
Type Directed Cloning for Object-OrientedProgramsJohn Plevyak and Andrew A. ChienUniversity of Illinois at Urbana-ChampaignAbstract. Object-oriented programming encourages the use of smallfunctions, dynamic dispatch (virtual functions), and inheritance for codereuse. As a result, such programs typically su�er from inferior perform-ance. The problem is that polymorphic functions do not know the exacttypes of the data they operate on, and hence must use indirection to oper-ate on them. However, most polymorphism is parametric (e.g. templatesin C++) which is amenable to elimination through code replication. Wepresent a cloning algorithm which eliminates parametric polymorphismwhile minimizing code duplication. The e�ectiveness of this algorithmis demonstrated on a number of concurrent object-oriented programs.Finally, since functions and data structures can be parameterized overproperties other than type, this algorithm is applicable to general for-ward data
ow problems.1 IntroductionObject-oriented (OOP) and concurrent object-oriented (COOP) programminglanguages have gained popularity because they provide programmers with usefultools for organizing programs. However, object-oriented programming techniqueschange the structure of programs signi�cantly, typically incurring a performancedegradation as a result. The reasons are fundamental to the programmingmodelsand include: encouraging programmers to use small functions, express new func-tionality by derivation from previous solutions (inheritance), share code (dynamicdispatch), and to separate use of operations from their implementation (data ab-straction). Together, these techniques result in programs with high function callfrequencies, and data dependent control
ow.These characteristics of object-oriented programs can result in poor perform-ance on modern computers with high degrees of parallelism. Modern micropro-cessors rely on e�ective use of registers and instruction scheduling to achieve goodperformance. Object-oriented programs make frequent calls which, in additionto their own cost, disrupt instruction scheduling and register usage. To makematters worse, such programs allow the target of function calls to be data de-pendent, making inlining di�cult or impossible1 and compicating parallelizationand concurrency optimization [30].The key to eliminating the overhead of dynamic calls is concrete type in-formation, knowledge of the implementation types that actually occur at func-tion call sites. Such information can be obtained through global
ow analysis[27, 26, 1, 28, 25] (across function boundaries and even across compilation units).These algorithms infer
ow sensitive parameterizations for functions and data inthe form of concrete type information. This information describes the pattern of1 Run time approaches are described in Section 5.

reuse of general (polymorphic) code for particular (monomorphic) situations. Forexample, a Set class might be able to contain any type of object, but a particularinstance of Set might contain only Circle objects. The code operating on suchinstances could be optimized for the type of contents. Unfortunately,
ow ana-lysis results cannot be used directly for cloning, because the natural candidatesfor replication, contours [31], are too numerous and because standard dispatchmechanisms cannot select between them at runtime.We present a cloning algorithmwhich minimizes the number of clones by rep-licating functions based on optimization criteria such as minimization of dynamicdispatch, unboxing opportunities and data layout. This is coupled with a call sitespeci�c dispatch mechanism to enable the selection of the appropriate clone byany remaining dynamic dispatches. We illustrate the e�ciency and e�ectivenessof this algorithm through application to a suite of programs. Its e�ciency isre
ected in the modest code size increases (a range from -20% to +70%). Thee�ectiveness is demonstrated by the elmination of dynamic dispatches resultingfrom parametric polymorphism in these programs. In our suite of pure concur-rent object-oriented programs this results in static binding of approximately 99%of all calls and, through inlining, elimination of 45% to 99% of these calls. Thus,cloning reduces the number of dynamic and static calls executed at runtime,producing larger code regions for optimization.Speci�c contributions of this paper include:{ A cloning algorithm for object-oriented languages which removes dynamicdispatches resulting from parametric polymorphism while minimizing thenumber of clones.{ An empirical evaluation of the e�ciency and e�ectiveness of the cloning tech-niques on a suite of program.The remainder of the paper is organized as follows. In Section 2 we describethe di�culties of optimizing object-oriented programs and introduce our compil-ation framework. Section 3 describes how global information is enhanced throughcloning and how the number of clones is minimized. In Section 4 we report theresults of our application of these techniques. Related work is discussed in Sec-tion 5 and we summarize in Section 6.2 BackgroundIn this section we examine characteristics of object-oriented programs whicha�ect their e�ciency. Then we brie
y discuss the
ow analysis techniques fromwhich the cloning algorithm proceeds.2.1 E�ciency of OOP and COOP LanguagesObject-oriented programming provides tools for data abstraction and type-de-pendent dispatch, supporting both increased programmodularity and code reuse.It supports polymorphism, late binding (dynamic dispatch or virtual functionscalls), and inheritance, enabling programmers to organize their programs hier-archically as special cases based on general solutions, and to hide the details ofoperations. Likewise, concurrent object-oriented programming enables program-mers to abstract and encapsulate consistency mechanisms, parallelization and37.2

data layout decisions. This, in turn, makes the programs easier to understandand modify. Object-oriented programs di�er greatly in structure from proceduralcode [5], and there is every indication that these di�erences increase as program-mers develop an \object-oriented" programming style.Though they have desirable software engineering advantages, OOP andCOOPtypically have an adverse impact on performance. Due to high levels of hardwareparallelism (deep pipelines and multiple issue), modern processors are heavilydependent on instruction scheduling and register allocation to achieve good per-formance. However, these optimizations require unbroken sequences of instruc-tions, or, at the very least, good control
ow information. Since object-orientedprograms tend to have very small functions, inlining is required to enable theseoptimizations. Unfortunately, dynamic dispatch confounds control
ow, seriouslycomplicating or preventing inlining. Likewise, parallelization, data layout, block-ing and other high level transformation rely on interprocedural control
ow in-formation [19].To inline functions a compiler for object-oriented languages must know theexact type of an object (as opposed to the declared type of which it may be asubclass). This concrete type information is precisely the detail the programmerwishes to hide, via encapsulation and code reuse. Concrete types can be used togenerate e�cient code sequences which manipulate the representations of datatypes. For example, a sort algorithm is described in terms of comparing and mov-ing elements. However, comparing and moving numbers as opposed to characterstrings, is very di�erent and subject to di�erent optimizations. In the absenceof concrete type information, an implementation must use run time checks ordynamic dispatches, which can lead to poor performance.2.2 PolymorphismPolymorphism refers to the ability of a function or variable to operate on orcontain objects of di�erent types. We are concerned with two types of poly-morphism: parametric and true. Parametric polymorphism occurs when a func-tion invocation or instance of a class can be parameterized by types it uses,much like templates in C++. One popular use of parametric polymorphism isfor \container" classes for sets, lists, hash tables etc. True polymorphism occurswhen a speci�c function invocation or object contains a single reference whichmight be of more than one type. A typical use of such polymorphism is in asimulator, where the con�guration of simulated elements is data dependent andcannot be determined at compile time. Our algorithm eliminates the parametricpolymorphism exposed by the analysis which, as we will see in Section 4, is amajor cause of dynamic dispatch. It is important to note that true polymorph-ism often cannot be eliminated since it represents a choice point in the programwhich would require a case or switch statement in a procedural language.2.3 Global Program AnalysisIn many object-oriented programs, the information necessary for optimization isstill present in the program structure, but it is divided across module boundariesor even compilation units. Global program analysis can be an e�cient and e�ect-ive way of recovering information such as global control
ow, global data
ow,and concrete type information. In the sorting example, the type of data being37.3

sorted may not be speci�ed at the de�nition of the sort, but is determined atcall site of a sort operation. Global analysis recovers this concrete type inform-ation, linking the caller and callee and breaking through abstraction boundariesto enable optimization.Recently, global program analysis frameworks have been developed for object-oriented languages which can e�ciently derive global control
ow and concretetype information [27, 26, 1, 28]. These algorithms simultaneously infer the inter-woven global control and data
ow of object-oriented programs. They do so bya combination of
ow analysis and abstract interpretation and by modeling thedi�erent environment in which a function is invoked by a set of \contours" [31].Typical analyses create for each function a number of contours polynomial inthe size of the program. Moreover, these contours often do not represent usefuloptimization opportunities.2.4 Implementation Context and ApplicationsThis cloning algorithmhas been implemented in the Illinois Concert system whichincludes a complete development environment for irregular parallel applications.The Concert system supports a concurrent object-oriented programming modeland includes a globally optimizing compiler, e�cient runtime, symbolic debugger,and an emulator for program development. This system compiles ICC++ [18],a parallel C++ dialect, and Concurrent Aggregates [11, 10] for execution onthe Cray T3D [15] and Thinking Machines CM-5 [32] as well as uniprocessorworkstations.Cloning is used in our system to enable unboxing and register allocation ofinteger and
oating point numbers, unboxing of integer and
oating point arrays,and inlining and static binding of functions, enabling us to obtain sequentiale�ciency comparable to C [30]. On parallel machines, the more precise control
ow information has enabled us to specialize the calling conventions in our hybridexecution model [29]. We are also in the process of using it to create and optimizecall graph subtrees based the location of data in parallel machines.3 The Cloning AlgorithmThe idea of cloning is to create specialized versions of data structures and meth-ods (which we call concrete types and clones respectively) for the di�erent ways inwhich they are used by the programmer. These versions are then shared acrossthe program by ensuring that the appropriate one is called for each use. Thecloning algorithm starts with the results of global analysis. First, we describethe pertinent information provided by this analysis. Next, we present a modi-�ed dynamic dispatch mechanism for �nding the appropriate clones. Then, weshow how to select clones to maximize optimization opportunities and ensurethat the resulting call graph is realizable via the dispatch mechanism. Once theclones have been selected they are created by constructing new concrete types,duplicating methods and rebuilding the call graph including the dispatch tables.3.1 Contours and ClonesFlow analysis of object-oriented programs produces information about data
owvalues for methods based on the contours (calling environments) in which they37.4

are invoked and for instance variables based on the statement and contour atwhich they were created [26, 28]. We will call the contours for methods methodcontours and the statement and method contour at which objects with distin-guished instance variables are created class contours.2 Since these contours werecreated by the analysis to distinguish potentially di�erent uses of methods orclasses they roughly correspond to potential clones and concrete types. However,the analysis may distinguish method contours by any aspect of the calling en-vironment including the contours from which they were invoked [26], the typesof all the arguments [1] as well as other criteria [25]. Thus, a call graph on thecontours cannot, in general, be realized by the standard dispatch mechanism.3.2 Modi�ed Dynamic Dispatch MechanismCloning modi�es the call graph by replicating subgraphs the methods of which arethen called by only a subset of the previous callers. If a call site is statically bound(resolves to a single target method) it can be connected directly to the appropriateclone. However, if the call site requires a dynamic dispatch, the standard dispatchmechanism used by C++ or Smalltalk is, in general, insu�cient to distinguishthe correct callee clone. The problem is that this dispatch mechanism determinesthe method to be executed based on the selector (virtual function name) andruntime class of the target object < selector; class >, and these are identical forall clones of a given method. The example in Figure 1 illustrates this limitation.class Stream;class StringStream : Stream;class Shape;class Square : Shape;class Circle : Shape;Stream::print(Shape * o) { ... }CLONE Stream:print(Square * o) { ... }CLONE Stream:print(Circle * o) { ... }CLONE StringStream:print(Square * o) { ... }CLONE StringStream:print(Circle * o) { ... } main() {Object * o = new Circle;Stream * s;if (...) s = new StringStream;else s = new Stream;s->print(o);o = new Square;s->print(o);...}Fig. 1. Limitation of Standard Dispatch MechanismIn Figure 1 the print()method in the Stream class takes a single argument owhich is either a Circle or a Square. Since the variable s can be either a Streamor a StringStream, the invocation requires dynamic dispatch. However, the thestandard dispatch mechanism only dispatches on the selector and the class of thetarget, and hence cannot select between the versions of Stream::print() clonedbased on the type of parameter o (one for Square and one for Circle). Thus, amore powerful dispatch mechanism is required.To address this problem we propose a call site speci�c dispatch mechanism.Each call site is given an identi�er which is used during dynamic dispatch todistinguish the appropriate callee clone for each selector and target object typepair. In our example, the call site information would allow us to select the versionof print for Circle at the �rst call site and that for Square at the second.2 Method contours and class contours correspond to entry sets and creation sets in[28]. 37.5

Since only a single dimension is added, this mechanism is the smallest extensionsu�cient to select the correct clone, and, unlike multiple-dispatch, is independentof the number of arguments.Cloning partitions the objects in user de�ned classes into concrete typeswhich have more precise type signatures. From the point of view of the dis-patch mechanism these are identical to user de�ned classes. Thus the modi�edmechanism uses the concrete type of the target object instead of the class dur-ing dispatch. Since the concrete type must be available at run time, objects aretagged when they are created with their concrete type (just as they would havebeen tagged with their class). Thus, the �nal modi�ed dispatch mechanism uses< call site; selector; concrete type > to select the method to be executed. Evenif using this mechanism incurs additional overhead3, the number of dynamicdispatches is greatly reduced, more than compensating for a slightly higher res-olution cost.3.3 Selecting ClonesClones are selected by partitioning method and concrete types by partitioningclass contours.4 The initial set of partitions is determined by optimization criteriasuch as minimization of dynamic dispatch or unboxing. These partitions representconcrete types and versions of methods (clones) amenable to special optimization.Then, we iteratively re�ne the partitions until the cloned call graph is realizableby the dispatch mechanism.clone_selection() {initial_method_contour_partition = new Partition;initial_class_contour_partition = new Partition;forall m in method_contours dom.partition = initial_method_contour_partition;forall c in class_contours doc.partition = initial_class_contour_partition;while (!fixed_point) {repartition(method_contours,method_contours_equivalent);check_class_contours_required_for_dispatch();repartition(class_contours,class_contours_equivalent);}} repartition(set,equivalent){result = new Set;result.add(new Set(set.first()));forall e in set.rest() doforall s in result doif (forall r in s doequivalent(e,r))s.add(e);else result.add(new Set(e));}Fig. 2. Cloning Selection Drivers (pseudocode)The overall algorithm is presented in Figure 2. It is based on two functions,one which determines if two method contours can share a clone (are equivalent)and another for class contours. Using these functions (shown in Figure 3) we�rst compute a partition of method contours then compute a partition of classcontours. The repartition function for partitions by grouping the contours suchthat all the contours in a partition are equivalent. Since a �ner partition of classcontours can induce a �ner partition of method contours (to ensure realizability)3 The modi�ed dispatch mechanism is amenable to optimizations such as folding thecall site id into the selector to form a single index into the virtual function table, orthe use of multi-dimensional dispatch tables.4 Some analyses use contours which cannot be di�erentiated by our modi�ed dispatchmechanism. For such analysis a set of minimum partitions is precomputed.37.6

and vice versa we repeat the process until a �xed point is reached. Since thenumber of contours is �nite and the partitioning proceeds monotonically (seeFigure 3 under the comment monotonicity) termination is ensured.boolean method_contours_equivalent(a,b) {return&&((a.partition == b.partition) /* monotonicity */&& (foreach s in callsites(method(a)) do /* optimization criteria */binding(s,a)==binding(s,b))&& (foreach v in variables(method(b)) doboxing(v,a)==boxing(v,b))&& (foreach c in creation_points(method(a)) do /* realizability */class_contour(c,a)==class_contour(c,b));}boolean class_contours_equivalent(a,b) {return((a.partition == b.partition) /* monotonicity */&& (foreach v in instance_variables(class(b)) do /* optimization criteria */boxing(v,a)==boxing(v,b))&& (! b in a.not_equivalent); /* realizability */}check_class_contours_required_for_dispatch() {foreach s in callsites doforeach e1,e2 in call_graph_edges(s) doif ((method_partition(e1.callee) != (method_partition(e2.callee)))&& (e1.selector == e2.selector)&& (class_partition(e1.target) == (class_partition(e2.target))))make_not_equivalent(class_contour(e1.target),class_contour(e2.target));}make_not_equivalent(a,b) {a.not_equivalent.add(b);b.not_equivalent.add(a);} Fig. 3. Contour Equivalence Functions (pseudocode)The initial partitions are built based on optimization criteria used by thecontour equivalence functions. For example, to maximize static binding we ex-amine each call site in the method for the two contours, and if they would bind todi�erent clones (method contour partitions) or di�erent sets of clones we declarethe two contours not equivalent. Similarly for representation optimizations, if avariable within two method contours or an instance variable within two class con-tours has di�erent e�cient representations (unboxed or inlined objects) groupingthe contours would prevent optimizations, so we declare them not equivalent. Thecode to check these optimization criteria appears in Figure 3 under the comments:optimization criteria. Standard techniques for pro�ling or frequency estim-ation [34] can be used to maximize the bene�ts of optimization while limitingcode expansion.To ensure that the call graph is realizable by the modi�ed dispatch mech-anism, further re�nement of the partitions may be required. This a�ects bothmethod and class partitions. The dispatch mechanism uses concrete type (classcontour partition) to select the target method, so call sites can require two classcontours to be in di�erent partitions in order be able to resolve the appropriatemethod. This occurs when the < call site; selector > pair does not resolve to a37.7

unique target clone (method contour partition). For example, in Figure 4 we havedecided to optimize the binding of print() in the method print contents() toCircle::print() for circle containers and Square::print() for square contain-ers. Now, at site 3 the dispatch mechanism would like to select the appropriatespecialized versions. Since the call site and selector are identical, it must usethe concrete type of c to distinguish the correct version. Thus, the method con-tour partition of print contents() has induced a class contour partition ofContainer to distinguish those instances for which o is a Circle from those forwhich o is a Square. The function which checks this condition and ensures thattwo class contours will be non-equivalent is check class contours required -for dispatch in Figure 3.class Container { Object * o; ... };void Container::print_contents(){ this->o->print(); }Container * create() { return new Container; }main() {Container *a = create(); /* site 1 */Container *b = create(); /* site 2 */a->o = new Circle;b->o = new Square;Container *c = a;if (...) c = b;c->print_contents(); /* site 3 */} Fig. 4. Example Requiring Repartitioning of ContoursSimilarly, class contour partitions can induce method contour partitions. Classcontours are de�ned by their creation point (creating statement and surroundingmethod contour). Since the partitions of class contours will be the concrete typeswhich are used by the dispatch mechanism, objects must be tagged at theircreation points with their concrete type. This means that two method contourscannot be in the same partition if they de�ne di�erent class contour partitions.For example, in Figure 4, we have partitioned the class contour for Containerbased on the type of o (Circle or Square). In order to tag circle containers andsquare containers as di�erent concrete types, enabling the dispatch mechanism toselect between them, we must repartitioning the method contours for create(),separating those called from site 2 from those called from site 3. Thus, theclass contour partition of Container has induced a method contour partition ofcreate(). This is checked by the function method contours equivalent underthe comment realizability in Figure 3.3.4 Making ClonesWhen the �xed point is reached, we create method clones for the method contourpartitions and concrete types for the class contour partitions. For each methodclone, we duplicate the code and update the data
ow information so that it re-
ects only the information stored in the contours for its partition. The call sitesand variables will now have the more precise information dictated by the optim-ization criteria. Statically bound call sites are connected to the appropriate cloneand are now amenable to inlining. Methods which contain creation points are37.8

modi�ed so that the created objects are tagged with the appropriate concretetype instead of the original class. Finally, the modi�ed dispatch tables are con-structed. Call sites which require dynamic dispatch are assigned identi�ers. Foreach edge in the interprocedural call graph from these sites, an entry is madeinto the dispatch table mapping the < call site; selector; concrete type > to theappropriate clone.4 Experimental ResultsWe have implemented these cloning techniques in the Illinois Concert compilerand tested them on tens of thousands of lines of Concurrent Aggregates pro-grams [10]. In this section we present results from a representative sample ofthose programs. These test programs are concurrent object-oriented codes writ-ten by a variety of authors of di�ering levels of experience with object-orientedprogramming. They range in size from kernels to small applications. They allmake use of code sharing through polymorphism, and several also contain truepolymorphism, for example using dynamic dispatch (instead of conditional tests)to di�erentiate data dependent situations.Program ion network circuit pic mandel tsp richards mmult poly testUser Lines 1934 1799 1247 759 642 500 378 139 49 39Total Lines 2384 2249 1697 1209 1092 950 828 589 499 489The �rst three programs simulate the
ow of ions across a biological mem-brane (ion), a queueing network network and an analog circuit (circuit). picperforms a particle-in-cell calculation, andman computes the Mandelbrot set us-ing a dynamic algorithm.The tsp program solves the traveling salesman problem.richards is an operating system simulator used to benchmark the Self system[8, 24]. The last three programs are kernels representing uses of polymorphiclibraries. mmult multiplies integer and
oating point matrices, poly evaluatesinteger and
oating point polynomials and test is a synthetic code which usesmulti-level polymorphic data structure. All the programs were compiled with thestandard CA prologue of 450 lines of code.4.1 Clone SelectionTo evaluate, the clone selection algorithm we generated initial contour partitionsusing optimization criteria for removing all dynamic dispatches resulting fromparametric polymorphism regardless of the number of invocations. In addition,we optimized the representation of all arrays and local integer and
oating pointvariables by unboxing. We applied these criteria to cloning of our test suite andevaluated the number of concrete types and method clones produced.In order to demonstrate that clone selection was able to combine contoursnot required for optimization we report the number of contours produced by ouranalysis. However, it should be noted that the number of contours produced byan analysis is only super�cially related to the quality of information it producesand the di�culty of selecting clones based on that information. In theory,
owanalyses produce O(N), O(N2), O(N6) or more contours for a program of size N[27, 26, 1, 25]. The number of contours seen in practice can require large amountsof space [2]. The particular analysis we use is an iterative algorithmwhich creates37.9

contours in response to imprecisions discovered in previous iterations [28]. As aresult, it is much more conservative in the number of contours it creates thanother analyses.Selection of Concrete Types The number of user classes, analyzed classcontours, and the number of concrete types produced by the selection algorithmare reported below:Program ion network circuit pic mandel tsp richards mmult poly testProgram Classes 11 30 15 11 11 12 12 7 6 10Class Contours 64 43 30 27 26 17 27 13 17 18Concrete Types 11 32 15 11 11 12 13 7 6 10The data shows that the number of class contours is much greater than thenumber of user-de�ned classes. However, the number of concrete types �nallyselected is closer the number of user classes. This is because not all those dis-tinguished by the analysis are required for optimization. In particular, when allinvocations on objects corresponding to some class contour are statically bound,the dispatch mechanism does not need a concrete type for dispatch and no dis-tinct concrete type is created. Methods for such objects are simply specializedfor the class contour and statically bound.Selection of Method Clones The number of user de�ned methods actuallyused in the program (as determined by conservative global
ow analysis), ana-lyzed method contours, clones selected by our algorithm, and the �nal numberof methods after inlining appear below. The inlining criteria is based on the sizeof the source and target methods as well as simple static estimation of the callfrequency. When all calls to a method are inlined, that method is eliminated fromthe program.Program ion network circuit pic mandel tsp richards mmult poly testUser Methods 348 330 143 157 108 103 129 48 42 40Method Contours 720 555 511 271 168 153 280 139 189 87Clones Selected 445 342 173 195 115 108 138 64 54 40Clones After Inlining 347 181 101 148 63 71 65 42 26 22Again, the analysis creates many more method contours than user de�nedmethods. However, the selection algorithm chooses only those required for op-timization; in most cases ending with only somewhat more than the number ofuser de�ned methods. Moreover, since many call sites can be statically boundafter cloning, many of the smaller methods can be inlined at all their callers.Thus, the number of clones which remain after inlining is actually smaller thanthe number of methods in the original programs.Code Size One important measure of the e�ectiveness of clone selection is the�nal code size. Figure 5 compares the resulting code size before and after cloning.The cloned programs usually increase in size by some modest amount, andalways by less than 70%. The relatively large increase in ion is the result ofextensive use of �rst class selectors (virtual function pointers in C++) duringthe output phase of the program. Code size expansion can be reduced by usingpro�ling or frequency estimation to restrict cloning to the parts of the programwhich execute the most. Since the output phase is only executed once, suchrestrictions would have helped for ion.37.10

 Optimized
 Cloning

||0

|100

|200

|300

|400

|500

|600

|700

|800

|900

|1000

|1100

|1200

|1300

|1400

|1500

 O
bj

ec
t C

od
e

of
 S

iz
e

(K
)

io
n

ne
tw

or
k

ci
rc

ui
t

pi
c

m
an

de
l

ts
p

ric
ha

rd
s

m
m

ul
t

po
ly

te
stFig. 5. E�ect of Cloning on Code Size4.2 E�ect on OptimizationWe evaluated the impact of cloning on optimization through its e�ect on thestatic and dynamic counts of dynamic dispatch as well as the total number ofcalls. We three di�erent runs of our compiler. The base case baseline copies outinheritance (customization [6]) but does no cloning and inlines only accessorsand operations on primitive types (like integers and floats). This correspondsroughly to the optimization level for a hybrid language like C++. The optimizedversion includes global
ow analysis and inlining and the cloning version includesthe analysis, cloning and inlining.

 Optimized
 Cloning

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

 N
um

be
r

of
 D

yn
am

ic
 D

is
pa

tc
h

S
ite

s

io
n

ne
tw

or
k

ci
rc

ui
t

pi
c

m
an

de
l

ts
p

ric
ha

rd
s

m
m

ul
t

po
ly

te
stFig. 6. Dynamic Dispatch Sites In CodeDynamic Dispatch Sites Static binding is the process of transforming dynamicdispatches (virtual function calls) into regular function calls. Cloning enablesstatic binding by creating versions of code specialized to the types they operateon. In Figure 6 we report the number of dynamic dispatch sites in the �nal37.11

code. Without cloning all the programs but two (mandel and test) contain anumber of dynamic dispatch sites.mandel is primarily numerical with only tokenpolymorphism and in test the selectors (virtual functions) have unique names,enabling them to be statically bound even without analysis. With cloning, onlyone program has more than two dynamic dispatch sites. Those dispatches whichremain correspond to the true polymorphism in the programs, and cannot bestatically bound to single methods. For instance, in richards (the OS simulator)the single remaining dispatch is in the task dispatcher, where the simulated task isexecuted. Since the set of tasks is data dependent, this dynamic dispatch cannotbe eliminated.
 Optimized
 Cloning

||0

|5

|10

|15

|20

 P
er

ce
nt

 o
f D

yn
am

ic
 D

is
pa

tc
he

s

io
n

ne
tw

or
k

ci
rc

ui
t

pi
c

m
an

de
l

ts
p

ric
ha

rd
s

m
m

ul
t

po
ly

te
stFig. 7. Percent of Total Dynamic

 Optimized
 Cloning

||0

|5

|10

|15

|20

|25

|30
|35

 P
er

ce
nt

 o
f D

yn
am

ic
 D

is
pa

tc
he

s

io
n

ne
tw

or
k

ci
rc

ui
t

pi
c

m
an

de
l

ts
p

ric
ha

rd
s

m
m

ul
t

po
ly

te
stFig. 8. Percent of Remaining DynamicDynamic Dispatch Counts The runtime counts in Figure 7 demonstrate thee�ectiveness of cloning for elimination of dynamic dispatch during program ex-ecution. We ran our test suite using sample input and collected the number ofcalls executed, both static and dynamic. We report the number of dynamic dis-patches as a percentage of those occurring in the baseline code. While globalanalysis and optimization alone is able to statically bind many calls, cloning isable to statically bind many more. Moreover, once the number of calls is reducedby inlining, those remaining in the optimized case are frequently dynamic dis-patches. Figure 8 isolates the number of dynamic dispatches as a percentage ofthe remaining invocations. This shows that optimization of the optimized code islargely limited by dynamic dispatches which inhibit inlining. In contrast, clon-ing keeps that number to a tiny fraction of the total calls. Note that this graphshould not be used to compare the absolute number of dynamic dispatches sincethe total number of calls in the cloned version is less than that in the optimizedversion.Number of Calls In Figure 9 we report the total number of calls (static anddynamic) after optimization. For the baseline (100%) we use the number of callsin the baseline version. Global analysis and inlining eliminate between 35% and99% of the calls, and in some cases cloning eliminates 20% more. We expect thatbetter use of frequency information (which in our current compiler is limited),37.12

 Optimized
 Cloning

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 C
al

ls

io
n

ne
tw

or
k

ci
rc

ui
t

pi
c

m
an

de
l

ts
p

ric
ha

rd
s

m
m

ul
t

po
ly

te
stFig. 9. Total Number of Callscombined with the greater number of statically bound methods in the cloningversion will enable us to reduce the number of calls even further.5 Related Work and DiscussionCooper [12] presents general interprocedural analysis and optimization tech-niques. Whole program (global) analysis is used to construct the call graph andsolve a number of data
ow problems. Transformation techniques are describedto increase the availability of this information through linkage optimization in-cluding cloning. However, this work does not address clone minimization. Cooperand Hall [19, 21, 13, 14, 20, 22] present comprehensive interprocedural compil-ation techniques and cloning for FORTRAN. This work is general over forwarddata
ow problems, and presents mechanisms for preserving information acrossclones and minimizing their number. However, concrete types are not a forwarddata
ow problem. Hall determines initial clones by propagation of clone vec-tors containing potentially interesting information which are merged using statevectors of important information into the �nal clones. We handle forward
owproblems in a similar manner, but rely on global propagation to determine the�nal clones for recursive functions.Several di�erent approaches have been used to reduce the overhead of object-orientation. Customization [6] is a simple form of cloning whereby a method iscloned for each subclass which inherits it. This enables invocations on self (orthis in C++ terminology) to be statically bound. Another simple approach isto statically bind calls when there is only one possible method [3]. This idea wasextended by Calder and Grunwald [4] through `if conversion', essentially a staticversion of polymorphic inline caches [23]. Our work also shares some similaritieswith that done for the Self [33] and Cecil [9] languages. Chambers and Ungar [7],used splitting, essentially an intraprocedural cloning of basic blocks, to preservetype information within a function. Early work on Smalltalk used inline caches[17] to exploit type locality. H�olzle and Ungar [24] have shown the informationobtained by polymorphic inline caches can be used to speculatively inline meth-ods. While run time tests are still required, various techniques are presented topreserve the resulting type information. None of these approaches uses globally37.13

analyzes and transformation to eliminate the run time checks nor to preserve gen-eral global data
ow information.More recently, Dean, Chambers, and Grove [16]have used information collected at run time to specialize methods with respectto argument types. While this can remove dynamic dispatches across methodinvocations, it does not handle polymorphic instance variables. Finally, Agesenand H�olzle have recently used the results of global analysis in the Self compiler[2]. However, the information for all the contours for each customized method iscombined before being used by the optimizer.The cloning algorithm we have presented is general enough to enable optim-ization based on any data
ow information provided by global
ow analysis. Allthat is required is that the contour equivalence functions be modi�ed to re
ect thenew optimization criteria. We have used optimization criteria for increasing theavailability of interprocedural constants successfully with our cloning algorithm.However, e�cient cloning for such information requires estimating its potentialuse for optimization which we have not yet implemented. Interested readers arereferred to [19] for a discussion of the issues.6 Summary and Future WorkObject-oriented programming is rapidly becoming a standard in program devel-opment. Traditional optimization techniques are severely hampered by the smallmethods and data dependent control
ow of object-oriented programs. Cloningtechniques can help resolve these problems, enabling object-oriented programsto achieving good performance on modern processors. We have shown that clon-ing can be used to eliminate dynamic dispatch and reduce the number of func-tion calls. In e�ect, this removes the overhead of object-orientation, by enablingthe compiler to undo the e�ects of information hiding and code sharing. Wehave demonstrated the e�ectiveness of cloning for optimization on a collection ofobject-oriented programs. We have also shown that the bene�ts can be achievedat modest cost; the code size growth required to accrue full optimization potentialis relatively small.To continue this work, we are examining alternatives for extending the ideaof equivalence of portions of storage maps of concrete types across classes. Thiswill allow further clone elimination, removing additional redundancies in the �nalcode. We are also examining optimization opportunity estimation metrics forcloning with respect to other types of data
ow information.References1. O. Agesen, J. Palsberg, and M. Schwartzbach. Type inference of Self: Analysis of objects withdynamic and multiple inheritance. In Proceedings of ECOOP '93, 1993.2. Ole Agesen and Urs H�olzle. Type feedback vs. concrete type analysis: A comparison of op-timization techniques for object-oriented languages. Technical Report TRCS 95-04, ComputerScience Department, University of California, Santa Barbara, 1995.3. Apple Computer, Inc., Cupertino, California. Object Pascal User's Manual, 1988.4. Brad Calder and Dirk Grunwald. Reducing indirect function call overhead in C++ programs.In Twenty-�rst Symposium on Principles of Programming Languages, pages 397{408. ACMSIGPLAN, 1994.5. Brad Calder, Dirk Grunwald, and Benjamin Zorn. Quantifying di�erences between C and C++programs. Technical Report CU-CS-698-94, University of Colorado, Boulder, January 1994.6. C. Chambers and D. Ungar. Customization: Optimizing compiler technology for Self, adynamically-typed object-oriented programming language. In Proceedings of SIGPLAN Con-ference on Programming Language Design and Implementation, pages 146{60, 1989.7. C. Chambers and D. Ungar. Iterative type analysis and extended message splitting. In Proceed-ings of the SIGPLAN Conference on Programming Language Design and Implementation,pages 150{60, 1990. 37.14

8. Craig Chambers. The Design and Implementation of the Self Compiler, an Optimizing Com-piler for Object-Oriented Programming Languages. PhD thesis, Stanford University, Stanford,CA, March 1992.9. Craig Chambers. The Cecil language: Speci�cation and rationale. Technical Report TR 93-03-05, Department of Computer Science and Engineering, University of Washington, Seattle,Washington, March 1993.10. Andrew A. Chien. Concurrent Aggregates: Supporting Modularity in Massively-Parallel Pro-grams. MIT Press, Cambridge, MA, 1993.11. Andrew A. Chien, Vijay Karamcheti, John Plevyak, and Xingbin Zhang. Concurrent aggreg-ates language report 2.0. Available via anonymous ftp from cs.uiuc.edu in /pub/csag or fromhttp://www-csag.cs.uiuc.edu/, September 1993.12. K. Cooper, K. Kennedy, and L. Torczon. The impact of interprocedural analysis and optimiz-ation in the Rn environment. ACM Transactions on Programming Languages and Systems,8(4):491{523, October 1986.13. K. D. Cooper, M. W. Hall, and K. Kennedy. Procedure cloning. In Proceedings of the IEEEComputer Society 1992 International Conference on Computer Languages, pages 96{105,April 1992.14. K. D. Cooper, M. W. Hall, and K. Kennedy. A methodology for procedure cloning. ComputerLanguages, 19(2):105{118, April 1993.15. Cray Research, Inc., Eagan, Minnesota 55121. CRAY T3D Software Overview Technical Note,1992.16. Je�rey Dean, Craig Chambers, and David Grove. Identifying pro�table specialization in object-oriented languages. Technical Report TR 94-02-05, Department of Computer Science and En-gineering, University of Washington, Seattle, Washington, February 1994.17. L. Peter Deutsch and Allan M. Schi�man. E�cient implementation of the smalltalk-80 system.In Eleventh Symposium on Principles of Programming Languages, pages 297{302. ACM, 1984.18. The Concurrent Systems Architecture Group. The ICC++ reference manual, version 1.0. Tech-nical report, University of Illinois, Department of Computer Science, 1304 W. Spring�eld Av-enue, Urbana, Illinois, 1995. Also available from http://www-csag.cs.uiuc.edu/.19. M. W. Hall. Managing Interprocedural Optimization. PhD thesis, Rice University, 1991.20. M. W. Hall, S. Hiranandani, and K. Kennedy. Interprocedural compilation of Fortran D forMIMD distributed memory machines. In Supercomputing '92, pages 522{535, 1992.21. Mary W. Hall, Ken Kennedy, and Kathryn S. McKinley. Interprocedural transformations forparallel code generation. In Proceedings of the 4th Annual Conference on High-PerformanceComputing (Supercomputing '91), pages 424{434, November 1991.22. Mary W. Hall, John M. Mellor-Crummey, Alan Clarle, and Ren�e G. Rodr�iguez. FIAT: A frame-work for interprocedural analysis and transformation. In Proceedings of the Sixth Workshopfor Languages and Compilers for Parallel Machines, pages 522{545, August 1993.23. Urs H�olzle, Craig Charmbers, and David Ungar. Optimizing dynamically-typed object-orientedlanguages iwth polymorphic inline caches. In ECOOP'91 Conference Proceedings. Springer-Verlag, 1991. Lecture Notes in Computer Science 512.24. Urs H�olzle and David Ungar. Optimizing dynamically-dispatched calls with run-time type feed-back. In Proceedings of the 1994 ACM SIGPLAN Conference on Programming LanguageDesign and Implementation, pages 326{336, June 1994.25. Suresh Jagannathan and Stephen Weeks. A uni�ed treatment of
ow analysis in higher-orderlanguages. In Twenty-second Symposium on Principles of Programming Languages, pages393{407. ACM SIGPLAN, 1995.26. N. Oxh�j, J. Palsberg, and M. Schwartzbach. Making type inference practical. In Proceedingsof OOPSLA '92, 1992.27. J. Palsberg and M. Schwartzbach. Object-oriented type inference. In Proceedings of OOPSLA'91, pages 146{61, 1991.28. John Plevyak and Andrew A. Chien. Precise concrete type inference of object-oriented pro-grams. In Proceedings of OOPSLA, 1994.29. John Plevyak, Vijay Karamcheti, Xingbin Zhang, and Andrew Chien. A hybrid execution modelfor �ne-grained languages on distributed memory multicomputers. In Proceedings of Supercom-puting '95, 1995.30. John Plevyak, Xingbin Zhang, and Andrew A. Chien. Obtaining sequential e�ciency in con-current object-oriented programs. In Proceedings of the ACM Symposium on the Principlesof Programming Languages, pages 311{321, January 1995.31. Olin Shivers. Topics in Advanced Language Implementation, chapter Data-Flow Analysis andType Recovery in Scheme, pages 47{88. MIT Press, Cambridge, MA, 1991.32. Thinking Machines Corporation, 245 First Street, Cambridge, MA 02154-1264. The ConnectionMachine CM-5 Technical Summary, October 1991.33. David Ungar and Randall B. Smith. Self: The power of simplicity. In Proceedings of OOPSLA'87, pages 227{41. ACM SIGPLAN, ACM Press, 1987.34. Tim A. Wagner, Vance Maverick, Susan L. Graham, and Michael A. Harrison. Accurate staticestimators for program optimization. In Proceedings of the ACM SIGPLAN Conference onProgramming Language Design and Implementation, pages 85{96, Orlando, Florida USA, June1994.This article was processed using the LATEX macro package with LLNCS style37.15

