
Techniques for E�cient Execution of Fine-GrainedConcurrent ProgramsAndrew A. Chien, Wuchun Feng,Vijay Karamcheti and John Plevyakfachien,feng,vijayk,jplevyakg@cs.uiuc.eduDepartment of Computer ScienceUniversity of Illinois at Urbana-ChampaignAbstractConcurrent object-oriented programming languages are an attractive ap-proach for programming massively-parallel machines. However, exploitingobject-level concurrency is problematic as the linkage and communicationoverhead can overwhelm the bene�ts of the �ne-grained concurrency. Ourapproach achieves e�cient execution by tuning the grain size, matching theexecution grain size to that e�ciently supportable by the architecture. Toverify the feasibility of grain-size tuning, we study the invocation localityof a collection of object-oriented programs. The results suggest that localconstraints on placement combined with code specialization can produce asigni�cant increase in execution grain size. We describe several compile-timeanalyses which identify opportunities to increase grain size. These analysesidentify static relationships between objects and enable transformations toreduce invocation cost. Some initial measurements are presented.1 IntroductionConcurrent object-oriented languages based on the Actor model [2] have received a greatdeal of attention as an approach for scalable programming of massively-parallel machinesbecause concurrency control and modularity are naturally and conveniently captured inobjects.Two critical implementation ine�ciencies have prevented concurrent object-orientedlanguages from realizing their potential. First, the �ne-grained object-level concurrencyThe research described in this paper was supported in part by National Science Foundation grantCCR-9209336, O�ce of Naval Research grant N00014-92-J-1961, and National Aeronautics and SpaceAdministration grant NAG 1-613. Additional support has been provided by a generous special-purposegrant from the AT&T Foundation. 1

. . .
Fine-grained
Machines

Medium-
 Grained

Fine-Grained Concurrent Object Languages

Coarse-
 Grained

A Range of Multicomputers or Multiprocessors.

Concurrent
Aggregates

ABCL

Concurrent
Smalltalk

HAL

POOL

COMMON INTERMED.
OPTIMIZATION LANG.

SHARED OPTIMIZATION
 TECHNIQUES ??

. . .Figure 1: A retargetable, multilingual optimization system for Actor-based languages.speci�ed in these languages is di�cult to implement e�ciently, even with hardware support.Second, while allowing objects to be placed and migrated freely gives maximal exibility forload balancing, oblivious mapping schemes scatter the objects over the system, producingexcessive communication and linkage overhead. The ad hoc techniques which are commonlyused to address these problems force programmers to explicitly specify granularity andplacement of the objects.1 Though explicit speci�cations improve execution e�ciency on aparticular machine, they do so at the cost of portability.We are developing techniques to analyze and optimize object invocation relations, au-tomatically tuning the execution grain-size to achieve e�cient execution. A system basedon these techniques would allow programs to be expressed with maximal �ne-grained con-currency, thereby providing maximum scalability and portability. Grain-size tuning is acritical element of portability, as it improves processor utilization by reducing the over-heads due to scheduling, communication, synchronization, context switching and procedureinvocation. A high-level view of the system we are developing is shown in Figure 1.The cost of an invocation in concurrent object-oriented programs executing on dis-tributed memory machines is typically quite high due to the overheads of message-passing,scheduling, context-switching, type-dependent dispatch, procedure linkage, and the move-ment of data required for an invocation. In �ne-grained object-oriented languages, thisoverhead can easily dominate the overall cost of the computation. Our approach focuseson developing program analysis methods which identify data locality and transformation1Emerald [5], Rosette [16], and Concurrent C++[15] all distinguish between active (�rst-class, mobile)and passive(private to an active object) objects.

OBJECT GRAPH

50

50

50

EXECUTION SEQUENCE

Execution
at A

Execution
at B

A

BFigure 2: Naive implementation of a call-return sequence between A and B.techniques which co-locate or merge objects to take advantage of this locality.An Example is given in Figure 2. A naive implementation which places objects A and Bon separate nodes would produce an average grain size of �fty instructions. However, theaverage grain size could be increased to 150 instructions (less the now unnecessary messagepassing overhead) by co-locating A and B on the same node. This optimization can bedone statically or dynamically and can impact both the execution grain size and programconcurrency.2Rather than require programmers to explicitly annotate which objects should be local,our static analysis and run-time techniques deduce this information which is then expressedas a run-time constraint on object placement. Placement constraints allow the compiler touse cheap, local invocation and access mechanisms, improving execution e�ciency of theoverall computation. In the best case, objects which are wholly contained in another objectcan be absorbed, allowing the invocation to be replaced with inlined code. Our grain-sizetuning techniques optimize control-ow and data locality simultaneously, grouping �ne-grained concurrency into larger grains containing only local operations.If our approach is to be e�ective, applications must exhibit locality in invocations (i.e.,a pair of objects should be involved in a series of invocations). Invocation locality providesleverage, allowing a few transformations to a�ect a large number of invocations. Co-locating or merging two objects reduces the overhead for all the invocations between thepair. Depending on when invocation locality in a program can be identi�ed, either static(at compile-time) or dynamic (at run-time) techniques can be used. Object migration anddynamic compilation are necessary to exploit the dynamic locality.In this paper, we have presented the framework for a grain-size tuning system forconcurrent object-oriented languages. In Section 2, we describe quantitative studies of2The co-location is an additional constraint on execution concurrency as the processing capacity ateach node is �nite.

Invocation targets from an object:

B C D E F G H Z Y X Y A M N O P ... (no locality)

B B E F G H C C E F G H F H C C ... (with locality)Figure 3: Traces of invocation targets from a particular object.invocation locality in concurrent object-oriented programs. Section 3 describes a variety ofstatic analysis techniques for identifying object relationships at compile-time. The statusof a prototype implementation of the grain-size tuning system is detailed in Section 4.Finally, Sections 5 and 6 describe some related work and summarize the paper.2 Quantitative Studies of Invocation LocalityWe de�ne invocation locality as the tendency for tasks active at an object A to invoke tasksat objects on which they have recently invoked tasks. The objects on which invocationstake place due to tasks of object A are referred to as the neighbors of object A. In essence,invocation locality is temporal locality in the targets of invocations from a particular object.For example, the invocation traces shown in Figure 3 illustrate invocation traces with andwithout locality.Invocation locality is critical for reducing invocation overhead. With locality, it is pos-sible to specialize common invocation sequences, reducing overhead. There are a numberof reasons to expect invocation locality: static hierarchies, data locality, �xed or slowlyvarying interconnections, and at worst, locality arising from the limited quantity of state anobject can address. This section details the results of our quantitative studies of invocationlocality, characterizing the locality present in typical object-oriented applications.The studies cover a collection of concurrent object-oriented programming systems andprograms.3 The invocation patterns in the programs were traced by recording the invokingobject, the invocation target, and the message type involved, for each invocation-returnsequence. The traces were �rst analyzed to obtain a per-object view of the locality. Invo-cations originating from the object are categorized according to the invocation target, andthe neighbors of the object are ordered on the basis of the cumulative number of invoca-tions, identifying the most preferred neighbors (frequently communicated with). Summingthe invocations to the preferred neighbors for each object, and normalizing by the num-3We have examined CST [12], CA [8], ABCL [18], POOL [3], Rosette [16], and Presto [4] programs.

ber of invocations, yields the overall invocation locality over the program. This aggregatemeasure of communication to preferred neighbors approximates the reduction in commu-nication which can be obtained by specializing the invocation sequence between an objectand its preferred neighbors.The results of the invocation locality studies are presented in Figure 4. This data is froma wide range of concurrent object-oriented programs written by a variety of programmers.Results of invocation locality for programs in the other systems are not presented dueto either a lack of available large programs (POOL, Rosette). For each application, thecorresponding row in the table lists the total number of messages in the application, andthe fraction of this number that is observed in communications to preferred neighboringobjects.We observe from Figure 4 that signi�cant invocation locality is present in all the ap-plications. For example, the statistics for the ABCL program, nbody I (a tree-code forthe n-body interaction problem), show that about half the messages in the system can beeliminated if it were possible to co-locate an object with its �rst two preferred neighbors.Co-locating objects has the e�ect of eliminating an remote message send which is the dom-inant cost in any invocation sequence. From the Figure, it can be seen that a reductionof 20 � 40% in the number of messages is reliably possible for all the applications, just byco-locating an object with its most preferred neighbor.4 This improvement can be as highas 70% and is typically in the range of 50% of the total number of messages.The number of messages to preferred neighbors can be translated into an equivalentreduction in invocation overhead under the assumption of optimal pairings of objects;however, such pairings may not be realizable. However, given that the above statistics arefor a statically determined preferred neighbor of an object (and not the set of preferredneighbors over an object's lifetime), we are optimistic that this observed invocation localitycan be translated into signi�cant reductions in invocation and message-passing overheadfor object-oriented programming systems.3 Static AnalysisOur analysis techniques must identify safe invocation relations to optimize since grain-sizetransformations must preserve program semantics. Due to the known di�culty of data-ow and aliasing analysis in the presence of pointers [17, 13], the static analysis techniques4This number is conservative for CA programs in general because the use of aggregates and theirrandomized interface dissipates invocation locality. Locality can be enhanced by reducing the randomnessof the interface.

Invocation Locality in ABCL:Application # msgs % of msgs to ith neighbor1 2 3 restnbody I 273,157 0.29 0.20 0.15 0.35nbody B 463,722 0.30 0.21 0.15 0.33parser 1,610 0.70 0.06 0.05 0.20event sim. 94,965 0.54 0.20 0.17 0.09
1 2 3 4 5 other

INVOCATION LOCALITY IN ABCL PROGRAMS

0.2

0.4

0.6

0.8

1

event sim.

parser
nbody_B

nbody_I

Invocation Locality in CST:Application # msgs % of msgs to ith neighbor1 2 3 restcircuit sim. 14,909 0.51 0.33 0.06 0.16nqueens 68,887 0.23 0.22 0.12 0.43rangesum 6,003 0.33 0.33 0.08 0.15
1 2 3 4 5 other

INVOCATION LOCALITY IN CST PROGRAMS

0.2

0.4

0.6

0.8

1

rangesum

nqueens

circuit sim.

Invocation Locality in CA:Application # msgs % of msgs to ith neighbor1 2 3 restlogic sim. 219,788 0.42 0.26 0.13 0.19multigrid 582,913 0.33 0.19 0.10 0.38pcbrouter 116,883 0.26 0.10 0.06 0.59
1 2 3 4 5 other

INVOCATION LOCALITY IN CA PROGRAMS

0.2

0.4

0.6

0.8

1

pcbrouter

multigrid

logic sim.

Figure 4: Invocation Locality in Object-Oriented Programs.

described here exploit the structured access and control-ow information available in con-current object-oriented languages. Our approach focuses on identifying several commoncompositional structures for objects. If these structures can be identi�ed, execution re-lating to each part can often be co-located or merged together, increasing the e�ectivegrain size. Some of the most promising opportunities for optimization are present withstatic object relations and recursive data structures. We discuss specialized analysis andtransformation techniques for these cases which exploit the object-oriented expression ofthe program.3.1 Static Object RelationsWhen static relationships are present between objects in some part of the computation,transformations can be applied at compile-time to increase the execution grain-size. Ouranalysis focuses on �nding static relationships between an object and one of its statevariables which are initiated at object-creation time. We limit our analysis to situationswhere the state variable is assigned an object in the initializer of the parent class. Twocases exist: (i) the child (state variable) object is explicitly created in the initializer of theparent class, and (ii) it is created outside the initializer of the parent class and a referenceis passed into the initializer of the parent class.To simplify the discussion, we de�ne the following terminology:write-once variable: An object state variable is write-once if there exists only oneassignment to that state variable over the entire execution of a program.internal variable: An object state variable is internal to a class if no statement in anyof the methods exports any references to the state of the variable outside the classmethods. Thus, given the statement,result = var! meth1(: : :)all references to the state variable var must satisfy one of the following constraints:� meth1 does not return any reference to the state of var whenever meth1 returnsa result.� meth1 returns a reference to the state of var, and result is a local state variableof the object which is internal to var.external variable: An object state variable that is not internal.

3.1.1 Created in the InitializerThe code fragment shown below illustrates subcases where static relations can be identi�edand optimized. We adopt a C++-like syntax.class A {...; field b; ...initMeth(...) {:b = new B(...);:}Meth1(...); Meth2(...); ...; MethN(...);}Write-Once and Internal: If b is a write-once and internal variable, there exists a staticobject relation between the parent object of class A and the child object b. Note thatneither global control-ow nor data-ow information is required since local control-owinformation in the initialization code allows us to determine that the �eld b is assignedwith a reference to a newly created object, and a class-wide analysis of all the methods forA allows us to determine that the relation is a static one. Co-locating b with the parentobject of class A enables replacing all remote invocations from class A methods to class Bmethods with local invocations (i.e., ordinary procedure calls).Write-Once and External: If b is a write-once and external variable, there exists a staticobject relation between the parent object of class A and the child object b. Co-locating bwith the parent object of class A reduces invocation overhead between the pair; however,this may not translate to an overall improvement in the run-time overhead since referencesto b are being exported.Write-Many and Internal: If b is a write-many and internal variable, the �eld b may bewritten to many times, and only a temporary static relationship exists between the parentand child objects. Although the child object is not present for the entire lifetime of theparent object, co-locating the parent and child objects for the duration of the child object'slifetime results in a reduction of remote invocations.3.1.2 Created Outside the InitializerIn the code fragment shown below, an object of class B is created externally and thenpassed in as a parameter to the initializer for class A. This type of programming idiom is

common in the use of objects as polymorphic containers such as lists and sets and createsstatic relationships as shown in Figure 5.outer_method(...) { class A {: ...; field b ; ...c = new B;f = new A(..., c, ...); initMeth(..., d, ...) {: :} b = d;:}Meth1(...); Meth2(...); ..., methN(...);}Two subcases exist:Private: If outer method() does not use c except as shown, then the child object of classB is e�ectively private to class A. Thus, the creation of the child object of class B can bepushed inside the initializer for class A. Because the container object of class A may beused for several di�erent types, it must be type-split[7], and new specialized versions of thecontainer (parent) class code must be created. As a result, each type-split version of thecontainer (parent) class becomes a possible site for the optimizations discussed in Section3.1.1.Shared: If (i) outer method() has other references to c, or (ii) c is a state variable forthe class containing outer method(), and c is referenced in the other methods, then itscreation cannot be pushed into the initializer code for class A. However, the parent class Acan still be type-split, and all remote invocations to the child object can be replaced withlocal invocations.
...
t0 = new triangle;
t1 = new container(t0);
...

...
t0 = new circle;
t1 = new container(t0);
...Figure 5: A polymorphic container, used at two points in a program. For any particularobject, it contains a reference to only one object type.

t = type of current classF = ffields for the classgC = fcode bodies of the classgR = frecursive fieldsgE = fcode bodies withextension callsgType Inferencefor each class dobased on the initializationcode and other assignments,compute the approximatetypes of all fields.
Traversal DirectionsR = f gfor each f in F dofor each c in C doif c contains a recursivecall on fthen insert(f,R)endendExtension Callsfor each c in C doif c contains an allocation of tthen insert(c,E)endFigure 6: Finding Recursive Data Structures3.2 Recursive Data StructuresExploiting class-level structure in object-oriented programs allows us to identify recur-sive data structures such as lists and trees[10] and transform their grain size. Typicalimplementations of recursive data structures in Actor languages localize the interestingcontrol-ow information in the methods for one class. Consequently, we can analyze andoptimize recursive data structures by the following steps: (i) examine the object code toidentify recursive data structures, (ii) identify recursive axes which are traversed, (iii)identify allocation and extension points in the code, (iv) use the information to choose arepresentation which merges (one or more) objects along a traversal direction, yielding alarger grain size and �nally, (v) transform the code to reect the new representation. Anoutline of this analysis is sketched in Figure 6.For example, in a set implementation based on a list of pairs, the code will contain thetraversal direction, extension, and truncation operations on the list which can be identi�edby a class-wide analysis. Repeated transformation by grouping objects along a traversaldirection gives rapid increase in grain size. The program may be transformed along severalrecursive axes simultaneously when there are multiple recursive �elds, as in a binary tree.In Figure 7, the e�ects of transforming a list and a binary tree are illustrated. The binarytree has been transformed twice along the left-child axis. Subsequent transforming alongthe right child axis would merge each macro-object with two others.Program Transformation: After identifying the recursive axes and the degrees of trans-

Figure 7: The basic and transformed representations of a recursive list and a binary tree.Modi�cations to the structures can be handled by preserved pointers.formation, we must transform the code to reect these decisions. The transformation stepsare (i) color the object instances co-located in the new representation, and (ii) specializemethod code for each color by type-splitting.Object grouping can be achieved by merging the allocation points and producing place-dependent code for each member. The increase in code size is, in general, moderated bythe fact that all internal group members reuse the same code. Thus, a transformed listwould require two code versions: one for the internal objects in a group, and one for thelast one.4 Prototype Implementation and MeasurementsThis section describes the implementation of a prototype of the grain-size tuning system,and the results of some initial experiments with it. The grain-size tuning system is basedon a generic intermediate format which can be used with a variety of concurrent object-oriented languages.4.1 Expressing LocalityThe relative location of objects must be determined to deal with locality issues at compiletime. In addition, to optimize locality, it must be possible to change the relative locationof objects. Traditional approaches [11] de�ne regular mappings from the index space ofarrays to the set of memories. These direct mappings fully de�ne the data placement inthe machine and can be exploited to specialize code to that particular mapping. Directmappings are inappropriate for �ne-grained object systems because they they provide no

control over the relative location of objects and leave the run-time system little exibility.So, instead of using a system which speci�es object placement precisely, we use a systemwhich constrains the placement of objects to be co-located. A co-location constraint spec-i�es that both the objects will be on the same computing node (i.e. local to each other).Co-location constraints produce a two-level locality model: objects that are guaranteed tobe local and others that are not; the distinction about communication being required forremote objects is captured in the model. In addition, using a system of relative placementconstraints also leaves the run-time system free to place and move objects.Compile-time determination of co-location constraints (as happens with the transfor-mations in Section 3) allows the compiler to optimize interactions between the objects,using cheaper access mechanisms.An Example: The pseudo-code fragments below show the optimization of a static objectrelation. In this case, an object of class A is determined to have a static reference to anobject of classB. In the code for the initial method in class A, the original and transformedcode are as shown:BEFORE (SEND-MSG ``new'' <dest> <size> ``B'' ``random'' () <args*>)(MOVE (IVAR 0) <dest>)AFTER (SEND-MSG ``new'' <dest> <size> ``B'' ``co-locate'' ``self'' <args*>)(MOVE (IVAR 0) <dest>)The �rst code segment allocates memory for an object of class B in a random loca-tion, initializes it, and then assigns its reference to instance variable 0, (IVAR 0). The``random'' annotation causes arbitrary placement of the object. The transformed code-fragment constrains the placement to be the same as that of the invoking object by using a``co-locate'' ``self'' annotation. To exploit this co-location, the compiler specializesall invocations on (IVAR 0) to be of an inexpensive, local variety. Local invocations canthen be compiled as ordinary procedure calls; no message passing is required.4.2 Implementation and Performance ResultsOur prototype compiler implements the analysis and transformation of static object rela-tions described in Section 3.1. We use two simple programs and two application bench-marks written in Concurrent Aggregates to examine the performance of our grain-sizetuning system.� Slope Finder Program to determine slopes of lines constructed from pairs of points.

� Tree Sum Program to sum leaf values in a tree of objects.� Logic Simulator An event-driven logic simulation of a static object network managedthrough a concurrent priority queue.� Printed Circuit Board Router Concurrent A� search to route nets around rectangularobstacles on a printed circuit board.The improvement resulting from transforming a remote invocation to a local one de-pends on a wide variety of machine and system speci�c parameters.5 Therefore, we charac-terize the grain-size bene�ts by showing how often we can apply our transformations andwhat fraction of the full-cost, remote invocations can be removed from a program. Table 1shows the number of static optimization points found, the number of messages sent in theunoptimized and optimized cases, the fraction of communication tra�c eliminated, and theestimated increase in grain-size for each program. The increase in grain-size is estimatedbased on the reduction in communication tra�c.6Program Optimized Msgs Sent Msgs Sent Reduction Grain-SizeName Points in Unopt. in Opt. in Comm. IncreaseSlope Finder 2 73 41 43.84% 1.78Tree Sum 5 1164 916 21.31% 1.27Logic Simulator 28 521,093 475,405 8.77% 1.10PC Board Router 1 89,554 80,495 10.12% 1.11Table 1: Performance of the Grain-Size Tuning System.The grain-size tuning system �nds static object relationships in all the programs. Inthe slope �nder program, each line object uses two point objects both of which have astatic relationship with the line. The tree sum program has static links for communicationbetween a node and its parent and child nodes. Co-locating the objects along the verticaldimension of the tree reduces the cost of this communication. In the logic simulatorprogram, remote invocations between the gates and the circuit nodes can be replacedwith a local version. While the communication reduction in this case is modest, the largenumber of optimization points found in the logic simulator program encourages us thatstatic optimizations may turn out to be a signi�cant contributor to our grain-size tuningsystem. In the printed circuit board router program, each node on the board grid has a�xed relationship to its corresponding (x,y) point. Thus, remote invocations from a nodeto a point can be replaced with local invocations.5The cost of a remote invocation can vary from in several milliseconds in systems running OSF/1 to afew microseconds in the highly tuned J-machine.6If the amount of work is conserved, the grain size can be found by dividing the work by the numberof messages.

5 Related WorkUnlike the approaches for specializing invocations in sequential object-oriented languageswhich reduce the cost of type-dependent polymorphic dispatches[9, 7], our approach spe-cializes invocations so as to reduce communication and overhead due to message passing.Two bodies of work, both of which simultaneously optimize data placement and exe-cution grain size, are similar to ours. First, the compiler for the MasPar MP-1[6] lumpstogether operations on a number of array elements and allocates these chunks of work toindividual processors. Second, e�cient execution of concurrent logic languages has beenobtained by grouping successive elements of a stream[14]. The �rst approach is typicalto data-parallel programming languages, while our approach and the stream approach canwork with more general heterogenous data structures. Grain-size tuning is an issue even inshared memory machines[1] since large grains are required to achieve reasonable executione�ciency.6 SummaryOur work focuses on making the execution of �ne-grained concurrent object-oriented pro-grams e�cient. The key to our approach is to transform the execution grain size of pro-grams to match the underlying hardware.Invocation traces of concurrent object-oriented programs show the existence of signi�-cant invocation locality. Large improvements in invocation and message-passing overheadare possible by proper exploitation of the observed locality.Global control ow and data ow analysis is quite di�cult in concurrent object-orientedlanguages because of the pervasive use of type-dependent dispatch and dynamic storageallocation. Without this information, we are forced to rely on program structure. We de-scribe several analyses that identify static object relations and candidates for optimizationby exploiting initialization information and the class structure of object-oriented programs.Additional transformations exploit the nature of recursive data structures.The work described in this paper is part of the Concert project whose goal is to achievee�cient, portable, and scalable execution of concurrent object-oriented languages via grain-size tuning techniques. Our current system supports execution of Concurrent Aggregatesprograms on both a uniprocessor simulation environment and a parallel implementationon the CM-5. Current e�orts focus on developing better techniques for type-inference,aliasing analysis and the dynamic detection of invocation locality.

References[1] A. Agarwal, B. Lim, D. Kranz, and J. Kubiatowicz. April: A processor architecture formultiprocessing. In International Symposium on Computer Architecture, 1990.[2] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press,Cambridge, MA, 1986.[3] P. America. Pool-T: A parallel object-oriented language. In A. Yonezawa and M. Tokoro,editors, Object-Oriented Concurrent Programming, pages 199{220. MIT Press, 1987.[4] B. Bershad, E. Lazowska, and H. Levy. Presto: A system for object-oriented parallel pro-gramming. Software { Practice and Experience, 18(8), 1988.[5] A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter. Distribution and abstract types inEmerald. IEEE Transactions on Software Engineering, SE-13(1):65{76, January 1987.[6] T. Blank. The Maspar MP-1 architecture. In Proceedings of COMPCON, pages 20{4. IEEE,1990.[7] C. Chambers and D. Ungar. Iterative type analysis and extended message splitting. InProceedings of the SIGPLAN Conference on Programming Language Design and Implemen-tation, pages 150{60, 1990.[8] A. A. Chien and W. J. Dally. Concurrent Aggregates (CA). In Proceedings of SecondSymposium on Principles and Practice of Parallel Programming. ACM, March 1990.[9] L. P. Deutsch and A. M. Schi�man. E�cient implementation of the Smalltalk-80 system. InEleventh Symposium on Principles of Programming Languages, pages 297{302. ACM, 1984.[10] L. Hendren and A. Nicolau. Parallelizing programs with recursive data structures. IEEETransactions on Parallel and Distributed Computing, 1(1):35{47, 1990.[11] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiler Optimizations for Fortran D onMIMD Distributed-Memory Machines. In Supercomputing '91, pages 86{100, Nov. 1991.[12] W. Horwat, A. Chien, and W. Dally. Experience with CST: Programming and implemen-tation. In Proceedings of the SIGPLAN Conference on Programming Language Design andImplementation, pages 101{9. ACM SIGPLAN, ACM Press, 1989.[13] E. Myers. A precise interprocedural data ow algorithm. In Seventh Symposium on Principlesof Programming Languages, pages 219{30, 1980.[14] V. Saraswat, K. Kahn, and J. Levy. Janus: A step towards distributed constraint program-ming. In Proceedings of the North American Conference on Logic Programming, Austin,Texas, October 1990.[15] K. Smith and R. Smith II. The Experimental Systems Project at the Microelectronics andComputer Technology Corporation. In Proceedings of the Fourth Conference on HypercubeComputers, 1989.[16] C. Tomlinson, M. Scheevel, and V. Singh. Report on Rosette 1.0. MCC Internal Report,Object-Based Concurrent Systems Project, December 1989.[17] W. E. Weihl. Interprocedural data ow analysis in the presence of pointers, procedure vari-ables, and label variables. In Seventh Symposium on Principles of Programming Languages,pages 83{94, 1980.[18] A. Yonezawa, editor. ABCL: An Object-Oriented Concurrent System. MIT Press, 1990.ISBN 0-262-24029-7.

