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Abstract. Object-oriented programming encourages the use of small
functions, dynamic dispatch (virtual functions), and inheritance for code
reuse. As a result, such programs typically suffer from inferior perform-
ance. The problem is that polymorphic functions do not know the exact
types of the data they operate on, and hence must use indirection to oper-
ate on them. However, most polymorphism is parametric (e.g. templates
in C—l——l—) which is amenable to elimination through code replication. We
present a cloning algorithm which eliminates parametric polymorphism
while minimizing code duplication. The effectiveness of this algorithm
is demonstrated on a number of concurrent object-oriented programs.
Finally, since functions and data structures can be parameterized over
properties other than type, this algorithm is applicable to general for-
ward data flow problems.

1 Introduction

Object-oriented (OOP) and concurrent object-oriented (COOP) programming
languages have gained popularity because they provide programmers with useful
tools for organizing programs. However, object-oriented programming techniques
change the structure of programs significantly, typically incurring a performance
degradation as a result. The reasons are fundamental to the programming models
and include: encouraging programmers to use small functions, express new func-
tionality by derivation from previous solutions (inheritance), share code (dynamic
dispatch), and to separate use of operations from their implementation (data ab-
straction). Together, these techniques result in programs with high function call
frequencies, and data dependent control flow.

These characteristics of object-oriented programs can result in poor perform-
ance on modern computers with high degrees of parallelism. Modern micropro-
cessors rely on effective use of registers and instruction scheduling to achieve good
performance. Object-oriented programs make frequent calls which, in addition
to their own cost, disrupt instruction scheduling and register usage. To make
matters worse, such programs allow the target of function calls to be data de-
pendent, making inlining difficult or impossible! and compicating parallelization
and concurrency optimization [30].

The key to eliminating the overhead of dynamic calls is concrete type in-
formation, knowledge of the implementation types that actually occur at func-
tion call sites. Such information can be obtained through global flow analysis
[27, 26, 1, 28, 25] (across function boundaries and even across compilation units).
These algorithms infer flow sensitive parameterizations for functions and data in
the form of concrete type information. This information describes the pattern of

! Run time approaches are described in Section 5.



reuse of general (polymorphic) code for particular (monomorphic) situations. For
example, a Set class might be able to contain any type of object, but a particular
instance of Set might contain only Circle objects. The code operating on such
instances could be optimized for the type of contents. Unfortunately, flow ana-
lysis results cannot be used directly for cloning, because the natural candidates
for replication, contours [31], are too numerous and because standard dispatch
mechanisms cannot select between them at runtime.

We present a cloning algorithm which minimizes the number of clones by rep-
licating functions based on optimization criteria such as minimization of dynamic
dispatch, unboxing opportunities and data layout. This is coupled with a call site
specific dispatch mechanism to enable the selection of the appropriate clone by
any remaining dynamic dispatches. We illustrate the efficiency and effectiveness
of this algorithm through application to a suite of programs. Its efficiency is
reflected in the modest code size increases (a range from -20% to +70%). The
effectiveness is demonstrated by the elmination of dynamic dispatches resulting
from parametric polymorphism in these programs. In our suite of pure concur-
rent object-oriented programs this results in static binding of approximately 99%
of all calls and, through inlining, elimination of 45% to 99% of these calls. Thus,
cloning reduces the number of dynamic and static calls executed at runtime,
producing larger code regions for optimization.

Specific contributions of this paper include:

— A cloning algorithm for object-oriented languages which removes dynamic
dispatches resulting from parametric polymorphism while minimizing the
number of clones.

— An empirical evaluation of the efficiency and effectiveness of the cloning tech-
niques on a suite of program.

The remainder of the paper is organized as follows. In Section 2 we describe
the difficulties of optimizing object-oriented programs and introduce our compil-
ation framework. Section 3 describes how global information is enhanced through
cloning and how the number of clones is minimized. In Section 4 we report the
results of our application of these techniques. Related work is discussed in Sec-
tion b and we summarize in Section 6.

2 Background

In this section we examine characteristics of object-oriented programs which
affect their efficiency. Then we briefly discuss the flow analysis techniques from
which the cloning algorithm proceeds.

2.1 Efficiency of OOP and COOP Languages

Object-oriented programming provides tools for data abstraction and type-de-
pendent dispatch, supporting both increased program modularity and code reuse.
It supports polymorphism, late binding (dynamic dispatch or virtual functions
calls), and inheritance, enabling programmers to organize their programs hier-
archically as special cases based on general solutions, and to hide the details of
operations. Likewise, concurrent object-oriented programming enables program-
mers to abstract and encapsulate consistency mechanisms, parallelization and
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data layout decisions. This, in turn, makes the programs easier to understand
and modify. Object-oriented programs differ greatly in structure from procedural
code [5], and there is every indication that these differences increase as program-
mers develop an “object-oriented” programming style.

Though they have desirable software engineering advantages, OOP and COOP
typically have an adverse impact on performance. Due to high levels of hardware
parallelism (deep pipelines and multiple issue), modern processors are heavily
dependent on instruction scheduling and register allocation to achieve good per-
formance. However, these optimizations require unbroken sequences of instruc-
tions, or, at the very least, good control flow information. Since object-oriented
programs tend to have very small functions, inlining is required to enable these
optimizations. Unfortunately, dynamic dispatch confounds control flow, seriously
complicating or preventing inlining. Likewise, parallelization, data layout, block-
ing and other high level transformation rely on interprocedural control flow in-
formation [19].

To inline functions a compiler for object-oriented languages must know the
exact type of an object (as opposed to the declared type of which it may be a
subclass). This conerete type information is precisely the detail the programmer
wishes to hide, via encapsulation and code reuse. Concrete types can be used to
generate efficient code sequences which manipulate the representations of data
types. For example, a sort algorithm is described in terms of comparing and mov-
ing elements. However, comparing and moving numbers as opposed to character
strings, is very different and subject to different optimizations. In the absence
of concrete type information, an implementation must use run time checks or
dynamic dispatches, which can lead to poor performance.

2.2 Polymorphism

Polymorphism refers to the ability of a function or variable to operate on or
contain objects of different types. We are concerned with two types of poly-
morphism: parametric and true. Parametric polymorphism occurs when a func-
tion invocation or instance of a class can be parameterized by types it uses,
much like templates in C+4. One popular use of parametric polymorphism is
for “container” classes for sets, lists, hash tables etc. True polymorphism occurs
when a specific function invocation or object contains a single reference which
might be of more than one type. A typical use of such polymorphism is in a
simulator, where the configuration of simulated elements is data dependent and
cannot be determined at compile time. Our algorithm eliminates the parametric
polymorphism exposed by the analysis which, as we will see in Section 4, 1s a
major cause of dynamic dispatch. It is important to note that true polymorph-
ism often cannot be eliminated since it represents a choice point in the program
which would require a case or switch statement in a procedural language.

2.3 Global Program Analysis

In many object-oriented programs, the information necessary for optimization is
still present in the program structure, but it is divided across module boundaries
or even compilation units. Global program analysis can be an efficient and effect-
ive way of recovering information such as global control flow, global data flow,
and concrete type information. In the sorting example, the type of data being
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sorted may not be specified at the definition of the sort, but is determined at
call site of a sort operation. Global analysis recovers this concrete type inform-
ation, linking the caller and callee and breaking through abstraction boundaries
to enable optimization.

Recently, global program analysis frameworks have been developed for object-
oriented languages which can efficiently derive global control flow and concrete
type information [27, 26, 1, 28]. These algorithms simultaneously infer the inter-
woven global control and data flow of object-oriented programs. They do so by
a combination of flow analysis and abstract interpretation and by modeling the
different environment in which a function is invoked by a set of “contours” [31].
Typical analyses create for each function a number of contours polynomial in
the size of the program. Moreover, these contours often do not represent useful
optimization opportunities.

2.4 Implementation Context and Applications

This cloning algorithm has been implemented in the Illinois Concert system which
includes a complete development environment for irregular parallel applications.
The Concert system supports a concurrent object-oriented programming model
and includes a globally optimizing compiler, efficient runtime, symbolic debugger,
and an emulator for program development. This system compiles ICC++ [1§],
a parallel C++ dialect, and Concurrent Aggregates [11, 10] for execution on
the Cray T3D [15] and Thinking Machines CM-5 [32] as well as uniprocessor
workstations.

Cloning is used in our system to enable unboxing and register allocation of
integer and floating point numbers, unboxing of integer and floating point arrays,
and inlining and static binding of functions, enabling us to obtain sequential
efficiency comparable to C [30]. On parallel machines, the more precise control
flow information has enabled us to specialize the calling conventions in our hybrid
execution model [29]. We are also in the process of using it to create and optimize
call graph subtrees based the location of data in parallel machines.

3 The Cloning Algorithm

The 1dea of cloning is to create specialized versions of data structures and meth-
ods (which we call concrete types and clones respectively) for the different ways in
which they are used by the programmer. These versions are then shared across
the program by ensuring that the appropriate one is called for each use. The
cloning algorithm starts with the results of global analysis. First, we describe
the pertinent information provided by this analysis. Next, we present a modi-
fied dynamic dispatch mechanism for finding the appropriate clones. Then, we
show how to select clones to maximize optimization opportunities and ensure
that the resulting call graph is realizable via the dispatch mechanism. Once the
clones have been selected they are created by constructing new concrete types,
duplicating methods and rebuilding the call graph including the dispatch tables.

3.1 Contours and Clones

Flow analysis of object-oriented programs produces information about data flow
values for methods based on the contours (calling environments) in which they
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are invoked and for instance variables based on the statement and contour at
which they were created [26, 28]. We will call the contours for methods method
contours and the statement and method contour at which objects with distin-
guished instance variables are created class contours.? Since these contours were
created by the analysis to distinguish potentially different uses of methods or
classes they roughly correspond to potential clones and concrete types. However,
the analysis may distinguish method contours by any aspect of the calling en-
vironment including the contours from which they were invoked [26], the types
of all the arguments [1] as well as other criteria [25]. Thus, a call graph on the
contours cannot, in general, be realized by the standard dispatch mechanism.

3.2 Modified Dynamic Dispatch Mechanism

Cloning modifies the call graph by replicating subgraphs the methods of which are
then called by only a subset of the previous callers. If a call site is statically bound
(resolves to a single target method) it can be connected directly to the appropriate
clone. However, if the call site requires a dynamic dispatch, the standard dispatch
mechanism used by C++ or Smalltalk is, in general, insufficient to distinguish
the correct callee clone. The problem is that this dispatch mechanism determines
the method to be executed based on the selector (virtual function name) and
runtime class of the target object < selector, class >, and these are identical for
all clones of a given method. The example in Figure 1 illustrates this limitation.

class Stream;

class StringStream : Stream;
class Shape;

class Square : Shape;

class Circle : Shape;

main() {
Object * o = new Circle;
Stream * s;

if (...) s = new StringStream;

: lse s = new Stream;
St s t(Shape * N ;
ream: :print (Shape o) { } s->print () ;
CLONE Stream:print(Square * o) { ... } 0 = new Squére;
CLONE Stream:print(Circle * o) { ... } s->print(o);
CLONE StringStream:print(Square * o) { ... } 3 te
CLONE StringStream:print(Circle * o) { ... }

Fig. 1. Limitation of Standard Dispatch Mechanism

In Figure 1 the print () method in the Stream class takes a single argument o
which is either a Circle or a Square. Since the variable s can be either a Stream
or a StringStream, the invocation requires dynamic dispatch. However, the the
standard dispatch mechanism only dispatches on the selector and the class of the
target, and hence cannot select between the versions of Stream: : print () cloned
based on the type of parameter o (one for Square and one for Circle). Thus, a
more powerful dispatch mechanism is required.

To address this problem we propose a call site specific dispatch mechanism.
Each call site is given an identifier which is used during dynamic dispatch to
distinguish the appropriate callee clone for each selector and target object type
pair. In our example, the call site information would allow us to select the version
of print for Circle at the first call site and that for Square at the second.

2 Method contours and class contours correspond to entry sets and creation sets in
[28].
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Since only a single dimension is added, this mechanism is the smallest extension
sufficient to select the correct clone, and, unlike multiple-dispatch, is independent
of the number of arguments.

Cloning partitions the objects in user defined classes into concrete types
which have more precise type signatures. From the point of view of the dis-
patch mechanism these are identical to user defined classes. Thus the modified
mechanism uses the concrete type of the target object instead of the class dur-
ing dispatch. Since the concrete type must be available at run time, objects are
tagged when they are created with their concrete type (just as they would have
been tagged with their class). Thus, the final modified dispatch mechanism uses
< call site, selector, concrete type > to select the method to be executed. Even
if using this mechanism incurs additional overhead®, the number of dynamic
dispatches is greatly reduced, more than compensating for a slightly higher res-
olution cost.

3.3 Selecting Clones

Clones are selected by partitioning method and concrete types by partitioning
class contours.? The initial set of partitions is determined by optimization criteria
such as minimization of dynamic dispatch or unboxing. These partitions represent
concrete types and versions of methods (clones) amenable to special optimization.
Then, we iteratively refine the partitions until the cloned call graph is realizable
by the dispatch mechanism.

clone_selection() {
initial_method_contour_partition = new Partition;
initial_class_contour_partition = new Partition;
forall m in method_contours do
m.partition = initial_method_contour_partition;
forall ¢ in class_contours do
c.partition = initial_class_contour_partition;
while (!'fixed_point) {
repartition(method_contours,
method_contours_equivalent);
check_class_contours_required_for_dispatch();
repartition(class_contours, 3
class_contours_equivalent);

repartition(set,equivalent){
result = new Set;
result.add( new Set(set.first()));
forall e in set.rest() do
forall s in result do
if (forall r in s do
equivalent(e,r))
s.add(e);
else result.add( new Set(e));

Fig. 2. Cloning Selection Drivers (pseudocode)

The overall algorithm is presented in Figure 2. It is based on two functions,
one which determines if two method contours can share a clone (are equivalent)
and another for class contours. Using these functions (shown in Figure 3) we
first compute a partition of method contours then compute a partition of class
contours. The repartition function for partitions by grouping the contours such
that all the contours in a partition are equivalent. Since a finer partition of class
contours can induce a finer partition of method contours (to ensure realizability)

® The modified dispatch mechanism is amenable to optimizations such as folding the
call site id into the selector to form a single index into the virtual function table, or
the use of multi-dimensional dispatch tables.

4 Some analyses use contours which cannot be differentiated by our modified dispatch
mechanism. For such analysis a set of minimum partitions is precomputed.
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and vice versa we repeat the process until a fixed point is reached. Since the
number of contours is finite and the partitioning proceeds monotonically (see
Figure 3 under the comment monotonicity) termination is ensured.

boolean method_contours_equivalent(a,b) {

return
&&((a.partition == b.partition) /* monotonicity */
&% (foreach s in callsites(method(a)) do /* optimization criteria */

binding(s,a)==binding(s,b))

&% (foreach v in variables(method(b)) do
boxing(v,a)==boxing(v,b))

&& (foreach ¢ in creation_points(method(a)) do /* realizability */
class_contour(c,a)==class_contour(c,b));

¥

boolean class_contours_equivalent(a,b) {
return
((a.partition == b.partition) /* monotonicity */
&% (foreach v in instance_variables(class(b)) do /* optimization criteria */
boxing(v,a)==boxing(v,b))
&% (' b in a.not_equivalent); /* realizability */

¥

check_class_contours_required_for_dispatch() {
foreach s in callsites do
foreach el,e2 in call_graph_edges(s) do

if ((method_partition(el.callee) !'= (method_partition(e2.callee)))
&% (el.selector == e2.selector)
&% (class_partition(el.target) == (class_partition(e2.target))))

make_not_equivalent(class_contour(el.target),
class_contour(e2.target));

¥

make_not_equivalent(a,b) {
a.not_equivalent.add(b);
b.not_equivalent.add(a);

¥

Fig. 3. Contour Equivalence Functions (pseudocode)

The initial partitions are built based on optimization criteria used by the
contour equivalence functions. For example, to maximize static binding we ex-
amine each call site in the method for the two contours, and if they would bind to
different clones (method contour partitions) or different sets of clones we declare
the two contours not equivalent. Similarly for representation optimizations, if a
variable within two method contours or an instance variable within two class con-
tours has different efficient representations (unboxed or inlined objects) grouping
the contours would prevent optimizations, so we declare them not equivalent. The
code to check these optimization criteria appears in Figure 3 under the comments:
optimization criteria. Standard techniques for profiling or frequency estim-
ation [34] can be used to maximize the benefits of optimization while limiting
code expansion.

To ensure that the call graph is realizable by the modified dispatch mech-
anism, further refinement of the partitions may be required. This affects both
method and class partitions. The dispatch mechanism uses concrete type (class
contour partition) to select the target method, so call sites can require two class
contours to be in different partitions in order be able to resolve the appropriate
method. This occurs when the < call site, selector > pair does not resolve to a
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unique target clone (method contour partition). For example, in Figure 4 we have
decided to optimize the binding of print () in the method print_contents() to
Circle: :print() for circle containers and Square: : print () for square contain-
ers. Now, at site 3 the dispatch mechanism would like to select the appropriate
specialized versions. Since the call site and selector are identical, it must use
the concrete type of ¢ to distinguish the correct version. Thus, the method con-
tour partition of print_contents() has induced a class contour partition of
Container to distinguish those instances for which o is a Circle from those for
which o is a Square. The function which checks this condition and ensures that
two class contours will be non-equivalent is check_class_contours_required_-
for_dispatch in Figure 3.

class Container { Object * o; ... };
void Container::print_contents(){ this->o->print(); }
Container * create() { return new Container; }

main() {
Container *a = create(); /* site 1 */
Container *b = create(); /* site 2 */
a->0 = new Circle;
b->0 = new Square;
Container *c = aj;
if (...) ¢ = b;
c->print_contents(); /* site 3 %/

Fig. 4. Example Requiring Repartitioning of Contours

Similarly, class contour partitions can induce method contour partitions. Class
contours are defined by their creation point (creating statement and surrounding
method contour). Since the partitions of class contours will be the concrete types
which are used by the dispatch mechanism, objects must be tagged at their
creation points with their concrete type. This means that two method contours
cannot be in the same partition if they define different class contour partitions.
For example, in Figure 4, we have partitioned the class contour for Container
based on the type of o (Circle or Square). In order to tag circle containers and
square containers as different concrete types, enabling the dispatch mechanism to
select between them, we must repartitioning the method contours for create(),
separating those called from site 2 from those called from site 3. Thus, the
class contour partition of Container has induced a method contour partition of
create(). This is checked by the function method_contours_equivalent under
the comment realizability in Figure 3.

3.4 Making Clones

When the fixed point is reached, we create method clones for the method contour
partitions and concrete types for the class contour partitions. For each method
clone, we duplicate the code and update the data flow information so that it re-
flects only the information stored in the contours for its partition. The call sites
and variables will now have the more precise information dictated by the optim-
ization criteria. Statically bound call sites are connected to the appropriate clone
and are now amenable to inlining. Methods which contain creation points are
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modified so that the created objects are tagged with the appropriate concrete
type instead of the original class. Finally, the modified dispatch tables are con-
structed. Call sites which require dynamic dispatch are assigned identifiers. For
each edge in the interprocedural call graph from these sites, an entry is made
into the dispatch table mapping the < call site, selector, concrete type > to the
appropriate clone.

4 Experimental Results

We have implemented these cloning techniques in the Illinois Concert compiler
and tested them on tens of thousands of lines of Concurrent Aggregates pro-
grams [10]. In this section we present results from a representative sample of
those programs. These test programs are concurrent object-oriented codes writ-
ten by a variety of authors of differing levels of experience with object-oriented
programming. They range in size from kernels to small applications. They all
make use of code sharing through polymorphism, and several also contain true
polymorphism, for example using dynamic dispatch (instead of conditional tests)
to differentiate data dependent situations.

Program ion|network|circuit| pic{mandel| tsp|richards|mmult|poly|test
User Lines 1934 1799 1247| 759 642|500 378 139| 49| 39
Total Lines|2384 2249 1697|1209 1092|950 828 589| 499|489

The first three programs simulate the flow of ions across a biological mem-
brane (ion), a queueing network network and an analog circuit (circuit). pic
performs a particle-in-cell calculation, and man computes the Mandelbrot set us-
ing a dynamic algorithm. The tsp program solves the traveling salesman problem.
richards is an operating system simulator used to benchmark the SELF system
[8, 24]. The last three programs are kernels representing uses of polymorphic
libraries. mmult multiplies integer and floating point matrices, poly evaluates
integer and floating point polynomials and test is a synthetic code which uses
multi-level polymorphic data structure. All the programs were compiled with the
standard CA prologue of 450 lines of code.

4.1 Clone Selection

To evaluate, the clone selection algorithm we generated initial contour partitions
using optimization criteria for removing all dynamic dispatches resulting from
parametric polymorphism regardless of the number of invocations. In addition,
we optimized the representation of all arrays and local integer and floating point
variables by unboxing. We applied these criteria to cloning of our test suite and
evaluated the number of concrete types and method clones produced.

In order to demonstrate that clone selection was able to combine contours
not required for optimization we report the number of contours produced by our
analysis. However, 1t should be noted that the number of contours produced by
an analysis is only superficially related to the quality of information it produces
and the difficulty of selecting clones based on that information. In theory, flow
analyses produce O(N), O(N?), O(N°®) or more contours for a program of size N
[27, 26, 1, 25]. The number of contours seen in practice can require large amounts
of space [2]. The particular analysis we use is an iterative algorithm which creates
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contours in response to imprecisions discovered in previous iterations [28]. As a
result, it is much more conservative in the number of contours it creates than
other analyses.

Selection of Concrete Types The number of user classes, analyzed class
contours, and the number of concrete types produced by the selection algorithm
are reported below:

Program [ion|network]circuit|pic|mandel]tsp[richards|mmult|poly]test
Program Classes| 11 30 1511 11| 12 12 71 6| 10
Class Contours | 64 43 30| 27 26| 17 27 13| 17| 18
Concrete Types | 11 32 1511 11| 12 13 71 6| 10

The data shows that the number of class contours is much greater than the
number of user-defined classes. However, the number of concrete types finally
selected is closer the number of user classes. This is because not all those dis-
tinguished by the analysis are required for optimization. In particular, when all
invocations on objects corresponding to some class contour are statically bound,
the dispatch mechanism does not need a concrete type for dispatch and no dis-
tinct concrete type 1s created. Methods for such objects are simply specialized
for the class contour and statically bound.

Selection of Method Clones The number of user defined methods actually
used in the program (as determined by conservative global flow analysis), ana-
lyzed method contours, clones selected by our algorithm, and the final number
of methods after inlining appear below. The inlining criteria is based on the size
of the source and target methods as well as simple static estimation of the call
frequency. When all calls to a method are inlined, that method is eliminated from
the program.

Program 1on|network |circuit| pic{mandel| tsp [richards|mmult |poly [test
User Methods 348 330 143|157 108|103 129 48] 42| 40
Method Contours 720 555 511(271 168|153 280 139| 189| &7
Clones Selected 445 342 173(195 115|108 138 64| 54| 40
Clones After Inlining|347 181 101|148 63| 71 65 42| 26| 22

Again, the analysis creates many more method contours than user defined
methods. However, the selection algorithm chooses only those required for op-
timization; in most cases ending with only somewhat more than the number of
user defined methods. Moreover, since many call sites can be statically bound
after cloning, many of the smaller methods can be inlined at all their callers.
Thus, the number of clones which remain after inlining is actually smaller than
the number of methods in the original programs.

Code Size One important measure of the effectiveness of clone selection is the
final code size. Figure 5 compares the resulting code size before and after cloning.

The cloned programs usually increase in size by some modest amount, and
always by less than 70%. The relatively large increase in ion is the result of
extensive use of first class selectors (virtual function pointers in C+4) during
the output phase of the program. Code size expansion can be reduced by using
profiling or frequency estimation to restrict cloning to the parts of the program
which execute the most. Since the output phase i1s only executed once, such
restrictions would have helped for ion.
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Fig. 5. Effect of Cloning on Code Size

4.2 Effect on Optimization

We evaluated the impact of cloning on optimization through its effect on the
static and dynamic counts of dynamic dispatch as well as the total number of
calls. We three different runs of our compiler. The base case baseline copies out
inheritance (customization [6]) but does no cloning and inlines only accessors
and operations on primitive types (like integers and floats). This corresponds
roughly to the optimization level for a hybrid language like C+4. The optimezed
version includes global flow analysis and inlining and the cloning version includes
the analysis, cloning and inlining.

110+ Il Optimized
Cloning

Number of Dynamic Dispatch Sites
3
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Fig. 6. Dynamic Dispatch Sites In Code

Dynamic Dispatch Sites Static binding is the process of transforming dynamic
dispatches (virtual function calls) into regular function calls. Cloning enables
static binding by creating versions of code specialized to the types they operate
on. In Figure 6 we report the number of dynamic dispatch sites in the final
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code. Without cloning all the programs but two (mandel and test) contain a
number of dynamic dispatch sites. mandel is primarily numerical with only token
polymorphism and in test the selectors (virtual functions) have unique names,
enabling them to be statically bound even without analysis. With cloning, only
one program has more than two dynamic dispatch sites. Those dispatches which
remain correspond to the true polymorphism in the programs, and cannot be
statically bound to single methods. For instance, in richards (the OS simulator)
the single remaining dispatch is in the task dispatcher, where the simulated task is
executed. Since the set of tasks is data dependent, this dynamic dispatch cannot
be eliminated.

201 35
Il Optimized Bl Optimized
Cloning

Cloning

151

Percent of Dynamic Dispatches
5
T

Percent of Dynamic Dispatches
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network
mandel
richards
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Fig. 7. Percent of Total Dynamic Fig. 8. Percent of Remaining Dynamic

Dynamic Dispatch Counts The runtime counts in Figure 7 demonstrate the
effectiveness of cloning for elimination of dynamic dispatch during program ex-
ecution. We ran our test suite using sample input and collected the number of
calls executed, both static and dynamic. We report the number of dynamic dis-
patches as a percentage of those occurring in the baseline code. While global
analysis and optimization alone is able to statically bind many calls, cloning is
able to statically bind many more. Moreover, once the number of calls is reduced
by inlining, those remaining in the optimized case are frequently dynamic dis-
patches. Figure 8 isolates the number of dynamic dispatches as a percentage of
the remaining invocations. This shows that optimization of the optimized code is
largely limited by dynamic dispatches which inhibit inlining. In contrast, clon-
ing keeps that number to a tiny fraction of the total calls. Note that this graph
should not be used to compare the absolute number of dynamic dispatches since
the total number of calls in the cloned version is less than that in the optimized
version.

Number of Calls In Figure 9 we report the total number of calls (static and
dynamic) after optimization. For the baseline (100%) we use the number of calls
in the baseline version. Global analysis and inlining eliminate between 35% and
99% of the calls, and in some cases cloning eliminates 20% more. We expect that
better use of frequency information (which in our current compiler is limited),
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combined with the greater number of statically bound methods in the cloning
version will enable us to reduce the number of calls even further.

5 Related Work and Discussion

Cooper [12] presents general interprocedural analysis and optimization tech-
niques. Whole program (global) analysis is used to construct the call graph and
solve a number of data flow problems. Transformation techniques are described
to increase the availability of this information through linkage optimization in-
cluding cloning. However, this work does not address clone minimization. Cooper
and Hall [19, 21, 13, 14, 20, 22] present comprehensive interprocedural compil-
ation techniques and cloning for FORTRAN. This work 1s general over forward
data flow problems, and presents mechanisms for preserving information across
clones and minimizing their number. However, concrete types are not a forward
data flow problem. Hall determines initial clones by propagation of clone vec-
tors containing potentially interesting information which are merged using state
vectors of important information into the final clones. We handle forward flow
problems in a similar manner, but rely on global propagation to determine the
final clones for recursive functions.

Several different approaches have been used to reduce the overhead of object-
orientation. Customization [6] is a simple form of cloning whereby a method is
cloned for each subclass which inherits it. This enables invocations on self (or
this in C++ terminology) to be statically bound. Another simple approach is
to statically bind calls when there is only one possible method [3]. This idea was
extended by Calder and Grunwald [4] through ‘if conversion’, essentially a static
version of polymorphic inline caches [23]. Our work also shares some similarities
with that done for the SELF [33] and Cecil [9] languages. Chambers and Ungar [7],
used splitting, essentially an intraprocedural cloning of basic blocks, to preserve
type information within a function. Early work on Smalltalk used inline caches
[17] to exploit type locality. Holzle and Ungar [24] have shown the information
obtained by polymorphic inline caches can be used to speculatively inline meth-
ods. While run time tests are still required, various techniques are presented to
preserve the resulting type information. None of these approaches uses globally
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analyzes and transformation to eliminate the run time checks nor to preserve gen-
eral global data flow information. More recently, Dean, Chambers, and Grove [16]
have used information collected at run time to specialize methods with respect
to argument types. While this can remove dynamic dispatches across method
invocations, it does not handle polymorphic instance variables. Finally, Agesen
and Holzle have recently used the results of global analysis in the SELF compiler
[2]. However, the information for all the contours for each customized method is
combined before being used by the optimizer.

The cloning algorithm we have presented is general enough to enable optim-
ization based on any data flow information provided by global flow analysis. All
that is required is that the contour equivalence functions be modified to reflect the
new optimization criteria. We have used optimization criteria for increasing the
availability of interprocedural constants successfully with our cloning algorithm.
However, efficient cloning for such information requires estimating its potential
use for optimization which we have not yet implemented. Interested readers are
referred to [19] for a discussion of the issues.

6 Summary and Future Work

Object-oriented programming is rapidly becoming a standard in program devel-
opment. Traditional optimization techniques are severely hampered by the small
methods and data dependent control flow of object-oriented programs. Cloning
techniques can help resolve these problems, enabling object-oriented programs
to achieving good performance on modern processors. We have shown that clon-
ing can be used to eliminate dynamic dispatch and reduce the number of func-
tion calls. In effect, this removes the overhead of object-orientation, by enabling
the compiler to undo the effects of information hiding and code sharing. We
have demonstrated the effectiveness of cloning for optimization on a collection of
object-oriented programs. We have also shown that the benefits can be achieved
at modest cost; the code size growth required to accrue full optimization potential
18 relatively small.

To continue this work, we are examining alternatives for extending the idea
of equivalence of portions of storage maps of concrete types across classes. This
will allow further clone elimination, removing additional redundancies in the final
code. We are also examining optimization opportunity estimation metrics for
cloning with respect to other types of data flow information.
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