The Concert System — Compiler and Runtime Support for Efficient,
Fine-Grained Concurrent Object-Oriented Programs

Andrew A. Chien Vijay Karamcheti John Plevyak
Department of Computer Science
1304 W. Springfield Avenue
Urbana, IL 61801
{achien,vijayk,jplevyak }@cs.uiuc.edu

June 11, 1993

Abstract

The introduction of concurrency complicates the already difficult task of large-scale program-
ming. Concurrent object-oriented languages provide a mechanism, encapsulation, for managing
the increased complexity of large-scale concurrent programs, thereby reducing the difficulty of
large scale concurrent programming. In particular, fine-grained object-oriented approaches pro-
vide modularity through encapsulation while exposing large degrees of concurrency. Though
fine-grained concurrent object-oriented languages are attractive from a programming perspec-
tive, they have historically suffered from poor efficiency.

The goal of the Concert project is to develop portable, efficient implementations of fine-
grained concurrent object-oriented languages. Our approach incorporates careful program anal-
ysis and information management at every stage from the compiler to the runtime system. In
this document, we outline the basic elements of the Concert approach. In particular, we discuss
program analyses, program transformations, their potential payoff, and how they will be em-
bodied in the Concert system. Initial performance results and specific plans for demonstrations
and system development are also detailed.

Indexing Keywords: Concurrent object-oriented languages, Multicomputers, Parallel Com-
puting, Compilation, Runtime Systems.

1 Introduction

In the sequential computing world, the increasing complexity of software applications, systems,
and requirements places growing burdens on software developers, taxing their ability to manage
complexity. To a great extent, this problem is responsible for the rapidly increasing popularity of
object-oriented programming techniques. The encapsulation provided by such techniques supports
code reuse and separate design (modularity), enabling the construction of larger, more complex
systems more rapidly than previously possible.

In the parallel computing world, traditional software development challenges are complicated
by concurrency and distribution. These additional concerns exacerbate the need for program mod-
ularity to manage complexity. Concurrent object-oriented languages support program modularity
through object encapsulation, allowing the hiding of concurrency, distribution, or other irrelevant
detail. Further, fine-grained concurrent object-oriented languages both provide encapsulation and

The Concert System 2

expose large scale concurrency in application programs, and therefore are a promising approach to
parallel programming.

The primary advantage of concurrent object-oriented languages is encapsulation, a critical tool
for managing the complexity of large programs. Modularity tools allows the exploitation of con-
currency whether it be homogeneous and heterogeneous, or expressed in as data parallelism or task
parallelism. Exploitation of diverse concurrency structures is possible because encapsulation can
confine of each subcomputation, allowing the programmer to reason about them separately. For
example, in a particle-in-cell code, a partial differential equation solver and a graph algorithm which
computes the mapping of particles for the next time step can easily be written to run concurrently.
Expressing equivalent concurrency in a data parallel model is quite difficult.

While attractive for programmability reasons, the primary drawback of fine-grained, concurrent
object-oriented languages to date has been their inefficiency (compared to their competitors such
as parallel FORTRAN dialects). In addition, the most efficient implementations of such languages
have relied on specialized hardware to achieve high performance [15, 36, 42]. The primary goal of
the Concert project is to develop compiler and runtime techniques to make fine-grained concurrent
object-oriented languages portable and efficient. By portable and efficient, we mean that the
programs should run efficiently both on uniprocessors and on parallel computers built from stock
microprocessors.

While ideally, our implementation techniques should apply to arbitrary multiple-instruction
multiple-data (MIMD) parallel machines, a reasonable standard of portability to demonstrate the
generality of the techniques is based on the following assumptions about the basic structure of
future parallel machines. We assume processing nodes based on workstation or PC-like architec-
tures, fast local processing with a deep memory hierarchy (two or more levels), inexpensive access
to a communication network (no operating system calls required), and a high bandwidth com-
munication network. In particular, we make no assumptions about special mechanisms for local
synchronization, global synchronization, or a global address space. This model is compatible with
a broad range of existing and announced multicomputers [39, 13, 12]. In such machines, the fun-
damental performance issues are balancing the level of concurrency exploited against the cost of
scheduling and context switching, exploiting data locality within and between nodes and achieving
a reasonably balanced work distribution throughout the machine.

In the Concert system, our approach focuses on execution grain size tuning. We define a
program’s execution granularity as the size of fragments of computation that are scheduled inde-
pendently at runtime. In the execution of a parallel program, grain size determines the processor
efficiency of the application! as shown in Figure 1. For a particular machine target and runtime
system implementation, the cost of communication, concurrency control, and scheduling can be
viewed as fixed, and processor efficiency is determined by the ratio of the amount of work in each
computational grain to the overhead. Thus, executing a program with appropriate grain size is
essential for high performance; too large a grain size produces concurrency-limited execution, too
small a grain size produces an overhead-dominated computation.

In concurrent object-oriented programs (COOP), each object invocation can be viewed as an
execution grain. Tuning the execution grain size therefore implies partitioning or merging object
invocations together into a single execution grain. Since in most cases, the goal is to increase
the grain size, we focus on merging the object invocations. Consider the elements of an object
invocation: name translation, message formatting, transmission, reception, buffering, scheduling,
and dispatch. A remote procedure call (RPC) style call-return is shown in Figure 1. For the
return, many of the steps are repeated. Since a typical object invocation may be only 10-20

!This ignores idle time.

The Concert System 3

A’smethod
translate T
Q format []
transmit |] INVOKE
- OVERHEAD
receive
0 buffer
schedule
0] dispatch e
Object Graph o B’s method I
[1 translate T
[] format
transmit
. - REPLY
receive OVERHEAD
buffer [J
schedule |:|

A’smethod(resume)

Figure 1: An invocation sequence between objects A and B.

instructions, the overhead for the object invocation steps can dominate the actual work (shown in
gray). In comparison, an analogous sequential program might require a dozen or so instructions as
overhead for a procedure call and return, with arguments and return values passed on the stack.
If optimized, procedure call overhead can be reduced further, with parameters passed in registers
or the with the procedure being inlined. To achieve competitive efficiency, an implementation of a
concurrent object-oriented language must use the cheapest mechanisms possible for an invocation,
and maximize the opportunities for using them. To reduce the cost of invocation, a variety of type,
location, and concurrency information is helpful, enabling the elimination of message formatting,
scheduling, and dispatch overhead. This information may be available at compile time, or only at
run time. Precisely when it becomes available has direct impact on how it can be exploited and
the impact it has on program efficiency. These issues are discussed in greater detail in Section 3.

The Concert system provides a framework for systematically extracting and exploiting the nec-
essary information for grain size tuning in fine-grained, concurrent object-oriented programs. Such
a framework requires an integrated approach involving collaboration between the compiler and run-
time system.? The Concert system involves four basic types of techniques for increasing execution
grain size: compile-time optimization, compile-time speculative transformation and optimization,
compiler-guided runtime optimization, and high performance runtime systems. The critical issues
and challenges for each of these types of optimization are discussed in Section 3.

As a general rule, the Concert system exploits information as soon as it is available, enabling
a broader scope of optimization and reducing the cost of program transformation than would
be possible at a later stage. In concurrent object-oriented languages, the requisite information
may only become available at any phase from compile to run time, so optimization at all phases
is essential to high performance. For example, it would be preferable to do all optimization at
compile-time, but due to limitations of static analysis in programs with implicit typing, dynamic

?Hence the name Concert, indicating a concerted effort of both the compiler and runtime.

The Concert System 4

allocation, and pervasive use of references, the requisite information may not be available. If partial
information is available, the Concert compiler might choose to compile specialized versions of the
program and select amongst them at run time. And, if the compiler cannot statically narrow
the possibilities, it will resort to instrumenting the program for dynamic compilation, specializing
the program code with respect to the structure and distribution of program data structures as
information becomes available. If dynamic compilation is not feasible, the Concert system will rely
on clever scheduling to increase execution grain size and efficient runtime operations to execute
grains as efliciently as possible.

We are building a high performance concurrent object-oriented system, called the Concert
system, based on these ideas both as a demonstration and an experimental vehicle for exploring
these techniques. The Concert system embodies the compiler and runtime support required to
optimize programs across the full range of stages.

Overview The remaining sections of this document are organized as follows. Section 2 discusses
the basic language model being used for programming, analysis, and optimization. The model is
a simple concurrent object-oriented language with single inheritance. In Section 3, we detail the
four basic means of exploiting program information to tune execution grain size. In particular, we
discuss the potential benefits of several types of optimizations with respect to an actual runtime
implementation. Sections 4 discusses how the ideas behind the Concert system will be evaluated
and some of the questions we are studying. Section 5 discusses the related work, particularly data
parallel approaches, contrasting them to the approach outlined here. Finally, Section 6 summarizes
the paper and the current status of the project.

2 Basic Language Model

Compiler analysis and optimization must take place in the context of a programming language
semantics and execution model. Because our goal is to develop generic analysis and optimization
techniques, we have chosen to study a simple concurrent object model, incorporating the essential
features of concurrency and object-orientation, and optimize it for a generic model of parallel
machines, based on stock hardware (see Section 1). Using generic models will allow the optimization
techniques to be easily transported to other concurrent object-oriented systems, particularly those
based on broadly accepted standards.?

Concurrent object-oriented programs (COOP) express computation as a set of autonomous com-
municating entities (objects). Generally, these objects reside in a globally shared object namespace.
Fach object is single threaded and communicates by asynchronous message passing (invocations).
See Figure 2. Data is encapsulated within objects and can only be accessed through messages.
Synchronization constraints are enforced by selective processing of messages. Objects may send
messages, create additional objects, and modify their local state in response to a message. A
theoretical basis for reasoning about concurrent object oriented programs can be found in [1]. In
summary, the programmer specifies only the essential aspects of the computation: concurrency con-
trol and enabling of computations, but does not manage location, storage, or detailed scheduling
explicitly. These tasks are left to the compiler and runtime system.*

*For example, our model is general enough that the optimization techniques will apply to concurrent languages
based on C++, including languages with explicit thread creation.

*For regular, numeric computations, we may consider the addition of some simple data decomposition operations.
However, for other types of applications, explicit locality control is difficult to use effectively.

The Concert System 5

-
~
MESSAGES

Figure 2: Autonomous Communicating Objects

The Concert system analyses and optimizes programs which conform to this basic concurrent
object-oriented model, so the techniques developed should be applicable to a wide range of con-
current object oriented languages. In practice, this is ensured by defining all optimizations and
transformations with respect to a generic compiler intermediate form for concurrent object-oriented
languages. Any language that can be translated to that intermediate form can be optimized by
the compiler. In fact, we are considering building compiler front-ends for several different source
languages. This would demonstrate the genericity of the optimizations, as well as allow direct
comparisons isolating the cost of programming language features.

The specific language we are supporting initially is an extended version of Concurrent Ag-
gregates (CA) [11]. As with most concurrent object-oriented languages, CA augments the basic
asynchronous message passing model with common idioms (such as RPC and tail forwarding [21]),
inheritance (a mechanism for code reuse), and some concurrency control constructs. Other novel
aspects of Concurrent Aggregates include aggregates (parallel collections), and meta-level struc-
tures for parallel composition, first class messages and continuations. This range of features in
CA ensures that our intermediate form can support a broad range of concurrent object-oriented
languages with a variety of language features.

Because each object invocation is a potential source of concurrency, a concurrent object oriented
program can be executed in parallel by distributing the objects over the processors in a distributed
memory machine and using message passing for inter-object communication. The basic approach
gives rise to high levels of fine-grained concurrency. Because this fine-grained concurrency typically
cannot be exploited efficiently on stock hardware, the system must collect invocations into groups
which can be efficiently scheduled and executed on the target platform. Automatically achieving
this grouping and thereby achieving efficient execution is the goal of the Concert project.

3 Concert Approach

The Concert system embodies an integrated approach to achieving efficient execution of fine-
grained, concurrent object-oriented programs. Because most parallel machines cannot support
fine-grained concurrency efliciently, execution grain-size must be increased to acceptable levels.
Though encapsulation, polymorphism, and dynamic allocation are desirable from a programming
perspective, they make static analysis and transformation of programs extremely challenging. And

The Concert System 6

because object-oriented programs encourage many small procedures, the resulting high frequency
of type-dependent procedure call implies that many call sites must be optimized to obtain sizeable
increases in grain size. The most important information for optimization is type and locality in-
formation. To maximize the exploitation of such information whenever it becomes available, the
Concert system employs a four tiered approach to obtaining and exploiting program information;
each tier supports the exploitation of different levels of information that become available at a
different stage of program compilation or execution. Such an approach inherently requires close
cooperation between the compiler and runtime system. This structure allows program information
to be exploited at an appropriate stage (typically as soon as possible) and conserves information,
supporting program transformation both at compile and run time (as shown in Figure 3).

PROGRAMS
. . LESS
(D static Analysisand INFORMATION
Transformation
@ Speculative Compilation
with Runtime Support
(3 Dynamic Compilation
and Specialization
@ High Performance
: MORE
Runtime System INFORMATION

TARGET MACHINE

Figure 3: Four-tiered Structure of the Concert System

The four tiers of the Concert system span the range from compile to run time. The first tier
is static program analysis and optimization which happens at compile time. Analysis of object-
oriented programs is particularly challenging because the control flow depends on type information
which in turn depends on data flow. The introduction of concurrency and distribution further
complicates the situation as ideally the compiler would manage both concurrency control and
locality in the machine to achieve high performance. In general, static optimizations require precise
information to assure their safety and thereby correct program implementation. The second tier
is speculative optimization based on imprecise information about program structure. This level
of optimization is useful when analyses indicate a particular structure is likely, but cannot prove
it for all possible program executions. Because a static transformation based on the particular
structure would be unsafe, the improved code must explicitly test for the structure. The resulting
transformation is speculative because it does not always result in improved execution speed. The
third tier is dynamic compilation based on local runtime information about program structure.
Dynamic compilation can be based on precise information unavailable at compile time, thereby
producing much more efficient code. However, this increased efficiency must be weighed against
the high cost of runtime compilation. The fourth tier, which supports the other three tiers, is a high
performance runtime. But beyond providing fast basic primitives, the runtime interface must allow
optimizations to be expressed, support speculative optimization, support dynamic compilation, and
provide a variety of more traditional services such as efficient scheduling and resource management.

The Concert System 7

3.1 Static Analysis and Optimization

The first tier in the Concert system is static analysis and optimization. Static optimization is
attractive because it has no runtime cost and can be based on global program information. If
precise static analysis is available, then the compiler can use the cheapest mechanisms available for
a computation. For example, if the object type and the assurance of locality can be inferred from
analysis, then method invocations on that object can be inlined, dramatically improving execution
efficiency.

In addition to classical analyses used in languages such as FORTRAN, static analysis of concur-
rent object-oriented programs has two distinctive steps, type inference and structure analysis. Type
inference is necessary to determine the control flow structure of a program because object-oriented
programs use type dependent dispatch for modularity and polymorphism. Structure analysis is
necessary to determine data flow structure because most object-oriented languages make extensive
use of dynamic storage allocation and references. We discuss the two distinctive analyses, type in-
ference and structure analysis, in the following sections. Subsequently, we discuss how the resulting
program information could be used to optimize programs.

3.1.1 Type Inference

Type inference uses the structure of a program to deduce the type (or range of types) that program
variables can take on. Type information can be used both directly in the generation of efficient
code and in determining control flow of an object-oriented program. For example, in Figure 4 the
type of n is known to be be C'lassA and the type of sel f can be resolved to Main. Consequently,
invocations foo and bar can be optimized to procedure calls, eliminating the overhead of a dynamic
dispatch. The Concert compiler is capable of this sort of automatic analysis and optimization.

class ClassA

method bar
1
end method
end ClassA class Main
var n
class Main method run
var n n := (ClassA new);
method run print 2
n := self foo: (ClassA new); end method
print (n bar) 4+ 1 end Main
end method
method foo: a
a
end method
end Main

(Main new) run

Figure 4: Type Inference Example

The Concert compiler uses a constraint based approach to type inference which determines not

The Concert System 8

only whether a program is type safe but also a safe approximation of the type of each program
variable. The type inference system is an extension of that described in [29]. Local constraints
are established and propagated according to a set of rules for primitive operations such as object
creation, assignment, and usage. A continuous approximation of the control flow is maintained, and
constraints are built for the paths along this flow. When all constraints induced by the program
have been added, their solution is a safe approximation of both program variable types and control
flow. Because the solution is only subject to program structure, for some program variables precise
type information may not be available. The available type information is used to determine the
interprocedural control flow graph required for a variety of traditional program analyses.

The Concert type inference system extends the capability of of traditional constraint based type
systems for object-oriented languages [29] in four ways. First, the extended inference system allows
variable precision based on control flow and object creation points. This allows compiler effort
to be focused where it will be most productive. Second, in order to support a broad variety of
concurrency constructs, the Concert type system supports the analysis of programs with first class
selectors, continuations, and messages. Third, to ensure compilation of all working programs, our
type system handles typing failures gracefully, reporting them to the programmer and generating
sufficient runtime checks to ensure correct program execution. Finally, the type information pro-
duced by inference is stored in a flow-sensitive database. This organization is particularly helpful
for dependent program transformations.

3.1.2 Structure Analysis

Structure analysis is used to approximate runtime data structures in programs with dynamic allo-
cation. Structure analysis is important in concurrent object-oriented programs, as such programs
tend to make extensive use of dynamic allocation and sophisticated data structures. The informa-
tion derived from structure analysis is essential to high quality optimization and is typically used
to compute aliasing relationships, data flow, and storage structure. This information can be used
to reorder computations and to improve program locality. For example, information that a runtime
data structure represents a singly-linked list can be used to group objects ensuring that references
between them are local.

Structure analysis interprets the program against a model of the program store, producing
a conservative approximation of the effect of the program. The resulting store approximation
captures the structure of the heap. However, because the representation of the heap must be
finite, and the execution of the program is potentially infinite, the heap structure is summarized
to capture structures immediately reachable from the program values at each program point. Such
local information is sufficient for a variety of grain size optimizations.

The Concert system uses a structure analysis based on Abstract Storage Graphs (ASG’s) which
is capable of precise analysis of complex dynamic structures such as singly and doubly linked
lists, object hierarchies, and octrees. The Abstract Storage Graph [30] is an enhancement of
Chase’s Storage Shape Graph (SSG) [8], which adds distinct node and reference types as well as
identity paths to achieve more precise analysis. As with SSG’s, the analysis is based on a data flow
framework. Within the framework, we define the lattice of solutions to be an abstraction of the
program store. The transfer functions are then the abstract interpretation of the program. The
meet operator is a safe merge of these storage approximations.

An example of the information that Concert’s structure analysis is able to derive is shown in
Figure 5. Analysis of the program on the left produces the abstract storage graph on the right.
The graph compactly represents a singly linked list of indefinite length. The node in the center is

The Concert System 9

X =nil;

loop

y = Node new;

iie;c/_next. X; X =T Y next
end loop

Figure 5: Structure Analysis Example

a distinct choice node and the node at the right summarizes all the pair elements in the list. Fach
node in the list either points to NIL or another list node. An example of optimization based on
structure information is given in Section 3.1.3.

3.1.3 Exploiting Static Information

Type inference and structure analysis coupled with traditional program analyses produce a variety
of information useful for optimizing concurrent object-oriented programs. In particular, we focus
on optimizing method invocations, as these enable a wealth of more traditional optimizations.
However, because the Concert system is intended for parallel machines with distributed memories,
locality optimization is a prerequisite to more traditional optimizations on method invocations
which presume locality.> Once locality is ensured, type information can be used to resolve type-
dependent dispatch statically, optimize procedure linkage, or inline procedure calls.

Storage structure information can be used to compel locality, enabling a wealth of program
optimizations. For example, consider the structure analysis shown in Figure 5 that identifies a
singly-linked list. To enhance locality, lists can be tiled (see Figure 6) to increase the number of
local invocations along its spine. Tiling two pairs together increases execution grain size by allowing
a pair of operations on adjacent white and adjacent gray list objects to be scheduled as a single
computation grain. The code can be optimized as shown in Figure 6, converting the message send
to a procedure invocation, then inlining the procedure invocation and accessing the state of both
objects directly. Tiling is a special case of more general object fusion and clustering operations
which force locality thereby enabling other program optimizations.

Object merging and grouping optimizations can reduce execution overhead significantly. Tiling
pairs of elements in a list can produce a 50% reduction in overhead. Consider that in the Concert
runtime [25], the most general message send operation requires 44.2p15, and a simple procedure call
requires only 0.15us. This means traversing each pair of list elements requires 88.4us for the List1
implementation, 44.35us for the List2 implementation, and 44.2us for the List3 implementation.
Going from List2 to List3 requires type information and procedure inlining. Though the benefit
of these optimizations are small in this case, it is greater in general if the method bodies are larger.
Not only does inlining eliminate message send overhead, it increases the procedure size, increasing
the effectiveness of traditional compiler optimizations such as common subexpression elimination
and instruction scheduling. This is particularly important in object-oriented programs which tend
to have high procedure-call frequencies.

In this section, we described optimizations which presumed precise information. However, in
many cases, such precise information is not available. In subsequent sections, we examine how the
Concert system exploits even imprecise information to improve program execution.

®Virtually all traditional program optimizations presume a shared address space and make no allowance for
managing memory locality.

The Concert System 10

015 B 5 ey 5 o IS R [}3/[}31

class List class List2 class List3

var v, next var vl, v2, next var vl, v2, next

method eval: sum method eval2: sum method eval: sum

next eval: next eval: next eval:
(v + sum) (v2 + sum) (vi + v2 + sum)

end method end method end method

end List method eval: sum end List3
self eval2:
(sum + vi1)
end method
end List2

Figure 6: Tiling pairs of elements in a List.

3.2 Speculative Transformation and Runtime Support

The second tier of the Concert system is speculative program transformation. When precise infor-
mation is not available, the compiler cannot safely optimize the program. If imprecise information
is available, it may be possible to optimize for the likely cases, selecting amongst several specialized
versions at runtime. If the specialized versions capture actual program behavior, it is possible to
obtain much of the benefit of static optimization. However, the disadvantages of this approach are
the cost of runtime checks and significant increases in code size.

Speculative optimization is useful when static analyses produce imprecise information, narrow-
ing the possibilities so that they can be quickly resolved by runtime checks. Specialized versions
of code can be compiled for each of the alternatives, amortizing the cost of a runtime check over a
large number of optimized operations. Because speculative transformation is done at compile time,
the full range of optimizations can be applied to each specialized path, producing performance
nearly as good as if precise information were available. Properties such as object type, location,
and current status (active or dormant) can be used as a basis for speculative optimization®. For
example, the type inference system may be able to narrow the type of a particular variable to a
small set of types. Speculative compilation to insert runtime type checks and select amongst paths
specialized for each type can enable a chain of optimizations along each path. Such optimizations
can produce large savings in execution time.

Speculative transformations can be based on runtime checks, assertions, and hints, depending
on the information available and the desired temporal and spatial scope of the optimization. All
three types of speculative transformations require runtime support via special runtime operations
to ensure their efficient implementation. We describe each type of speculative optimization and the
required runtime primitives below.

%Location (local or remote) can also be considered part of an object’s implementation type.

The Concert System 11

¢ Runtime checks are used to exploit fortuitous object properties to select runtime mecha-
nisms at a particular program point. Requires runtime calls to check properties.

¢ Assertions extend the temporal and spatial extent of the object property, increasing the
range of optimization. Requires runtime calls to make and revoke assertions.

¢ Hints attempt to influence the runtime system into improving malleable object properties
such as location to improve performance. Requires runtime calls to suggest desirable object
properties.

Runtime checks query the runtime system to determine actual object properties. On this basis,
the cheapest possible runtime mechanisms can be selected at runtime. For example, choosing
between stack-based or network-based method invocation sequences, depending on whether the
object invocation target is local, could be optimized by runtime checks. While this approach can
give significant benefits, it also incurs significant runtime overhead and cannot enable optimization
across context switches. An example of runtime checks is shown in Figure 7 (b), where a series
of invocations are made on an object, B, whose location is unavailable at compile time. Runtime
checks allow procedure calls to be dynamically selected instead of general method invocations where
appropriate. Runtime checks are required before each method invocation since the object might be
migrated between invocations.

Assertions extend the temporal and spatial scope of information about an object property for
the purposes of optimization. This allows the compiler to generate code which tests for an object
property, asserts that property, then executes a long sequence of code optimized based on the
assertion. Without assertions, to generate safe code, the compiler would have to assume that
object properties could change at arbitrary times, limiting optimization. Instead, if the runtime
system must invalidate an assertion, it invokes a callback function provided by the compiler, giving
it the opportunity to revert to an unoptimized version. This is straightforward if the compiler
simply uses compatible storage maps for all versions. An example of assertion based optimization
is given in Figure 7 (¢) where following the check for locality, B is asserted to be local. This allows all
of the code in the true arm of the conditional to be optimized for local invocations — no additional
checks are required. Conversion to procedure calls and even procedure inlining are both possible. If
the specialized code section is large, eliminating checks can give significant benefits. The callback
code is not shown.

Hints extend both runtime checks and assertions by attempting to influence malleable object
properties such as locality. Hints tell the runtime that it would be beneficial if a particular property
were true. This allows the compiler to express to the runtime system any assumptions it has used
in performance optimizing the program. In general, hints can be used to guide policies of the
runtime. Hints are not binding on the runtime, and the compiler must still assure correct program
execution if hints are not respected by the runtime system. Figures 7 (d) and (e) show how the
basic speculative transformations might be annotated with hints. The hints (HINT(B, ‘local’)
statements) suggest to the runtime that if B is not already local, it might be worthwhile to migrate
it. Because hints are non-binding suggestions to the runtime, both example programs with hints
will run correctly if all hints are removed.

Speculative transformations can yield significant benefits. Runtime checks as in Figure 7 (b)
can reduce invocation overhead from 11.17us for general local method invocation to 0.15us for
a local procedure call, a dramatic improvement which far outweighs the cost of the inline test.
This means that runtime checks can benefit even single invocations. Assertions are particularly
important since they enable interprocedural optimization and optimization across context switches.

The Concert System

INVOKE-METHOD (B, methi)
computation

INVOKE-METHOD (B, meth2)
computation

INVOKE-METHOD (B, meth3)

(a)

if (CHECK(B, ‘local’))
B—methli;
else
INVOKE-METHOD (B, methi1)
endif
computation
if (CHECK(B, ‘local’))
B—meth2;
else
INVOKE-METHOD (B, meth2)
endif
computation
if (CHECK(B, ‘local’))
B—meth3;
else
INVOKE-METHOD (B, meth3)
endif

(b)

HINT(B, ‘local’)
if (CHECK(B, ‘local’))
B—methli;
else
INVOKE-METHOD (B, methi1)
endif
computation
if (CHECK(B, ‘local’))
B—meth2;
else
INVOKE-METHOD (B, meth2)
endif
computation
if (CHECK(B, ‘local’))
B—meth3;
else
INVOKE-METHOD (B, meth3)
endif

(d)

12

if (CHECK(B, ‘local’))
ASSERT(B, ‘local’)
B—methli;
computation
B—meth2;
computation
B—meth3;
RETRACT(B, ‘local’)
else
INVOKE-METHOD (B, methil)
computation
INVOKE-METHOD (B, meth2)
computation
INVOKE-METHOD (B, meth3)
endif

(c)

HINT(B, ‘local’)
if (CHECK(B, ‘local’))
ASSERT(B, ‘local’)
B—methli;
computation
B—meth2;
computation
B—meth3;
RETRACT(B, ‘local’)
else
INVOKE-METHOD (B, methil)
computation
INVOKE-METHOD (B, meth2)
computation
INVOKE-METHOD (B, meth3)
endif

(e)

Figure 7: Ixample code fragments showing different Speculative Transformations. INVOKE-
METHOD() calls the network-based invocation routine while obj—method uses a local procedure

call.

The Concert System 13

Since the cost of inserting and retracting assertions is comparable to a local invocation, assertion
based transformations can begin to pay off even for a single method invocation. On the other hand,
the cost of invalidating an assertion can be very high; thus, optimizations using assertions must
be applied with discretion. Hint-based transformations such as affinity for a particular object can
involve large costs to change object properties. Consequently, they appear to be worthwhile only
when many objects on a particular node exhibit affinity for another object. The effectiveness of hints
is currently unknown, but some related studies show that locality hints can improve performance
[6].

While speculative optimizations can dramatically increase the opportunities for optimization,
they are limited to cases where the possibilities can be narrowed and specialized code generated for
each. When program structure depends strongly on input data or the evolution of computation,
static analyses will be unable to infer even partial information. In other cases, the code size
increase due to speculative techniques will limit their applicability. In the next section, we discuss
techniques, dynamic compilation and specialization, which can deliver high performance in such
cases.

3.3 Dynamic Compilation and Specialization

The third tier of the Concert system is dynamic compilation and specialization. When the static
analysis system is unable to narrow the possibilities, the Concert system resorts to dynamic com-
pilation, specializing on the basis of local information available at runtime. First, dynamic com-
pilation is attractive when program behavior and data structures depend strongly on input data.
Second, dynamic compilation is also attractive when a multiplication of properties on which to
specialize causes a code size explosion in the speculative compilation approach. Finally, dynamic
compilation is attractive when specialization is linked to properties that are varying periodically,
for example object interconnectivity varying with phases of a computation. However, because of
the runtime cost involved, dynamic compilation is typically limited in scope and driven by local
information. Despite this limitation, because specialization is only done for situations that actually
have occurred, dynamic compilation can give significant performance benefits without producing
huge code size increases.

The three critical problems in dynamic compilation are deciding when to do it, how great
a scope to recompile, and how to share the results of dynamic compilation. To a large extent,
the answers to these questions depend on both the specific costs and temporal dynamics of the
parallel system in question. Thus, they can only be answered via experimentation. However,
the Concert approach seeks to do dynamic compilation selectively, focusing on program points
flagged by the compiler and instrumented inline to obtain path counts. The cost of recompilation
is minimized by recompiling from a template provided by the compiler which is simply adapted to
the available runtime information. Determining appropriate code sharing policies and recompilation
scopes remain open research questions.

Dynamic compilation can give the benefits of static optimization, producing extremely efficient
code. In some cases, dynamically compiled code can be as efficient as that based on complete static
information; no inline runtime tests are required (see Figure 8). In other cases, dynamic compilation
will produce code with inline tests and specialized execution paths, similar to that produced by
speculative compilation, only the basis for specialization is determined at runtime. In all cases,
the cost of runtime compilation implies a narrower scope of optimization than in earlier stages.
Typically, little more than inlining and peephole optimization is feasible. Further, the real costs of
dynamic compilation: detecting opportunities, the runtime cost of compilation, and deciding when

The Concert System 14

INVOKE-METHOD (B, methi) B—methi;

local computation ... local computation
INVOKE-METHOD (B, meth2) B—meth2;

local computation ... local computation
INVOKE-METHOD (B, meth3) B—meth3;

Figure 8: Dynamic Compilation Example

to invalidate specialized code are not reflected in the code sequences. In Concert, these costs are
reduced by using only localized information and using templates to reduce the cost of compilation
(specialized for the optimizations of interest). Because of the costs involved, dynamic compilation
is likely to only be effective if its cost can be amortized by a long running, typically iterative,
computations.

3.4 High Performance Runtime System

The fourth tier of the Concert system is a high-performance runtime system which provides efficient
runtime operations, exposes the important cost distinctions for optimization by the compiler, and
supports the use of speculative and dynamic compilation techniques. Because of the close partner-
ship between the compiler and runtime, the runtime design is an integral part of the Concert system.
Below, we describe the cost hierarchy for basic operations on stock hardware multicomputers and
outline how the Concert runtime exposes the hierarchy for compiler optimization. System support
for speculative and dynamic compilation as well as runtime optimization (scheduling, clustering,
load balancing, etc.) and essential runtime services (storage allocation, garbage collection, basic
thread scheduling, etc.) is also discussed.

Efficient concurrent object-oriented language implementations must provide a global object
namespace, communication services for remote method invocation, and support for scheduling
method invocations. Though implementations on custom hardware [15, 36, 42] focus on providing
a few general-purpose primitives, runtime systems on stock hardware require a different approach.
The hardware structure of such systems necessarily implies a hierarchy of costs for many basic
runtime operations. These cost distinctions must be recognized and managed to obtain efficient
execution of fine-grained concurrent object-oriented programs.

The Concert approach includes a runtime system design which exposes these critical cost dis-
tinctions, so that they can be managed. In particular, the full range of runtime primitives are
exposed to the compiler, allowing optimization based on static program analysis. The functional-
ity of the runtime can be divided into three basic parts: a hierarchy of versions of basic runtime
operations, support for speculative and dynamic compilation, and fast implementations of essential
runtime services.

Basic operations such as communication, invocation, and name service can have dramatically
different cost, depending on the generality of the operation required. On stock hardware in particu-
lar, these differences can be greater than two orders of magnitude. These differences are illustrated
in Table 1 and discussed in detail in [25]. The ability to choose the cheapest appropriate mechanism
is essential to achieving good performance. For example, the runtime provides two versions of name
translation, one for node-local names, and the other involving global names which may require re-

The Concert System 15

Implementation | Clock rate Send/Reply Invocation Translation
MHz JIx; cyc. JIx; cyc. JIx; cyc.
CST(on J-m/c) 28.3 6.36/7.8 | 180/220 | 0.6/1.6 18/46 0.9/2.6 | 26/74
ABCL(on EM-4) 12.5 9 112 0.24 3 - -
Concert 33.0 0.15/15.7 | 5/520 | 0.12/44.2 | 4/1456 | 0.03/16.1 | 1/536
CA(on CM-5)

Table 1: Minimum/Maximum Costs of Runtime Operations on Custom and Stock Hardware.

mote access for translation. Incorporating different versions in the runtime interface exposes the
cost distinctions, allowing the compiler to choose the appropriate functionality. It is interesting to
note that the cheapest versions of operations are as inexpensive as corresponding constructs in tra-
ditional sequential languages, while the most general operations are considerably more expensive.
The cheapest versions of operations also cost less than the general purpose operations provided on
custom hardware.

The Concert runtime also provides support for speculative and runtime compilation. Mecha-
nisms are provided for runtime checking of object properties such as type and location. An assertion
maintenance module supports the insertion and invalidation of assertions to support speculative
compilation. The runtime guarantees callbacks when assertions are invalidated. Hints can be pre-
sented to the system via a set of runtime calls. We are exploring a variety of approaches to exploiting
the information provided by hints in the runtime system. The runtime system also provides basic
functionality for inline instrumentation and dynamic code caching. These services can be used to
manage dynamic compilation and the best form for such services is still an open research question.

The Concert runtime also provides efficient implementations of essential runtime services such
as garbage collection, load balancing, and intra-processor scheduling. In particular, sophisticated
group scheduling mechanisms, can enhance data locality and state reuse, producing significant
performance improvements. These mechanisms may or may not be managed by the compiler.
Even without close coupling, they give improvements in overall execution efficiency.

3.5 Summary

The Concert approach integrates compiler and runtime efforts to provide optimization at all levels
from fully static to fully dynamic. This integration allows program information to be carried
forward from phase to phase of the program execution. Thus, the Concert approach conserves
critical program information and maximizes the opportunities for optimizing fine-grained concurrent
object-oriented programs. As we have discussed, integration requires changes not only to the
compiler design, but also to the runtime. In some cases, the runtime yields control to the compiler,
in others the runtime provides services which enable aggressive compilation. Finally, efficient
execution ultimately rests on the speed of the underlying runtime implementation, so the efficiency
of the runtime system is critical.

4 Evaluation

We are building the Concert system, an embodiment of the techniques described in this document,
to explore and demonstrate the effectiveness of a wide range of program analyses and optimizations
for grain size tuning. A thorough evaluation of the Concert approach requires an application
program suite, compiler, and runtime system. We are developing an application suite with various

The Concert System 16

application domains, computational structure, and programming style. Based on the application
suite, our program analyses and optimizations techniques will be evaluated, tuned, and improved.
Experimentation with an entire system is essential since many of the optimizations involve cost
tradeoffs, and interactions amongst optimizations must be explored in full scale experiments. The
result of our studies will be a thorough evaluation of the effectiveness of a range of program
analysis and optimization techniques. Ultimately, these studies contribute to an evaluation of the
performance implications of incorporating concurrent, object-oriented features in a programming
language.
Some of the specific questions we are exploring include:

¢ Static Analysis: How much precise type information is available from type inference? How
much structure information is available from structure analysis?

e Static Optimization: How effectively can type and structure information be exploited
for locality optimization and what impact does that have on program concurrency? What
efficiency gains can be obtained from static binding and object fusion? To what extent does
inlining preserve precise type information for optimization? What fraction of the dynamically
optimizable opportunities does static optimization capture?

¢ Speculative Optimization: What are the basic tradeoffs in application of the three levels
of speculative optimization? How effective are speculative locality checks and how do they
interact with placement policy? How effective are assertion-based optimizations, particularly
in providing the opportunity for interprocedural optimization? How well can the compiler
insert hints to the runtime system? How can the runtime best exploit this information? What
is the tradeoff between code size and program efliciency?

¢ Runtime Compilation: How many cost-effective opportunities are there for runtime com-
pilation? What techniques are most effective in identifying these opportunities and exploiting
them with minimal cost? What is the right program representation for runtime compilation?

¢ Runtime: What is the frequency of callbacks for assertions? How does this vary under
different compiler and runtime policies? How can the runtime exploit additional compiler
information (not extant in the program code) at runtime? How should dynamically compiled

code be cached? Shared?

o General: How effective are all of these techniques for increasing execution grain size? What
impact does this have on program concurrency? What is the cost of the object-oriented
features in terms of compile and runtime overhead?

It is clear that concurrent, object-oriented languages empower programmers, by allowing them
to encapsulate irrelevant detail. However, for COOP languages to become the parallel programming
vehicle of choice, serious questions about their efficient implementation must be addressed. In par-
ticular, language features in COOP languages appear to require aggressive optimization to achieve
acceptable levels of efficiency. The Concert project is developing such aggressive optimization
techniques and evaluate them against an application suite of concurrent object-oriented programs.
Only with such studies will it be possible to demonstrate convincingly that COOP languages can
be made to run efficiently on stock parallel machines. The ultimate goal of such studies is to show
that COOP languages are a viable and attractive basis for efficient parallel computation.

The Concert System 17

5 Background and Related Work

The Concert system is related to prior work on efficient implementation of both object-oriented
[22, 31, 16] and parallel systems [20, 26]. In particular, many of the optimizations we have discussed
have their inspiration in the techniques developed by the SELF compiler group [5]. Of course, the
major distinction is that our work focuses on the problems associated with concurrency, distribution,
and data parallelism.

Our work also differs in emphasis from a wide variety of work in the area of concurrent ob ject-
oriented languages. We are primarily concerned with efficiency, while a variety of projects are
concerned primarily with language features [28, 3, 2, 43]. The most closely related work in this
area is the ABCL project [42, 37, 43] which is also pursuing efficient implementations. A recently
published description of their runtime parallels many of the techniques found in our optimized
runtime system. While our research goals are similar, ABCL is significantly different from our
source language as it has no support for parallel collections. Further, to date, the ABCL group has
focused primarily on runtime techniques and not compiler analysis and optimization.

Recently, a great deal of attention has been focused on concurrent languages based on C++4 [35]
extensions. ESKit C+4 [34], Mentat [18], CHARM++ [24], and Compositional C++4 [7] are
medium-grained languages in which the programmer supplies grain-size information. These lan-
guages integrate concurrency and object-orientation, but requiring the programmer to specify a
grain size for efficiency limits program scalability and portability. Typically, the specified grain
size is large and limits scalability. Automatic parallelization of large grains is known to be quite
difficult. Further, to date, none of them has focused on developing the compiler support necessary
to automatically adjust grain size, the primary focus of the Concert system.

The pC++ [27] language supports data parallel operations, but the object-oriented framework
of the language allow encapsulation. This means that pC4++4 programs can express restricted het-
erogenous concurrency within collections. However, true task level parallelism cannot be expressed.
The parallel collections in pC++ are similar to aggregates in Concurrent Aggregates [10]. In the
Concert system, data parallelism is expressed as task level concurrency, providing greater program-
ming power, but making efficient implementation significantly more difficult. Effective grain size
tuning must be achieved to make data parallel operations efficient.

With respect to parallel systems in general, a wide variety of approaches to portable, pro-
gramming are being actively pursued. We relate the analogous work on compiling for efficiency
in each of these models to grain-size tuning in concurrent object-oriented languages. A subset of
other approaches to parallel programming can be loosely classified as data parallel, functional, and
committed choice.

Data parallel approaches [38, 19, 9, 4] express parallelism across arrays, collections, or program
constructs such as loops in the context of a single control flow model. Data parallel programs admit
a degree of grain size tuning, operations in a data parallel operation can be grouped and scheduled
together. However, data parallel languages have difficulty expressing task level concurrency or
irregular concurrency. Further, all of the data parallel languages provide essentially no support for
encapsulation or modularity.

Functional programming approaches [41, 14, 23] have the advantage of determinacy, but have
limited expressive power due to the absence of state. If laziness or non-strictness is incorporated,
efficient compilation becomes difficult. The particular problem is a similar one of grain size tun-
ing, but under much more difficult circumstances where little synchronization and data reference
information may be available at compile time.

Concurrent logic programming approaches, particularly those based on the committed-choice

The Concert System 18

model [40, 17, 33, 32] are similar to concurrent object-oriented languages. However, they have little
support for encapsulation and parallel collections. In committed choice languages, the emphasis is
on task parallelism which is often expressed as operations on a stream. While some degree of grain
size tuning can be achieved grouping successive elements of a stream, the structure of programs
essentially limits this to structures analogous to data parallelism.

6 Summary and Current Status

We have presented a comprehensive and unified optimization system for concurrent object-oriented
languages. Our system includes aggressive static analysis followed by static optimization, specu-
lative optimization and dynamic compilation. All these transformations are leveraged by a high
performance runtime system. The key to our approach is exploitation of information at the earliest
possible optimization stage and its preservation for use in later stages. Using our system we hope
to show that concurrent object-oriented languages can be an efficient medium in which to express
a wide variety of parallel computations.

The Concert system has been operational on both sequential and parallel platforms since Oc-
tober 1992. The system includes an optimizing compiler for an extended version of Concurrent
Aggregates [11] and a high performance runtime system which runs on both Sun workstations and
the Thinking Machines CM5 [25]. We are currently building a second generation system with much
greater analysis and optimization capability as well as much greater overall performance. This
second generation Concert system consists of a new implementation of the compiler (in progress)
and a new implementation of the runtime system (already complete). The compiler, runtime, and
the application suite which we are developing for them are detailed below.

We are currently building a second generation compiler which implements the full range of static
analysis and program transformation described in this document. This compiler will enable us to
experiment with a broad range of optimization approaches. This second generation compiler uses
relatively traditional internal data structures based on the program dependence graph (PDG) in
Static Single Assignment form (SSA). Novel aspects of the compiler include a constraint-based type
inference system and an attributed value system similar to that used in the SELF compiler [5]. We
are currently developing the structure analysis and optimizations subsystems.

The second generation runtime system which supports the full range of runtime operations
described in this document and in [25] has been operational since March 1993. Novel aspects include:
1) providing a hierarchy of functionality and cost for each runtime operation, allowing selection
of the cheapest version and 2) providing support for speculative and dynamic compilation. The
complete second generation system (improved compiler and runtime system) should be available
for external use sometime during the Fall of 1993.

We are also developing an extensive application suite which will form the basis for optimization
experiments. We believe concurrent object-oriented languages are appropriate for a wide variety of
numeric and non-numeric applications, giving greatest advantage in problems with irregular com-
putational structure. Qur application library will ultimately include regular numeric computations,
as a basis for comparison with alternatives such as HP Fortran, irregular numeric applications such
as sparse matrix and n-body interaction problems, regular non-numeric applications, and irregular
non-numeric applications such as discrete event simulations. Currently, our application suite in-
cludes a math library, logic simulator, an n-body interaction solver, particle-in-cell code, and a PC
board router. These applications contain thousands of lines of Concurrent Aggregates code and
run sequentially on a simulator and in parallel on the CMS5.

The Concert System 19

Acknowledgements

The Concert project and the authors of this paper are supported in part by grants from the National
Science Foundation, grant CCR-9209336, Office of Naval Research, grant N00014-92-J-1961, and
the National Aeronautics and Space Administration, grant NAG 1-613. Additional support has
been provided by a generous special-purpose grant from the AT&T Foundation.

References

(1]

[2]

R

[15]

[16]

[17]

Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge,
MA, 1986.

Pierre America. POOL-T: A parallel object-oriented language. In Aki Yonezawa and Mario Tokoro,
editors, Object-Oriented Concurrent Programming, pages 199-220. MIT Press, 1987.

W. C. Athas and C. L. Seitz. Cantor User Report Version 2.0. CalTech Internal Report, January 1987.
T. Blank. The MasPar MP-1 Architecture. In Proceedings of COMPCON, pages 20-4. IEEE, 1990.

C. Chambers and D. Ungar. Customization: Optimizing compiler technology for self, a dynamically-
typed object-oriented programming language. In Proceedings of SIGPLAN Conference on Programming
Language Design and Implementation, pages 14660, 1989.

Rohit Chandra, Anoop Gupta, and John L. Hennessy. Data locality and load balancing in COOL. In
Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, 1993.

K. Mani Chandy and Carl Kesselman. Compositional C+-+: Compositional parallel programming. In
Proceedings of the Fifth Workshop on Compilers and Languages for Parallel Computing, New Haven,
Connecticut, 1992. YALEU/DCS/RR-915, Springer-Verlag Lecture Notes in Computer Science, 1993.

D. Chase, M. Wegman, and F. Zadeck. Analysis of pointers and structures. In Proceedings of SIGPLAN
Conference on Programming Language Design and Implementation, pages 296-310, June 1990.

Chen and Cowie. Prototyping FORTRAN-90 compilers for massively parallel machines. In Proceedings
of SIGPLAN PLDI, 1992.

A. A. Chien and W. J. Dally. Concurrent Aggregates (CA). In Proceedings of Second Symposium on
Principles and Practice of Parallel Programming. ACM, March 1990.

Andrew A. Chien. Concurrent Aggregates: Supporting Modularity in Masswely-Parallel Programs. MIT
Press, Cambridge, MA, 1993.

Intel Corporation. Paragon XP/S product overview. Product Overview, 1991.
Cray Research, Inc., Eagan, Minnesota b5121. CRAY T3D Software Overview Technical Note, 1992.

D. Culler, A. Sah, K. Schauser, T. von Eicken, and J. Wawrzynek. Fine-grain parallelism with minimal
hardware support: A compiler-controlled threaded abstract machine. In Proceedings of the Fourth
International Conference on Architectural Support for Programming Languages an Operating Systems,

pages 16475, 1991.
W. J. Dally, A. Chien, S. Fiske, W. Horwat, J. Keen, M. Larivee, R. Lethin, P. Nuth, S. Wills,

P. Carrick, and G. Fyler. The J-Machine: A fine-grain concurrent computer. In Information Processing
89, Proceedings of the IFIP Congress, pages 1147-1153, August 1989.

L. Peter Deutsch and Allan M. Schiffman. Efficient implementation of the smalltalk-80 system. In
Eleventh Symposium on Principles of Programming Languages, pages 297-302. ACM, 1984.

I. Foster and S. Taylor. Strand: New Concepts in Parallel Programming. Prentice-Hall, 1990.

The Concert System 20

[18]

[19]

[20]

[21]

[27]

[28]

[29]

[38]

A. Grimshaw. Easy-to-use object-oriented parallel processing with Mentat. Overview for Mentat system,

1992.

Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiler Optimizations for FORTRAN D
on MIMD Distributed-Memory Machines. In Supercomputing '91, pages 86-100, November 1991.

Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiler optimizations for FORTRAN D
on mimd distributed-memory machines. Communications of the ACM, August 1992.

W. Horwat, A. Chien, and W. Dally. Experience with cst: Programming and implementation. In
Proceedings of the SIGPLAN Conference on Programming Language Design and Implementation, pages
101-9. ACM SIGPLAN, ACM Press, 1989.

R. E. Johnson, J. O. Graver, and L. W. Zurawski. Ts: An optimizing compiler for smalltalk. In
OOPSLA ’88 Proceedings, pages 18-26, September 1988.

Simon L Peyton Jones. The Implementation of Functional Programming Languages. Prentice-Hall,

1987.

L. V. Kale and Sanjeev Krishnan. CHARM++: A portable concurrent object oriented system based
on C++. In Proceedings of OOPSLA’93, 1993.

Vijay Karamcheti and Andrew Chien. Concert — efficient runtime support for concurrent object-oriented
programming languages on stock hardware. Submitted to SUPERCOMPUTING’93.

D. J. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. Wolfe. Dependence graphs and compiler opti-
mizations. In Proceedings of the 8th ACM Symposium on Principles of Programming Languages, pages
207-18, 1981.

J. Lee and D. Gannon. Object oriented parallel programming. In Proceedings of the ACM/IEEE
Conference on Supercomputing. IEEE Computer Society Press, 1991.

Carl R. Manning. Acore: The design of a core actor language and its compiler. Master’s thesis,
Massachusetts Institute of Technology, August 1987.

N. Oxhgj, J. Palsberg, and M. Schwartzbach. Making type inference practical. In Proceedings of
OOPSLA 92, 1992.

John Plevyak, Vijay Karamcheti, and Andrew Chien. Analysis of dynamic structures for efficient parallel
execution. Revised Paper, submitted to LCPM ’93.

A. D. Samples, D. Ungar, and P. Hilfinger. Soar: Smalltalk without bytecodes. In OOPSLA 86
Prodeedings, pages 107-18, September 1986.

V. Saraswat. Concurrent Constraint Programming Languages. MIT Press, 1992. To appear, also
available as Technical Report from Carnegie-Mellon University as Technical Report CMU-CS-89-108.

V. Saraswat, K. Kahn, and J. Levy. Janus: A step towards distributed constraint programming. In
Proceedings of the North American Conference on Logic Programming, Austin, Texas, October 1990.

K. Smith and R. Smith II. The experimental systems project at the microelectronics and computer
technology corporation. In Proceedings of the Fourth Conference on Hypercube Computers, 1989.

Bjarne Stroustrup. The C++ Programming Language. Addison Wesley, second edition, 1991.

T. Baba, et al. A parallel object-oriented total architecture: A-NET. In Proceedings of IEEE Super-
computing '90, pages 276-285. IEEE Computer Society, 1990.

K. Taura, S. Matsuoka, and A. Yonezawa. An efficient implementation scheme of concurrent object-
oriented languages on stock multicomputers. In Proceedings of the Fifth ACM SIGPLAN Symposium
on the Principles and Practice of Parallel Programming, 1993.

Thinking Machines Corporation. Getting Started in CM Fortran, 1990.

The Concert System 21

[39] Thinking Machines Corporation, Cambridge, Massachusets. CMJ Technical Summary, October 1991.

[40] K. Ueda and M Morita. A new implementation technique for flat GHC. In Proceedings Seventh Inter-
national Conference on Logic Programmang, pages 3—17. MIT Press, 1990. Revised version to appear
in New Generation Computing.

[41] Yale University, New Haven, Connecticut. Report on the Programming Language Haskell, 1.0 edition,
April 1990.

[42] M. Yasugi, S. Matsuoka, and A. Yonezawa. ABCL/onEM-4: A new software/hardware architecture for
object-oriented concurrent computing on an extended dataflow supercomputer. In Proceedings of the
ACM Conference on Supercomputing '92, 1992.

[43] Akinori Yonezawa, editor. ABCL: An Object-Oriented Concurrent System. MIT Press; 1990. ISBN
0-262-24029-7.

The Concert System

Contents
1 Introduction
2 Basic Language Model
3 Concert Approach
3.1 Static Analysis and Optimization L oo oo
3.1.1 Type Inference e
3.1.2 Structure Analysis Lo
3.1.3 Exploiting Static Information L oL o
3.2 Speculative Transformation and Runtime Support
3.3 Dynamic Compilation and Specialization,
3.4 High Performance Runtime System
3.0 Summaryo e e e
4 FEvaluation
5 Background and Related Work
6 Summary and Current Status

22

15

17

18

