
The Concert System { Compiler and Runtime Support for E�cient,Fine-Grained Concurrent Object-Oriented ProgramsAndrew A. Chien Vijay Karamcheti John PlevyakDepartment of Computer Science1304 W. Spring�eld AvenueUrbana, IL 61801fachien,vijayk,jplevyakg@cs.uiuc.eduJune 11, 1993AbstractThe introduction of concurrency complicates the already di�cult task of large-scale program-ming. Concurrent object-oriented languages provide a mechanism, encapsulation, for managingthe increased complexity of large-scale concurrent programs, thereby reducing the di�culty oflarge scale concurrent programming. In particular, �ne-grained object-oriented approaches pro-vide modularity through encapsulation while exposing large degrees of concurrency. Though�ne-grained concurrent object-oriented languages are attractive from a programming perspec-tive, they have historically su�ered from poor e�ciency.The goal of the Concert project is to develop portable, e�cient implementations of �ne-grained concurrent object-oriented languages. Our approach incorporates careful program anal-ysis and information management at every stage from the compiler to the runtime system. Inthis document, we outline the basic elements of the Concert approach. In particular, we discussprogram analyses, program transformations, their potential payo�, and how they will be em-bodied in the Concert system. Initial performance results and speci�c plans for demonstrationsand system development are also detailed.Indexing Keywords: Concurrent object-oriented languages, Multicomputers, Parallel Com-puting, Compilation, Runtime Systems.1 IntroductionIn the sequential computing world, the increasing complexity of software applications, systems,and requirements places growing burdens on software developers, taxing their ability to managecomplexity. To a great extent, this problem is responsible for the rapidly increasing popularity ofobject-oriented programming techniques. The encapsulation provided by such techniques supportscode reuse and separate design (modularity), enabling the construction of larger, more complexsystems more rapidly than previously possible.In the parallel computing world, traditional software development challenges are complicatedby concurrency and distribution. These additional concerns exacerbate the need for program mod-ularity to manage complexity. Concurrent object-oriented languages support program modularitythrough object encapsulation, allowing the hiding of concurrency, distribution, or other irrelevantdetail. Further, �ne-grained concurrent object-oriented languages both provide encapsulation and1

The Concert System 2expose large scale concurrency in application programs, and therefore are a promising approach toparallel programming.The primary advantage of concurrent object-oriented languages is encapsulation, a critical toolfor managing the complexity of large programs. Modularity tools allows the exploitation of con-currency whether it be homogeneous and heterogeneous, or expressed in as data parallelism or taskparallelism. Exploitation of diverse concurrency structures is possible because encapsulation cancon�ne of each subcomputation, allowing the programmer to reason about them separately. Forexample, in a particle-in-cell code, a partial di�erential equation solver and a graph algorithm whichcomputes the mapping of particles for the next time step can easily be written to run concurrently.Expressing equivalent concurrency in a data parallel model is quite di�cult.While attractive for programmability reasons, the primary drawback of �ne-grained, concurrentobject-oriented languages to date has been their ine�ciency (compared to their competitors suchas parallel FORTRAN dialects). In addition, the most e�cient implementations of such languageshave relied on specialized hardware to achieve high performance [15, 36, 42]. The primary goal ofthe Concert project is to develop compiler and runtime techniques to make �ne-grained concurrentobject-oriented languages portable and e�cient. By portable and e�cient, we mean that theprograms should run e�ciently both on uniprocessors and on parallel computers built from stockmicroprocessors.While ideally, our implementation techniques should apply to arbitrary multiple-instructionmultiple-data (MIMD) parallel machines, a reasonable standard of portability to demonstrate thegenerality of the techniques is based on the following assumptions about the basic structure offuture parallel machines. We assume processing nodes based on workstation or PC-like architec-tures, fast local processing with a deep memory hierarchy (two or more levels), inexpensive accessto a communication network (no operating system calls required), and a high bandwidth com-munication network. In particular, we make no assumptions about special mechanisms for localsynchronization, global synchronization, or a global address space. This model is compatible witha broad range of existing and announced multicomputers [39, 13, 12]. In such machines, the fun-damental performance issues are balancing the level of concurrency exploited against the cost ofscheduling and context switching, exploiting data locality within and between nodes and achievinga reasonably balanced work distribution throughout the machine.In the Concert system, our approach focuses on execution grain size tuning. We de�ne aprogram's execution granularity as the size of fragments of computation that are scheduled inde-pendently at runtime. In the execution of a parallel program, grain size determines the processore�ciency of the application1 as shown in Figure 1. For a particular machine target and runtimesystem implementation, the cost of communication, concurrency control, and scheduling can beviewed as �xed, and processor e�ciency is determined by the ratio of the amount of work in eachcomputational grain to the overhead. Thus, executing a program with appropriate grain size isessential for high performance; too large a grain size produces concurrency-limited execution, toosmall a grain size produces an overhead-dominated computation.In concurrent object-oriented programs (COOP), each object invocation can be viewed as anexecution grain. Tuning the execution grain size therefore implies partitioning or merging objectinvocations together into a single execution grain. Since in most cases, the goal is to increasethe grain size, we focus on merging the object invocations. Consider the elements of an objectinvocation: name translation, message formatting, transmission, reception, bu�ering, scheduling,and dispatch. A remote procedure call (RPC) style call-return is shown in Figure 1. For thereturn, many of the steps are repeated. Since a typical object invocation may be only 10-201This ignores idle time.

The Concert System 3
A’s method

translate
format

transmit

receive
buffer
schedule
dispatch

B’s method

translate
format
transmit

receive
buffer

schedule

A’s method(resume)

 INVOKE
OVERHEAD

 REPLY
OVERHEAD

A

BObject Graph

Figure 1: An invocation sequence between objects A and B.instructions, the overhead for the object invocation steps can dominate the actual work (shown ingray). In comparison, an analogous sequential program might require a dozen or so instructions asoverhead for a procedure call and return, with arguments and return values passed on the stack.If optimized, procedure call overhead can be reduced further, with parameters passed in registersor the with the procedure being inlined. To achieve competitive e�ciency, an implementation of aconcurrent object-oriented language must use the cheapest mechanisms possible for an invocation,and maximize the opportunities for using them. To reduce the cost of invocation, a variety of type,location, and concurrency information is helpful, enabling the elimination of message formatting,scheduling, and dispatch overhead. This information may be available at compile time, or only atrun time. Precisely when it becomes available has direct impact on how it can be exploited andthe impact it has on program e�ciency. These issues are discussed in greater detail in Section 3.The Concert system provides a framework for systematically extracting and exploiting the nec-essary information for grain size tuning in �ne-grained, concurrent object-oriented programs. Sucha framework requires an integrated approach involving collaboration between the compiler and run-time system.2 The Concert system involves four basic types of techniques for increasing executiongrain size: compile-time optimization, compile-time speculative transformation and optimization,compiler-guided runtime optimization, and high performance runtime systems. The critical issuesand challenges for each of these types of optimization are discussed in Section 3.As a general rule, the Concert system exploits information as soon as it is available, enablinga broader scope of optimization and reducing the cost of program transformation than wouldbe possible at a later stage. In concurrent object-oriented languages, the requisite informationmay only become available at any phase from compile to run time, so optimization at all phasesis essential to high performance. For example, it would be preferable to do all optimization atcompile-time, but due to limitations of static analysis in programs with implicit typing, dynamic2Hence the name Concert, indicating a concerted e�ort of both the compiler and runtime.

The Concert System 4allocation, and pervasive use of references, the requisite information may not be available. If partialinformation is available, the Concert compiler might choose to compile specialized versions of theprogram and select amongst them at run time. And, if the compiler cannot statically narrowthe possibilities, it will resort to instrumenting the program for dynamic compilation, specializingthe program code with respect to the structure and distribution of program data structures asinformation becomes available. If dynamic compilation is not feasible, the Concert system will relyon clever scheduling to increase execution grain size and e�cient runtime operations to executegrains as e�ciently as possible.We are building a high performance concurrent object-oriented system, called the Concertsystem, based on these ideas both as a demonstration and an experimental vehicle for exploringthese techniques. The Concert system embodies the compiler and runtime support required tooptimize programs across the full range of stages.Overview The remaining sections of this document are organized as follows. Section 2 discussesthe basic language model being used for programming, analysis, and optimization. The model isa simple concurrent object-oriented language with single inheritance. In Section 3, we detail thefour basic means of exploiting program information to tune execution grain size. In particular, wediscuss the potential bene�ts of several types of optimizations with respect to an actual runtimeimplementation. Sections 4 discusses how the ideas behind the Concert system will be evaluatedand some of the questions we are studying. Section 5 discusses the related work, particularly dataparallel approaches, contrasting them to the approach outlined here. Finally, Section 6 summarizesthe paper and the current status of the project.2 Basic Language ModelCompiler analysis and optimization must take place in the context of a programming languagesemantics and execution model. Because our goal is to develop generic analysis and optimizationtechniques, we have chosen to study a simple concurrent object model, incorporating the essentialfeatures of concurrency and object-orientation, and optimize it for a generic model of parallelmachines, based on stock hardware (see Section 1). Using generic models will allow the optimizationtechniques to be easily transported to other concurrent object-oriented systems, particularly thosebased on broadly accepted standards.3Concurrent object-oriented programs (COOP) express computation as a set of autonomous com-municating entities (objects). Generally, these objects reside in a globally shared object namespace.Each object is single threaded and communicates by asynchronous message passing (invocations).See Figure 2. Data is encapsulated within objects and can only be accessed through messages.Synchronization constraints are enforced by selective processing of messages. Objects may sendmessages, create additional objects, and modify their local state in response to a message. Atheoretical basis for reasoning about concurrent object oriented programs can be found in [1]. Insummary, the programmer speci�es only the essential aspects of the computation: concurrency con-trol and enabling of computations, but does not manage location, storage, or detailed schedulingexplicitly. These tasks are left to the compiler and runtime system.43For example, our model is general enough that the optimization techniques will apply to concurrent languagesbased on C++, including languages with explicit thread creation.4For regular, numeric computations, we may consider the addition of some simple data decomposition operations.However, for other types of applications, explicit locality control is di�cult to use e�ectively.

The Concert System 5
OBJECT

MESSAGESFigure 2: Autonomous Communicating ObjectsThe Concert system analyses and optimizes programs which conform to this basic concurrentobject-oriented model, so the techniques developed should be applicable to a wide range of con-current object oriented languages. In practice, this is ensured by de�ning all optimizations andtransformations with respect to a generic compiler intermediate form for concurrent object-orientedlanguages. Any language that can be translated to that intermediate form can be optimized bythe compiler. In fact, we are considering building compiler front-ends for several di�erent sourcelanguages. This would demonstrate the genericity of the optimizations, as well as allow directcomparisons isolating the cost of programming language features.The speci�c language we are supporting initially is an extended version of Concurrent Ag-gregates (CA) [11]. As with most concurrent object-oriented languages, CA augments the basicasynchronous message passing model with common idioms (such as RPC and tail forwarding [21]),inheritance (a mechanism for code reuse), and some concurrency control constructs. Other novelaspects of Concurrent Aggregates include aggregates (parallel collections), and meta-level struc-tures for parallel composition, �rst class messages and continuations. This range of features inCA ensures that our intermediate form can support a broad range of concurrent object-orientedlanguages with a variety of language features.Because each object invocation is a potential source of concurrency, a concurrent object orientedprogram can be executed in parallel by distributing the objects over the processors in a distributedmemory machine and using message passing for inter-object communication. The basic approachgives rise to high levels of �ne-grained concurrency. Because this �ne-grained concurrency typicallycannot be exploited e�ciently on stock hardware, the system must collect invocations into groupswhich can be e�ciently scheduled and executed on the target platform. Automatically achievingthis grouping and thereby achieving e�cient execution is the goal of the Concert project.3 Concert ApproachThe Concert system embodies an integrated approach to achieving e�cient execution of �ne-grained, concurrent object-oriented programs. Because most parallel machines cannot support�ne-grained concurrency e�ciently, execution grain-size must be increased to acceptable levels.Though encapsulation, polymorphism, and dynamic allocation are desirable from a programmingperspective, they make static analysis and transformation of programs extremely challenging. And

The Concert System 6because object-oriented programs encourage many small procedures, the resulting high frequencyof type-dependent procedure call implies that many call sites must be optimized to obtain sizeableincreases in grain size. The most important information for optimization is type and locality in-formation. To maximize the exploitation of such information whenever it becomes available, theConcert system employs a four tiered approach to obtaining and exploiting program information;each tier supports the exploitation of di�erent levels of information that become available at adi�erent stage of program compilation or execution. Such an approach inherently requires closecooperation between the compiler and runtime system. This structure allows program informationto be exploited at an appropriate stage (typically as soon as possible) and conserves information,supporting program transformation both at compile and run time (as shown in Figure 3).
Speculative Compilation
 with Runtime Support

Static Analysis and
 Transformation

1

High Performance
 Runtime System

2

3

4

PROGRAMS

TARGET MACHINE

 MORE

INFORMATION

 LESS

INFORMATION

Dynamic Compilation
 and SpecializationFigure 3: Four-tiered Structure of the Concert SystemThe four tiers of the Concert system span the range from compile to run time. The �rst tieris static program analysis and optimization which happens at compile time. Analysis of object-oriented programs is particularly challenging because the control
ow depends on type informationwhich in turn depends on data
ow. The introduction of concurrency and distribution furthercomplicates the situation as ideally the compiler would manage both concurrency control andlocality in the machine to achieve high performance. In general, static optimizations require preciseinformation to assure their safety and thereby correct program implementation. The second tieris speculative optimization based on imprecise information about program structure. This levelof optimization is useful when analyses indicate a particular structure is likely, but cannot proveit for all possible program executions. Because a static transformation based on the particularstructure would be unsafe, the improved code must explicitly test for the structure. The resultingtransformation is speculative because it does not always result in improved execution speed. Thethird tier is dynamic compilation based on local runtime information about program structure.Dynamic compilation can be based on precise information unavailable at compile time, therebyproducing much more e�cient code. However, this increased e�ciency must be weighed againstthe high cost of runtime compilation. The fourth tier, which supports the other three tiers, is a highperformance runtime. But beyond providing fast basic primitives, the runtime interface must allowoptimizations to be expressed, support speculative optimization, support dynamic compilation, andprovide a variety of more traditional services such as e�cient scheduling and resource management.

The Concert System 73.1 Static Analysis and OptimizationThe �rst tier in the Concert system is static analysis and optimization. Static optimization isattractive because it has no runtime cost and can be based on global program information. Ifprecise static analysis is available, then the compiler can use the cheapest mechanisms available fora computation. For example, if the object type and the assurance of locality can be inferred fromanalysis, then method invocations on that object can be inlined, dramatically improving executione�ciency.In addition to classical analyses used in languages such as FORTRAN, static analysis of concur-rent object-oriented programs has two distinctive steps, type inference and structure analysis. Typeinference is necessary to determine the control
ow structure of a program because object-orientedprograms use type dependent dispatch for modularity and polymorphism. Structure analysis isnecessary to determine data
ow structure because most object-oriented languages make extensiveuse of dynamic storage allocation and references. We discuss the two distinctive analyses, type in-ference and structure analysis, in the following sections. Subsequently, we discuss how the resultingprogram information could be used to optimize programs.3.1.1 Type InferenceType inference uses the structure of a program to deduce the type (or range of types) that programvariables can take on. Type information can be used both directly in the generation of e�cientcode and in determining control
ow of an object-oriented program. For example, in Figure 4 thetype of n is known to be be ClassA and the type of self can be resolved to Main. Consequently,invocations foo and bar can be optimized to procedure calls, eliminating the overhead of a dynamicdispatch. The Concert compiler is capable of this sort of automatic analysis and optimization.class ClassAmethod bar1end methodend ClassAclass Mainvar nmethod runn := self foo: (ClassA new);print (n bar) + 1end methodmethod foo: aaend methodend Main(Main new) run
class Mainvar nmethod runn := (ClassA new);print 2end methodend MainFigure 4: Type Inference ExampleThe Concert compiler uses a constraint based approach to type inference which determines not

The Concert System 8only whether a program is type safe but also a safe approximation of the type of each programvariable. The type inference system is an extension of that described in [29]. Local constraintsare established and propagated according to a set of rules for primitive operations such as objectcreation, assignment, and usage. A continuous approximation of the control
ow is maintained, andconstraints are built for the paths along this
ow. When all constraints induced by the programhave been added, their solution is a safe approximation of both program variable types and control
ow. Because the solution is only subject to program structure, for some program variables precisetype information may not be available. The available type information is used to determine theinterprocedural control
ow graph required for a variety of traditional program analyses.The Concert type inference system extends the capability of of traditional constraint based typesystems for object-oriented languages [29] in four ways. First, the extended inference system allowsvariable precision based on control
ow and object creation points. This allows compiler e�ortto be focused where it will be most productive. Second, in order to support a broad variety ofconcurrency constructs, the Concert type system supports the analysis of programs with �rst classselectors, continuations, and messages. Third, to ensure compilation of all working programs, ourtype system handles typing failures gracefully, reporting them to the programmer and generatingsu�cient runtime checks to ensure correct program execution. Finally, the type information pro-duced by inference is stored in a
ow-sensitive database. This organization is particularly helpfulfor dependent program transformations.3.1.2 Structure AnalysisStructure analysis is used to approximate runtime data structures in programs with dynamic allo-cation. Structure analysis is important in concurrent object-oriented programs, as such programstend to make extensive use of dynamic allocation and sophisticated data structures. The informa-tion derived from structure analysis is essential to high quality optimization and is typically usedto compute aliasing relationships, data
ow, and storage structure. This information can be usedto reorder computations and to improve program locality. For example, information that a runtimedata structure represents a singly-linked list can be used to group objects ensuring that referencesbetween them are local.Structure analysis interprets the program against a model of the program store, producinga conservative approximation of the e�ect of the program. The resulting store approximationcaptures the structure of the heap. However, because the representation of the heap must be�nite, and the execution of the program is potentially in�nite, the heap structure is summarizedto capture structures immediately reachable from the program values at each program point. Suchlocal information is su�cient for a variety of grain size optimizations.The Concert system uses a structure analysis based on Abstract Storage Graphs (ASG's) whichis capable of precise analysis of complex dynamic structures such as singly and doubly linkedlists, object hierarchies, and octrees. The Abstract Storage Graph [30] is an enhancement ofChase's Storage Shape Graph (SSG) [8], which adds distinct node and reference types as well asidentity paths to achieve more precise analysis. As with SSG's, the analysis is based on a data
owframework. Within the framework, we de�ne the lattice of solutions to be an abstraction of theprogram store. The transfer functions are then the abstract interpretation of the program. Themeet operator is a safe merge of these storage approximations.An example of the information that Concert's structure analysis is able to derive is shown inFigure 5. Analysis of the program on the left produces the abstract storage graph on the right.The graph compactly represents a singly linked list of inde�nite length. The node in the center is

The Concert System 9
x next

x = nil;
loop
 y = Node new;
 y set_next: x;
 x = y
end loop Figure 5: Structure Analysis Examplea distinct choice node and the node at the right summarizes all the pair elements in the list. Eachnode in the list either points to NIL or another list node. An example of optimization based onstructure information is given in Section 3.1.3.3.1.3 Exploiting Static InformationType inference and structure analysis coupled with traditional program analyses produce a varietyof information useful for optimizing concurrent object-oriented programs. In particular, we focuson optimizing method invocations, as these enable a wealth of more traditional optimizations.However, because the Concert system is intended for parallel machines with distributed memories,locality optimization is a prerequisite to more traditional optimizations on method invocationswhich presume locality.5 Once locality is ensured, type information can be used to resolve type-dependent dispatch statically, optimize procedure linkage, or inline procedure calls.Storage structure information can be used to compel locality, enabling a wealth of programoptimizations. For example, consider the structure analysis shown in Figure 5 that identi�es asingly-linked list. To enhance locality, lists can be tiled (see Figure 6) to increase the number oflocal invocations along its spine. Tiling two pairs together increases execution grain size by allowinga pair of operations on adjacent white and adjacent gray list objects to be scheduled as a singlecomputation grain. The code can be optimized as shown in Figure 6, converting the message sendto a procedure invocation, then inlining the procedure invocation and accessing the state of bothobjects directly. Tiling is a special case of more general object fusion and clustering operationswhich force locality thereby enabling other program optimizations.Object merging and grouping optimizations can reduce execution overhead signi�cantly. Tilingpairs of elements in a list can produce a 50% reduction in overhead. Consider that in the Concertruntime [25], the most general message send operation requires 44:2�s, and a simple procedure callrequires only 0:15�s. This means traversing each pair of list elements requires 88:4�s for the List1implementation, 44:35�s for the List2 implementation, and 44:2�s for the List3 implementation.Going from List2 to List3 requires type information and procedure inlining. Though the bene�tof these optimizations are small in this case, it is greater in general if the method bodies are larger.Not only does inlining eliminate message send overhead, it increases the procedure size, increasingthe e�ectiveness of traditional compiler optimizations such as common subexpression eliminationand instruction scheduling. This is particularly important in object-oriented programs which tendto have high procedure-call frequencies.In this section, we described optimizations which presumed precise information. However, inmany cases, such precise information is not available. In subsequent sections, we examine how theConcert system exploits even imprecise information to improve program execution.5Virtually all traditional program optimizations presume a shared address space and make no allowance formanaging memory locality.

The Concert System 10
class Listvar v, nextmethod eval: sumnext eval:(v + sum)end methodend List class List2var v1, v2, nextmethod eval2: sumnext eval:(v2 + sum)end methodmethod eval: sumself eval2:(sum + v1)end methodend List2

class List3var v1, v2, nextmethod eval: sumnext eval:(v1 + v2 + sum)end methodend List3Figure 6: Tiling pairs of elements in a List.3.2 Speculative Transformation and Runtime SupportThe second tier of the Concert system is speculative program transformation. When precise infor-mation is not available, the compiler cannot safely optimize the program. If imprecise informationis available, it may be possible to optimize for the likely cases, selecting amongst several specializedversions at runtime. If the specialized versions capture actual program behavior, it is possible toobtain much of the bene�t of static optimization. However, the disadvantages of this approach arethe cost of runtime checks and signi�cant increases in code size.Speculative optimization is useful when static analyses produce imprecise information, narrow-ing the possibilities so that they can be quickly resolved by runtime checks. Specialized versionsof code can be compiled for each of the alternatives, amortizing the cost of a runtime check over alarge number of optimized operations. Because speculative transformation is done at compile time,the full range of optimizations can be applied to each specialized path, producing performancenearly as good as if precise information were available. Properties such as object type, location,and current status (active or dormant) can be used as a basis for speculative optimization6. Forexample, the type inference system may be able to narrow the type of a particular variable to asmall set of types. Speculative compilation to insert runtime type checks and select amongst pathsspecialized for each type can enable a chain of optimizations along each path. Such optimizationscan produce large savings in execution time.Speculative transformations can be based on runtime checks, assertions, and hints, dependingon the information available and the desired temporal and spatial scope of the optimization. Allthree types of speculative transformations require runtime support via special runtime operationsto ensure their e�cient implementation. We describe each type of speculative optimization and therequired runtime primitives below.6Location (local or remote) can also be considered part of an object's implementation type.

The Concert System 11� Runtime checks are used to exploit fortuitous object properties to select runtime mecha-nisms at a particular program point. Requires runtime calls to check properties.� Assertions extend the temporal and spatial extent of the object property, increasing therange of optimization. Requires runtime calls to make and revoke assertions.� Hints attempt to in
uence the runtime system into improving malleable object propertiessuch as location to improve performance. Requires runtime calls to suggest desirable objectproperties.Runtime checks query the runtime system to determine actual object properties. On this basis,the cheapest possible runtime mechanisms can be selected at runtime. For example, choosingbetween stack-based or network-based method invocation sequences, depending on whether theobject invocation target is local, could be optimized by runtime checks. While this approach cangive signi�cant bene�ts, it also incurs signi�cant runtime overhead and cannot enable optimizationacross context switches. An example of runtime checks is shown in Figure 7 (b), where a seriesof invocations are made on an object, B, whose location is unavailable at compile time. Runtimechecks allow procedure calls to be dynamically selected instead of general method invocations whereappropriate. Runtime checks are required before each method invocation since the object might bemigrated between invocations.Assertions extend the temporal and spatial scope of information about an object property forthe purposes of optimization. This allows the compiler to generate code which tests for an objectproperty, asserts that property, then executes a long sequence of code optimized based on theassertion. Without assertions, to generate safe code, the compiler would have to assume thatobject properties could change at arbitrary times, limiting optimization. Instead, if the runtimesystem must invalidate an assertion, it invokes a callback function provided by the compiler, givingit the opportunity to revert to an unoptimized version. This is straightforward if the compilersimply uses compatible storage maps for all versions. An example of assertion based optimizationis given in Figure 7 (c) where following the check for locality, B is asserted to be local. This allows allof the code in the true arm of the conditional to be optimized for local invocations { no additionalchecks are required. Conversion to procedure calls and even procedure inlining are both possible. Ifthe specialized code section is large, eliminating checks can give signi�cant bene�ts. The callbackcode is not shown.Hints extend both runtime checks and assertions by attempting to in
uence malleable objectproperties such as locality. Hints tell the runtime that it would be bene�cial if a particular propertywere true. This allows the compiler to express to the runtime system any assumptions it has usedin performance optimizing the program. In general, hints can be used to guide policies of theruntime. Hints are not binding on the runtime, and the compiler must still assure correct programexecution if hints are not respected by the runtime system. Figures 7 (d) and (e) show how thebasic speculative transformations might be annotated with hints. The hints (HINT(B,`local')statements) suggest to the runtime that if B is not already local, it might be worthwhile to migrateit. Because hints are non-binding suggestions to the runtime, both example programs with hintswill run correctly if all hints are removed.Speculative transformations can yield signi�cant bene�ts. Runtime checks as in Figure 7 (b)can reduce invocation overhead from 11.17�s for general local method invocation to 0.15�s fora local procedure call, a dramatic improvement which far outweighs the cost of the inline test.This means that runtime checks can bene�t even single invocations. Assertions are particularlyimportant since they enable interprocedural optimization and optimization across context switches.

The Concert System 12...INVOKE-METHOD(B, meth1)... computationINVOKE-METHOD(B, meth2)... computationINVOKE-METHOD(B, meth3)... ...if (CHECK(B, `local'))B!meth1;elseINVOKE-METHOD(B, meth1)endif... computationif (CHECK(B, `local'))B!meth2;elseINVOKE-METHOD(B, meth2)endif... computationif (CHECK(B, `local'))B!meth3;elseINVOKE-METHOD(B, meth3)endif...
...if (CHECK(B, `local'))ASSERT(B, `local')B!meth1;... computationB!meth2;... computationB!meth3;RETRACT(B, `local')elseINVOKE-METHOD(B, meth1)... computationINVOKE-METHOD(B, meth2)... computationINVOKE-METHOD(B, meth3)endif...(a) (b) (c)...HINT(B,`local')if (CHECK(B, `local'))B!meth1;elseINVOKE-METHOD(B, meth1)endif... computationif (CHECK(B, `local'))B!meth2;elseINVOKE-METHOD(B, meth2)endif... computationif (CHECK(B, `local'))B!meth3;elseINVOKE-METHOD(B, meth3)endif...
...HINT(B,`local')if (CHECK(B, `local'))ASSERT(B, `local')B!meth1;... computationB!meth2;... computationB!meth3;RETRACT(B, `local')elseINVOKE-METHOD(B, meth1)... computationINVOKE-METHOD(B, meth2)... computationINVOKE-METHOD(B, meth3)endif...(d) (e)Figure 7: Example code fragments showing di�erent Speculative Transformations. INVOKE-METHOD() calls the network-based invocation routine while obj!method uses a local procedurecall.

The Concert System 13Since the cost of inserting and retracting assertions is comparable to a local invocation, assertionbased transformations can begin to pay o� even for a single method invocation. On the other hand,the cost of invalidating an assertion can be very high; thus, optimizations using assertions mustbe applied with discretion. Hint-based transformations such as a�nity for a particular object caninvolve large costs to change object properties. Consequently, they appear to be worthwhile onlywhen many objects on a particular node exhibit a�nity for another object. The e�ectiveness of hintsis currently unknown, but some related studies show that locality hints can improve performance[6]. While speculative optimizations can dramatically increase the opportunities for optimization,they are limited to cases where the possibilities can be narrowed and specialized code generated foreach. When program structure depends strongly on input data or the evolution of computation,static analyses will be unable to infer even partial information. In other cases, the code sizeincrease due to speculative techniques will limit their applicability. In the next section, we discusstechniques, dynamic compilation and specialization, which can deliver high performance in suchcases.3.3 Dynamic Compilation and SpecializationThe third tier of the Concert system is dynamic compilation and specialization. When the staticanalysis system is unable to narrow the possibilities, the Concert system resorts to dynamic com-pilation, specializing on the basis of local information available at runtime. First, dynamic com-pilation is attractive when program behavior and data structures depend strongly on input data.Second, dynamic compilation is also attractive when a multiplication of properties on which tospecialize causes a code size explosion in the speculative compilation approach. Finally, dynamiccompilation is attractive when specialization is linked to properties that are varying periodically,for example object interconnectivity varying with phases of a computation. However, because ofthe runtime cost involved, dynamic compilation is typically limited in scope and driven by localinformation. Despite this limitation, because specialization is only done for situations that actuallyhave occurred, dynamic compilation can give signi�cant performance bene�ts without producinghuge code size increases.The three critical problems in dynamic compilation are deciding when to do it, how greata scope to recompile, and how to share the results of dynamic compilation. To a large extent,the answers to these questions depend on both the speci�c costs and temporal dynamics of theparallel system in question. Thus, they can only be answered via experimentation. However,the Concert approach seeks to do dynamic compilation selectively, focusing on program points
agged by the compiler and instrumented inline to obtain path counts. The cost of recompilationis minimized by recompiling from a template provided by the compiler which is simply adapted tothe available runtime information. Determining appropriate code sharing policies and recompilationscopes remain open research questions.Dynamic compilation can give the bene�ts of static optimization, producing extremely e�cientcode. In some cases, dynamically compiled code can be as e�cient as that based on complete staticinformation; no inline runtime tests are required (see Figure 8). In other cases, dynamic compilationwill produce code with inline tests and specialized execution paths, similar to that produced byspeculative compilation, only the basis for specialization is determined at runtime. In all cases,the cost of runtime compilation implies a narrower scope of optimization than in earlier stages.Typically, little more than inlining and peephole optimization is feasible. Further, the real costs ofdynamic compilation: detecting opportunities, the runtime cost of compilation, and deciding when

The Concert System 14...INVOKE-METHOD(B, meth1)... local computationINVOKE-METHOD(B, meth2)... local computationINVOKE-METHOD(B, meth3)... ...B!meth1;... local computationB!meth2;... local computationB!meth3;...Figure 8: Dynamic Compilation Exampleto invalidate specialized code are not re
ected in the code sequences. In Concert, these costs arereduced by using only localized information and using templates to reduce the cost of compilation(specialized for the optimizations of interest). Because of the costs involved, dynamic compilationis likely to only be e�ective if its cost can be amortized by a long running, typically iterative,computations.3.4 High Performance Runtime SystemThe fourth tier of the Concert system is a high-performance runtime system which provides e�cientruntime operations, exposes the important cost distinctions for optimization by the compiler, andsupports the use of speculative and dynamic compilation techniques. Because of the close partner-ship between the compiler and runtime, the runtime design is an integral part of the Concert system.Below, we describe the cost hierarchy for basic operations on stock hardware multicomputers andoutline how the Concert runtime exposes the hierarchy for compiler optimization. System supportfor speculative and dynamic compilation as well as runtime optimization (scheduling, clustering,load balancing, etc.) and essential runtime services (storage allocation, garbage collection, basicthread scheduling, etc.) is also discussed.E�cient concurrent object-oriented language implementations must provide a global objectnamespace, communication services for remote method invocation, and support for schedulingmethod invocations. Though implementations on custom hardware [15, 36, 42] focus on providinga few general-purpose primitives, runtime systems on stock hardware require a di�erent approach.The hardware structure of such systems necessarily implies a hierarchy of costs for many basicruntime operations. These cost distinctions must be recognized and managed to obtain e�cientexecution of �ne-grained concurrent object-oriented programs.The Concert approach includes a runtime system design which exposes these critical cost dis-tinctions, so that they can be managed. In particular, the full range of runtime primitives areexposed to the compiler, allowing optimization based on static program analysis. The functional-ity of the runtime can be divided into three basic parts: a hierarchy of versions of basic runtimeoperations, support for speculative and dynamic compilation, and fast implementations of essentialruntime services.Basic operations such as communication, invocation, and name service can have dramaticallydi�erent cost, depending on the generality of the operation required. On stock hardware in particu-lar, these di�erences can be greater than two orders of magnitude. These di�erences are illustratedin Table 1 and discussed in detail in [25]. The ability to choose the cheapest appropriate mechanismis essential to achieving good performance. For example, the runtime provides two versions of nametranslation, one for node-local names, and the other involving global names which may require re-

The Concert System 15Implementation Clock rate Send/Reply Invocation TranslationMHz �s cyc. �s cyc. �s cyc.CST(on J-m/c) 28.3 6.36/7.8 180/220 0.6/1.6 18/46 0.9/2.6 26/74ABCL(on EM-4) 12.5 9 112 0.24 3 { {Concert 33.0 0.15/15.7 5/520 0.12/44.2 4/1456 0.03/16.1 1/536CA(on CM-5)Table 1: Minimum/Maximum Costs of Runtime Operations on Custom and Stock Hardware.mote access for translation. Incorporating di�erent versions in the runtime interface exposes thecost distinctions, allowing the compiler to choose the appropriate functionality. It is interesting tonote that the cheapest versions of operations are as inexpensive as corresponding constructs in tra-ditional sequential languages, while the most general operations are considerably more expensive.The cheapest versions of operations also cost less than the general purpose operations provided oncustom hardware.The Concert runtime also provides support for speculative and runtime compilation. Mecha-nisms are provided for runtime checking of object properties such as type and location. An assertionmaintenance module supports the insertion and invalidation of assertions to support speculativecompilation. The runtime guarantees callbacks when assertions are invalidated. Hints can be pre-sented to the system via a set of runtime calls. We are exploring a variety of approaches to exploitingthe information provided by hints in the runtime system. The runtime system also provides basicfunctionality for inline instrumentation and dynamic code caching. These services can be used tomanage dynamic compilation and the best form for such services is still an open research question.The Concert runtime also provides e�cient implementations of essential runtime services suchas garbage collection, load balancing, and intra-processor scheduling. In particular, sophisticatedgroup scheduling mechanisms, can enhance data locality and state reuse, producing signi�cantperformance improvements. These mechanisms may or may not be managed by the compiler.Even without close coupling, they give improvements in overall execution e�ciency.3.5 SummaryThe Concert approach integrates compiler and runtime e�orts to provide optimization at all levelsfrom fully static to fully dynamic. This integration allows program information to be carriedforward from phase to phase of the program execution. Thus, the Concert approach conservescritical program information and maximizes the opportunities for optimizing �ne-grained concurrentobject-oriented programs. As we have discussed, integration requires changes not only to thecompiler design, but also to the runtime. In some cases, the runtime yields control to the compiler,in others the runtime provides services which enable aggressive compilation. Finally, e�cientexecution ultimately rests on the speed of the underlying runtime implementation, so the e�ciencyof the runtime system is critical.4 EvaluationWe are building the Concert system, an embodiment of the techniques described in this document,to explore and demonstrate the e�ectiveness of a wide range of program analyses and optimizationsfor grain size tuning. A thorough evaluation of the Concert approach requires an applicationprogram suite, compiler, and runtime system. We are developing an application suite with various

The Concert System 16application domains, computational structure, and programming style. Based on the applicationsuite, our program analyses and optimizations techniques will be evaluated, tuned, and improved.Experimentation with an entire system is essential since many of the optimizations involve costtradeo�s, and interactions amongst optimizations must be explored in full scale experiments. Theresult of our studies will be a thorough evaluation of the e�ectiveness of a range of programanalysis and optimization techniques. Ultimately, these studies contribute to an evaluation of theperformance implications of incorporating concurrent, object-oriented features in a programminglanguage.Some of the speci�c questions we are exploring include:� Static Analysis: How much precise type information is available from type inference? Howmuch structure information is available from structure analysis?� Static Optimization: How e�ectively can type and structure information be exploitedfor locality optimization and what impact does that have on program concurrency? Whate�ciency gains can be obtained from static binding and object fusion? To what extent doesinlining preserve precise type information for optimization? What fraction of the dynamicallyoptimizable opportunities does static optimization capture?� Speculative Optimization: What are the basic tradeo�s in application of the three levelsof speculative optimization? How e�ective are speculative locality checks and how do theyinteract with placement policy? How e�ective are assertion-based optimizations, particularlyin providing the opportunity for interprocedural optimization? How well can the compilerinsert hints to the runtime system? How can the runtime best exploit this information? Whatis the tradeo� between code size and program e�ciency?� Runtime Compilation: How many cost-e�ective opportunities are there for runtime com-pilation? What techniques are most e�ective in identifying these opportunities and exploitingthem with minimal cost? What is the right program representation for runtime compilation?� Runtime: What is the frequency of callbacks for assertions? How does this vary underdi�erent compiler and runtime policies? How can the runtime exploit additional compilerinformation (not extant in the program code) at runtime? How should dynamically compiledcode be cached? Shared?� General: How e�ective are all of these techniques for increasing execution grain size? Whatimpact does this have on program concurrency? What is the cost of the object-orientedfeatures in terms of compile and runtime overhead?It is clear that concurrent, object-oriented languages empower programmers, by allowing themto encapsulate irrelevant detail. However, for COOP languages to become the parallel programmingvehicle of choice, serious questions about their e�cient implementation must be addressed. In par-ticular, language features in COOP languages appear to require aggressive optimization to achieveacceptable levels of e�ciency. The Concert project is developing such aggressive optimizationtechniques and evaluate them against an application suite of concurrent object-oriented programs.Only with such studies will it be possible to demonstrate convincingly that COOP languages canbe made to run e�ciently on stock parallel machines. The ultimate goal of such studies is to showthat COOP languages are a viable and attractive basis for e�cient parallel computation.

The Concert System 175 Background and Related WorkThe Concert system is related to prior work on e�cient implementation of both object-oriented[22, 31, 16] and parallel systems [20, 26]. In particular, many of the optimizations we have discussedhave their inspiration in the techniques developed by the SELF compiler group [5]. Of course, themajor distinction is that our work focuses on the problems associated with concurrency, distribution,and data parallelism.Our work also di�ers in emphasis from a wide variety of work in the area of concurrent object-oriented languages. We are primarily concerned with e�ciency, while a variety of projects areconcerned primarily with language features [28, 3, 2, 43]. The most closely related work in thisarea is the ABCL project [42, 37, 43] which is also pursuing e�cient implementations. A recentlypublished description of their runtime parallels many of the techniques found in our optimizedruntime system. While our research goals are similar, ABCL is signi�cantly di�erent from oursource language as it has no support for parallel collections. Further, to date, the ABCL group hasfocused primarily on runtime techniques and not compiler analysis and optimization.Recently, a great deal of attention has been focused on concurrent languages based on C++ [35]extensions. ESKit C++ [34], Mentat [18], CHARM++ [24], and Compositional C++ [7] aremedium-grained languages in which the programmer supplies grain-size information. These lan-guages integrate concurrency and object-orientation, but requiring the programmer to specify agrain size for e�ciency limits program scalability and portability. Typically, the speci�ed grainsize is large and limits scalability. Automatic parallelization of large grains is known to be quitedi�cult. Further, to date, none of them has focused on developing the compiler support necessaryto automatically adjust grain size, the primary focus of the Concert system.The pC++ [27] language supports data parallel operations, but the object-oriented frameworkof the language allow encapsulation. This means that pC++ programs can express restricted het-erogenous concurrency within collections. However, true task level parallelism cannot be expressed.The parallel collections in pC++ are similar to aggregates in Concurrent Aggregates [10]. In theConcert system, data parallelism is expressed as task level concurrency, providing greater program-ming power, but making e�cient implementation signi�cantly more di�cult. E�ective grain sizetuning must be achieved to make data parallel operations e�cient.With respect to parallel systems in general, a wide variety of approaches to portable, pro-gramming are being actively pursued. We relate the analogous work on compiling for e�ciencyin each of these models to grain-size tuning in concurrent object-oriented languages. A subset ofother approaches to parallel programming can be loosely classi�ed as data parallel, functional, andcommitted choice.Data parallel approaches [38, 19, 9, 4] express parallelism across arrays, collections, or programconstructs such as loops in the context of a single control
ow model. Data parallel programs admita degree of grain size tuning, operations in a data parallel operation can be grouped and scheduledtogether. However, data parallel languages have di�culty expressing task level concurrency orirregular concurrency. Further, all of the data parallel languages provide essentially no support forencapsulation or modularity.Functional programming approaches [41, 14, 23] have the advantage of determinacy, but havelimited expressive power due to the absence of state. If laziness or non-strictness is incorporated,e�cient compilation becomes di�cult. The particular problem is a similar one of grain size tun-ing, but under much more di�cult circumstances where little synchronization and data referenceinformation may be available at compile time.Concurrent logic programming approaches, particularly those based on the committed-choice

The Concert System 18model [40, 17, 33, 32] are similar to concurrent object-oriented languages. However, they have littlesupport for encapsulation and parallel collections. In committed choice languages, the emphasis ison task parallelism which is often expressed as operations on a stream. While some degree of grainsize tuning can be achieved grouping successive elements of a stream, the structure of programsessentially limits this to structures analogous to data parallelism.6 Summary and Current StatusWe have presented a comprehensive and uni�ed optimization system for concurrent object-orientedlanguages. Our system includes aggressive static analysis followed by static optimization, specu-lative optimization and dynamic compilation. All these transformations are leveraged by a highperformance runtime system. The key to our approach is exploitation of information at the earliestpossible optimization stage and its preservation for use in later stages. Using our system we hopeto show that concurrent object-oriented languages can be an e�cient medium in which to expressa wide variety of parallel computations.The Concert system has been operational on both sequential and parallel platforms since Oc-tober 1992. The system includes an optimizing compiler for an extended version of ConcurrentAggregates [11] and a high performance runtime system which runs on both Sun workstations andthe Thinking Machines CM5 [25]. We are currently building a second generation system with muchgreater analysis and optimization capability as well as much greater overall performance. Thissecond generation Concert system consists of a new implementation of the compiler (in progress)and a new implementation of the runtime system (already complete). The compiler, runtime, andthe application suite which we are developing for them are detailed below.We are currently building a second generation compiler which implements the full range of staticanalysis and program transformation described in this document. This compiler will enable us toexperiment with a broad range of optimization approaches. This second generation compiler usesrelatively traditional internal data structures based on the program dependence graph (PDG) inStatic Single Assignment form (SSA). Novel aspects of the compiler include a constraint-based typeinference system and an attributed value system similar to that used in the SELF compiler [5]. Weare currently developing the structure analysis and optimizations subsystems.The second generation runtime system which supports the full range of runtime operationsdescribed in this document and in [25] has been operational since March 1993. Novel aspects include:1) providing a hierarchy of functionality and cost for each runtime operation, allowing selectionof the cheapest version and 2) providing support for speculative and dynamic compilation. Thecomplete second generation system (improved compiler and runtime system) should be availablefor external use sometime during the Fall of 1993.We are also developing an extensive application suite which will form the basis for optimizationexperiments. We believe concurrent object-oriented languages are appropriate for a wide variety ofnumeric and non-numeric applications, giving greatest advantage in problems with irregular com-putational structure. Our application library will ultimately include regular numeric computations,as a basis for comparison with alternatives such as HP Fortran, irregular numeric applications suchas sparse matrix and n-body interaction problems, regular non-numeric applications, and irregularnon-numeric applications such as discrete event simulations. Currently, our application suite in-cludes a math library, logic simulator, an n-body interaction solver, particle-in-cell code, and a PCboard router. These applications contain thousands of lines of Concurrent Aggregates code andrun sequentially on a simulator and in parallel on the CM5.

The Concert System 19AcknowledgementsThe Concert project and the authors of this paper are supported in part by grants from the NationalScience Foundation, grant CCR-9209336, O�ce of Naval Research, grant N00014-92-J-1961, andthe National Aeronautics and Space Administration, grant NAG 1-613. Additional support hasbeen provided by a generous special-purpose grant from the AT&T Foundation.References[1] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge,MA, 1986.[2] Pierre America. POOL-T: A parallel object-oriented language. In Aki Yonezawa and Mario Tokoro,editors, Object-Oriented Concurrent Programming, pages 199{220. MIT Press, 1987.[3] W. C. Athas and C. L. Seitz. Cantor User Report Version 2.0. CalTech Internal Report, January 1987.[4] T. Blank. The MasPar MP-1 Architecture. In Proceedings of COMPCON, pages 20{4. IEEE, 1990.[5] C. Chambers and D. Ungar. Customization: Optimizing compiler technology for self, a dynamically-typed object-oriented programming language. In Proceedings of SIGPLAN Conference on ProgrammingLanguage Design and Implementation, pages 146{60, 1989.[6] Rohit Chandra, Anoop Gupta, and John L. Hennessy. Data locality and load balancing in COOL. InProceedings of the Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-ming, 1993.[7] K. Mani Chandy and Carl Kesselman. Compositional C++: Compositional parallel programming. InProceedings of the Fifth Workshop on Compilers and Languages for Parallel Computing, New Haven,Connecticut, 1992. YALEU/DCS/RR-915, Springer-Verlag Lecture Notes in Computer Science, 1993.[8] D. Chase, M. Wegman, and F. Zadeck. Analysis of pointers and structures. In Proceedings of SIGPLANConference on Programming Language Design and Implementation, pages 296{310, June 1990.[9] Chen and Cowie. Prototyping FORTRAN-90 compilers for massively parallel machines. In Proceedingsof SIGPLAN PLDI, 1992.[10] A. A. Chien and W. J. Dally. Concurrent Aggregates (CA). In Proceedings of Second Symposium onPrinciples and Practice of Parallel Programming. ACM, March 1990.[11] Andrew A. Chien. Concurrent Aggregates: Supporting Modularity in Massively-Parallel Programs. MITPress, Cambridge, MA, 1993.[12] Intel Corporation. Paragon XP/S product overview. Product Overview, 1991.[13] Cray Research, Inc., Eagan, Minnesota 55121. CRAY T3D Software Overview Technical Note, 1992.[14] D. Culler, A. Sah, K. Schauser, T. von Eicken, and J. Wawrzynek. Fine-grain parallelism with minimalhardware support: A compiler-controlled threaded abstract machine. In Proceedings of the FourthInternational Conference on Architectural Support for Programming Languages an Operating Systems,pages 164{75, 1991.[15] W. J. Dally, A. Chien, S. Fiske, W. Horwat, J. Keen, M. Larivee, R. Lethin, P. Nuth, S. Wills,P. Carrick, and G. Fyler. The J-Machine: A �ne-grain concurrent computer. In Information Processing89, Proceedings of the IFIP Congress, pages 1147{1153, August 1989.[16] L. Peter Deutsch and Allan M. Schi�man. E�cient implementation of the smalltalk-80 system. InEleventh Symposium on Principles of Programming Languages, pages 297{302. ACM, 1984.[17] I. Foster and S. Taylor. Strand: New Concepts in Parallel Programming. Prentice-Hall, 1990.

The Concert System 20[18] A. Grimshaw. Easy-to-use object-oriented parallel processing with Mentat. Overview for Mentat system,1992.[19] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiler Optimizations for FORTRAN Don MIMD Distributed-Memory Machines. In Supercomputing '91, pages 86{100, November 1991.[20] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiler optimizations for FORTRAN Don mimd distributed-memory machines. Communications of the ACM, August 1992.[21] W. Horwat, A. Chien, and W. Dally. Experience with cst: Programming and implementation. InProceedings of the SIGPLAN Conference on Programming Language Design and Implementation, pages101{9. ACM SIGPLAN, ACM Press, 1989.[22] R. E. Johnson, J. O. Graver, and L. W. Zurawski. Ts: An optimizing compiler for smalltalk. InOOPSLA '88 Proceedings, pages 18{26, September 1988.[23] Simon L Peyton Jones. The Implementation of Functional Programming Languages. Prentice-Hall,1987.[24] L. V. Kale and Sanjeev Krishnan. CHARM++: A portable concurrent object oriented system basedon C++. In Proceedings of OOPSLA'93, 1993.[25] Vijay Karamcheti and Andrew Chien. Concert { e�cient runtime support for concurrent object-orientedprogramming languages on stock hardware. Submitted to SUPERCOMPUTING'93.[26] D. J. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. Wolfe. Dependence graphs and compiler opti-mizations. In Proceedings of the 8th ACM Symposium on Principles of Programming Languages, pages207{18, 1981.[27] J. Lee and D. Gannon. Object oriented parallel programming. In Proceedings of the ACM/IEEEConference on Supercomputing. IEEE Computer Society Press, 1991.[28] Carl R. Manning. Acore: The design of a core actor language and its compiler. Master's thesis,Massachusetts Institute of Technology, August 1987.[29] N. Oxh�j, J. Palsberg, and M. Schwartzbach. Making type inference practical. In Proceedings ofOOPSLA '92, 1992.[30] John Plevyak, Vijay Karamcheti, and Andrew Chien. Analysis of dynamic structures for e�cient parallelexecution. Revised Paper, submitted to LCPM '93.[31] A. D. Samples, D. Ungar, and P. Hil�nger. Soar: Smalltalk without bytecodes. In OOPSLA '86Prodeedings, pages 107{18, September 1986.[32] V. Saraswat. Concurrent Constraint Programming Languages. MIT Press, 1992. To appear, alsoavailable as Technical Report from Carnegie-Mellon University as Technical Report CMU-CS-89-108.[33] V. Saraswat, K. Kahn, and J. Levy. Janus: A step towards distributed constraint programming. InProceedings of the North American Conference on Logic Programming, Austin, Texas, October 1990.[34] K. Smith and R. Smith II. The experimental systems project at the microelectronics and computertechnology corporation. In Proceedings of the Fourth Conference on Hypercube Computers, 1989.[35] Bjarne Stroustrup. The C++ Programming Language. Addison Wesley, second edition, 1991.[36] T. Baba, et al. A parallel object-oriented total architecture: A-NET. In Proceedings of IEEE Super-computing '90, pages 276{285. IEEE Computer Society, 1990.[37] K. Taura, S. Matsuoka, and A. Yonezawa. An e�cient implementation scheme of concurrent object-oriented languages on stock multicomputers. In Proceedings of the Fifth ACM SIGPLAN Symposiumon the Principles and Practice of Parallel Programming, 1993.[38] Thinking Machines Corporation. Getting Started in CM Fortran, 1990.

The Concert System 21[39] Thinking Machines Corporation, Cambridge, Massachusets. CM5 Technical Summary, October 1991.[40] K. Ueda and M Morita. A new implementation technique for
at GHC. In Proceedings Seventh Inter-national Conference on Logic Programming, pages 3{17. MIT Press, 1990. Revised version to appearin New Generation Computing.[41] Yale University, New Haven, Connecticut. Report on the Programming Language Haskell, 1.0 edition,April 1990.[42] M. Yasugi, S. Matsuoka, and A. Yonezawa. ABCL/onEM-4: A new software/hardware architecture forobject-oriented concurrent computing on an extended data
ow supercomputer. In Proceedings of theACM Conference on Supercomputing '92, 1992.[43] Akinori Yonezawa, editor. ABCL: An Object-Oriented Concurrent System. MIT Press, 1990. ISBN0-262-24029-7.

The Concert System 22Contents1 Introduction 12 Basic Language Model 43 Concert Approach 53.1 Static Analysis and Optimization : 73.1.1 Type Inference : 73.1.2 Structure Analysis : 83.1.3 Exploiting Static Information : 93.2 Speculative Transformation and Runtime Support : : : : : : : : : : : : : : : : : : : 103.3 Dynamic Compilation and Specialization : 133.4 High Performance Runtime System : 143.5 Summary : 154 Evaluation 155 Background and Related Work 176 Summary and Current Status 18

