relative placement

constraints also leaves the run-time system free to place and move objects.

Compile-time determination of co-location constraints (as happens with the transfor-
mations in Section 3) allows the compiler to optimize interactions between the objects,

using cheaper access mechanisms.

An Example: The pseudo-code fragments below show the optimization of a static object

relation. In this case, an object of class A is determined to have a static reference to an
object of class B. In the code for the initial method in class A, the original and transformed

code are as shown:

BEFORE (SEND-MSG ‘‘new’’ <dest> <size> ‘‘B’’ ‘‘random’’ () <args*>)
(MOVE (IVAR 0) <dest>)

AFTER (SEND-MSG ‘‘new’’ <dest> <size> ‘‘B’’ ‘‘co-locate’’ ‘self’’ <args*>)
(MOVE (IVAR 0) <dest>)

The first code segment allocates memory for an object of class B in a random loca-
tion, initializes it, and then assigns its reference to instance variable 0, (IVAR 0). The
“‘random’’ annotation causes arbitrary placement of the object. The transformed code-
fragment constrains the placement to be the same as that of the invoking object by using a

““self’’ annotation. To exploit this co-location, the compiler specializes

‘‘co-locate’’
all invocations on (IVAR 0) to be of an inexpensive, local variety. Local invocations can

then be compiled as ordinary procedure calls; no message passing is required.

4.2 Implementation and Performance Results

Our prototype compiler implements the analysis and transformation of static object rela-
tions described in Section 3.1. We use two simple programs and two application bench-
marks written in Concurrent Aggregates to examine the performance of our grain-size

tuning system.

¢ Slope Finder Program to determine slopes of lines constructed from pairs of points.



¢ Tree Sum Program to sum leaf values in a tree of objects.

¢ Logic Simulator An event-driven logic simulation of a static object network managed
through a concurrent priority queue.

¢ Printed Circuit Board Router Concurrent Ax search to route nets around rectangular
obstacles on a printed circuit board.

The improvement resulting from transforming a remote invocation to a local one de-
pends on a wide variety of machine and system specific parameters.® Therefore, we charac-
terize the grain-size benefits by showing how often we can apply our transformations and
what fraction of the full-cost, remote invocations can be removed from a program. Table 1
shows the number of static optimization points found, the number of messages sent in the
unoptimized and optimized cases, the fraction of communication traffic eliminated, and the
estimated increase in grain-size for each program. The increase in grain-size is estimated

based on the reduction in communication traffic.®

Program || Optimized | Msgs Sent | Msgs Sent | Reduction | Grain-Size

Name Points | in Unopt. i Opt. | in Comm. Increase

Slope Finder 2 73 41 43.84% 1.78
Tree Sum 5 1164 916 21.31% 1.27

Logic Simulator 28 521,093 475,405 8.77% 1.10
PC Board Router 1 89,554 80,495 10.12% 1.11

Table 1: Performance of the Grain-Size Tuning System.

The grain-size tuning system finds static object relationships in all the programs. In
the slope finder program, each line object uses two point objects both of which have a
static relationship with the line. The tree sum program has static links for communication
between a node and its parent and child nodes. Co-locating the objects along the vertical
dimension of the tree reduces the cost of this communication. In the logic simulator
program, remote invocations between the gates and the circuit nodes can be replaced
with a local version. While the communication reduction in this case is modest, the large
number of optimization points found in the logic simulator program encourages us that
static optimizations may turn out to be a significant contributor to our grain-size tuning
system. In the printed circuit board router program, each node on the board grid has a

fixed relationship to its corresponding (x,y) point. Thus, remote invocations from a node

to a point can be replaced with local invocations.

>The cost of a remote invocation can vary from in several milliseconds in systems running OSF/1 to a

few microseconds in the highly tuned J-machine.
S1f the amount of work is conserved, the grain size can be found by dividing the work by the number

of messages.



5 Related Work

Unlike the approaches for specializing invocations in sequential object-oriented languages
which reduce the cost of type-dependent polymorphic dispatches[9, 7], our approach spe-

cializes invocations so as to reduce communication and overhead due to message passing.

Two bodies of work, both of which simultaneously optimize data placement and exe-
cution grain size, are similar to ours. First, the compiler for the MasPar MP-1[6] lumps
together operations on a number of array elements and allocates these chunks of work to
individual processors. Second, efficient execution of concurrent logic languages has been
obtained by grouping successive elements of a stream[14]. The first approach is typical
to data-parallel programming languages, while our approach and the stream approach can
work with more general heterogenous data structures. Grain-size tuning is an issue even in
shared memory machines[1] since large grains are required to achieve reasonable execution

efficiency.

6 Summary

Our work focuses on making the execution of fine-grained concurrent object-oriented pro-
grams efficient. The key to our approach is to transform the ezecution grain size of pro-

grams to match the underlying hardware.

Invocation traces of concurrent object-oriented programs show the existence of signifi-
cant invocation locality. Large improvements in invocation and message-passing overhead

are possible by proper exploitation of the observed locality.

Global control flow and data flow analysis is quite difficult in concurrent object-oriented
languages because of the pervasive use of type-dependent dispatch and dynamic storage
allocation. Without this information, we are forced to rely on program structure. We de-
scribe several analyses that identify static object relations and candidates for optimization
by exploiting initialization information and the class structure of object-oriented programs.

Additional transformations exploit the nature of recursive data structures.

The work described in this paper is part of the Concert project whose goal is to achieve
efficient, portable, and scalable execution of concurrent object-oriented languages via grain-
size tuning techniques. Our current system supports execution of Concurrent Aggregates
programs on both a uniprocessor simulation environment and a parallel implementation
on the CM-5. Current efforts focus on developing better techniques for type-inference,

aliasing analysis and the dynamic detection of invocation locality.



References

[1]

[13]

[14]

[15]

A. Agarwal, B. Lim, D. Kranz, and J. Kubiatowicz. April: A processor architecture for
multiprocessing. In International Symposium on Computer Architecture, 1990.

G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press,
Cambridge, MA, 1986.

P. America. Pool-T: A parallel object-oriented language. In A. Yonezawa and M. Tokoro,
editors, Object-Oriented Concurrent Programming, pages 199-220. MIT Press, 1987.

B. Bershad, E. Lazowska, and H. Levy. Presto: A system for object-oriented parallel pro-
gramming. Software — Practice and Experience, 18(8), 1988.

A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter. Distribution and abstract types in
Emerald. IEEE Transactions on Software Engineering, SE-13(1):65-76, January 1987.

T. Blank. The Maspar MP-1 architecture. In Proceedings of COMPCON, pages 20-4. IEEE,
1990.

C. Chambers and D. Ungar. Iterative type analysis and extended message splitting. In
Proceedings of the SIGPLAN Conference on Programming Language Design and Implemen-
tation, pages 150-60, 1990.

A. A. Chien and W. J. Dally. Concurrent Aggregates (CA). In Proceedings of Second
Symposium on Principles and Practice of Parallel Programming. ACM, March 1990.

L. P. Deutsch and A. M. Schiffman. Efficient implementation of the Smalltalk-80 system. In
Eleventh Symposium on Principles of Programming Languages, pages 297-302. ACM, 1984.
L. Hendren and A. Nicolau. Parallelizing programs with recursive data structures. IEFF
Transactions on Parallel and Distributed Computing, 1(1):35-47, 1990.

S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiler Optimizations for Fortran D on
MIMD Distributed-Memory Machines. In Supercomputing 91, pages 86-100, Nov. 1991.
W. Horwat, A. Chien, and W. Dally. Experience with CST: Programming and implemen-
tation. In Proceedings of the SIGPLAN Conference on Programming Language Design and
Implementation, pages 101-9. ACM SIGPLAN, ACM Press, 1989.

E. Myers. A precise interprocedural data flow algorithm. In Seventh Symposium on Principles
of Programming Languages, pages 219-30, 1980.

V. Saraswat, K. Kahn, and J. Levy. Janus: A step towards distributed constraint program-
ming. In Proceedings of the North American Conference on Logic Programming, Austin,
Texas, October 1990.

K. Smith and R. Smith II. The Experimental Systems Project at the Microelectronics and
Computer Technology Corporation. In Proceedings of the Fourth Conference on Hypercube
Computers, 1989.

C. Tomlinson, M. Scheevel, and V. Singh. Report on Rosette 1.0. MCC Internal Report,
Object-Based Concurrent Systems Project, December 1989.

W. E. Weihl. Interprocedural data flow analysis in the presence of pointers, procedure vari-
ables, and label variables. In Seventh Symposium on Principles of Programming Languages,
pages 83-94, 1980.

A. Yonezawa, editor. ABCL: An Object-Oriented Concurrent System. MIT Press, 1990.
ISBN 0-262-24029-7.



