
ICC++ Language De�nitionAndrew A. Chien and Uday S. Reddy1May 25, 1995PrefaceICC++ is a new dialect of C++ designed to support the writing of both sequential and parallel programs.Because of the signi�cant investment of programmers and vendors in language skills and tools in C++, oneof the major goals is to minimize the di�erences with C++. Consequently, this document focuses on theessential elements of ICC++ and how they di�er from C++. We describe the concurrency model, objectcollections (an extension of arrays), and �nally discuss the programming restrictions which are recommendedto increase the e�ectiveness of program optimization. In general, the reader should assume that C++ featuresnot discussed are incorporated.This description is not a complete language manual; it is intended to convey the essence of the languagedesign. Some motivation for the design of language features is included but are necessarily terse. For a morecomplete description, see the \ICC++ Language Reference Manual."1 ConcurrencyTo introduce concurrency, the programmer relaxes the sequential order of a program, specifying apartial order between statements. In ICC++, partial orders are speci�ed using conc blocks.2 Thede�nition of conc preserves a sequential view of local variables, and expresses concurrency withrespect to shared objects. Syntax: conc f S1; ... ; Sn; gDe�nes a partial order � on the statements:Si � Sj () i < j and Si) Sjwhere Si)Sj indicates that statement Sj is dependent on Si. Statements in a conc block areexecuted such that if Si)Sj , then Si will be executed completely before Sj is begun. Sj isdependent on Si if1. any identi�er which appears in both Si and Sj is assigned in one of them,1The authors gratefully acknowledge the contribution of many others to the language design, notably John Plevyak,Vijay Karamcheti, and Julian Dolby. Others who have been involved include Professors Sam Kamin, Sanjay Kale,and Prith Banerjee. In addition, Rob Hasker, Howard Huang, Steven Parkes, and T.K. Lakshman have contributedto the design e�ort. Any
aws in this document or language design are solely the responsibility of the authors.2Alternatively the conc declarations can be viewed as pragmas on the blocks, directing the compiler to allow thesestatements to be reordered or executed in parallel subject to the following rules.1

2. if Si contains a jump statement.The �rst rule ensures that basic data dependences on local variables are enforced. It also allowsobject operations (via pointers or refs) such as a->b(); a->c(); to execute concurrently. How thisconcurrency is controlled is discussed in Section 2. Jump statements (as de�ned in The AnnotatedC++ Reference Manual) in the second rule gives traditional C++ control
ow operations such ascontinue and break natural semantics, serializing the conc block if they are executed. A concblock exits after all statements within it have returned. As in C++, nested blocks are treated asstatements.2 Objects and ConcurrencyWhile the introduction of parallelism is a control structure issue, control of concurrency is a criticalissue for encapsulation. In order to support sharing patterns required by dynamic and referencebased data structures, ICC++ extends C++ objects with implicit concurrency control. Concurrentobjects in ICC++ are de�ned and created in a fashion similar to C++:class Set {int member_count;integral Element my_elements[];void insert(Thing);};Set aSet;where Element is a previously-de�ned class. The code above de�nes a class with an int �eld,an Element array �eld, and an insert operation, then creates an instance of the class, aSet.The integral annotation indicates that my elements[] should be considered part of the object'sstate for the purposes of concurrency control (see below). Member variables are read and writtenvia accessor functions (de�ned automatically), so member variable access also fall under this con-currency control. For example, for an instance variable a of type B, there are accessor functionsa(void) and void operator.a=(B). Declaring member variables as private makes these acces-sor functions private. At present accessors cannot be overridden, but this may change in futurelanguage revisions. ICC++ calls constructors as in C++, but destructors are more complex. Forauto variables, destructors are called when the variable goes out of scope. But, because ICC++provides automatic storage management, destructors for all other objects are called only when anobject is garbage collected (i.e. delete may not cause the destructor to be called immediately).2.1 Concurrency ControlICC++ constrains the execution of method invocations on an object so that intermediate statescreated within a member function are not visible. Such method invocations are executed concur-rently but in such a way that the e�ect on the member variables is as if the methods operated oneafter another. The integral declaration extends this notion of consistency to include the statedeclared integral. For example, if two insert operations on a Set updated the my elements[]array, those updates would not be interleaved. Syntactively recursive calls (i.e. calls on this) tomember functions are allowed and may expose intermediate states. However, such situations areroutinely managed by programmers in sequential programs, so no additional language support isprovided. friend functions are considered as members of all the objects for which they are friends,2

and thus can be used to procedurally compose operations on several objects into a single consistentoperation. In a distributed memory setting, such multi-object operations can be expensive, so theyshould be used carefully.2.2 Concurrency GuaranteesIn a concurrent language, a programmer must be able to reason about concurrency to ensureprogress. ICC++ guarantees that all member function invocations for which the order of executionexplicitly cannot a�ect �nal object state (determined by trivial examination of the methods) areguaranteed to execute in parallel.3 Speci�c examples for which concurrency is guaranteed includetwo methods which share no member variables and those that employ read-only sharing of membervariables. For syntactically recursive calls, order independence is based on textual inclusion ofrecursively called methods. Note that these concurrency control rules apply to uses of objectspointed to by integral member variables as well.3 CollectionsCollections are an important organizing structure for parallel programs because they form a con-venient and natural basis for expression of parallelism as well as the distribution of data. ICC++extends C++ arrays to produce collections. Collections are objects that encapsulate a set of el-ements (collection elements), and additional collection state. This integration enables arrays tobe manipulated as objects (allowing collection member functions, for example). Because elementsare aware that they are part of a collection, they can help implement its composite behavior. InICC++, object collections are de�ned as are standard classes, but with a [] appended to the endof a class name.4Member variables and member functions can be de�ned for the element or collection. Collectionmembers are explicitly quali�ed by the collection type. Each collection element has a private setof the element members, and the collection members form a separate object which is shared acrossall elements. For example:class Counter[] {int count;int Counter[]::total;int thecount(void) { return count; }int Counter[]::thetotal(void) { return total; }};Counter mycounter[10];De�nes a collection type Counter[] and an element type Counter, exposing distinct namesfor the element and collection types. The elements each have one member variable count andthere is one collection member variable total. There are also two member functions: a collectionmember function, thetotal(), and an element member function, thecount(). Notice that count,an element member variable is scoped within element member function thecount(), and total is3Write races that deposit the same value are a tricky case, but ICC++ does not guarantee concurrency for suchcases.4For compatibility, one can still de�ne array-style collections implicitly. However, if additional collection memberfunctions or variables are required, an explicit declaration must be used.3

scoped with the collection member function thetotal(). However, element member variables arenot available in collection member functions, nor are collection member variables available withinelement member functions. The natural consequence of this scoping rule and the serialization modelfor objects is that element member functions can execute on distinct elements concurrently, andfurthermore, element and collection member functions can also execute concurrently.3.1 Prede�ned Member FunctionsThe member functions below are de�ned on all collections and their elements. For nested collections(collections of collections), both sets of methods are de�ned for the types other than the outermostcollection and innermost element.Collection member functions:[] The subscripting operator indexes elements of the collection. When appliedwith no argument, an arbitrary element in the collection is returned.size Returns the number of elements in the collection.nearest Returns the nearest element in the collectionElement member functions:elementtype[]::this In an object of type elementtype, returnsa pointer to the enclosing collection.index Returns the element's index within the collection.3.2 DerivationCollections can inherit from standard classes as well as from other collections. Nested collectionscan inherit from nested collections of equal or lesser order. For example, a collection can inheritfrom an ordinary C++ class. Then, the element type is a subclass of the standard class. As shownin Figure 1, the DistAccumulator[] collection is derived from the Accumulator class, and theDistAverage[] collection is derived from the DistAccumulator[] collection type.3.3 TemplatesTemplates can be exploited to reuse collection structure, much as they are used with ordinaryclasses. The example below de�nes a numerical collection with a range of arithmetic functions.The last two lines are collection declarations, and the lattermost assumes that a complex class hasbeen de�ned elsewhere. Of course, more complex collections can also be de�ned.template <class T> class Numerical[] : public T {Numerical[]::global_sum();Numerical[]::min();};Numerical<float> X[50];Numerical<complex> Y[50];3.4 Compatibility with ArraysCollections in ICC++ support all of the functionality of built-in C++ arrays. They can be implicitlyor explicitly de�ned, indexed, and passed around. As discussed in Section 4, they cannot be4

class Accumulator {int total;int sum(void) { return total; }int accumulate(int i) { return (total += i);}};class DistAccumulator[] : public Accumulator {int DistAccumulator[]::sum(void) {int subtotal = 0;for(int i = 0; i < size; i++)subtotal += (*this)[i].sum();return subtotal;}int DistAccumulator[]::accumulate(int i) {return (*this)[].accumulate(i); // into an arbitrary element}};class DistAverage[] : public DistAccumulator[] {int count;int collect(int i) {accumulate(i); // Element method, accumulates valuecount++; // count the nr of items}int DistAverage[]::average(void) {int count = 0;conc for(int i = 0; i < size; i++)count += (*this)[i].count;return sum()/count;}int DistAverage[]::collect(int i) {(*this)[].collect(i);}}; Figure 1: Derivation with Collections
5

represented by pointers (must be declared as collections), and consequently, pointer arithmetic isnot a meaningful operation, array subscripting must be used instead.3.5 Concurrent LoopsEach of the C++ looping constructs can be modi�ed by conc: conc for, conc while, and concdo while. Because looping constructs form a natural basis for expressing parallelism, ICC++employs a simple semantics which exposes cross-iteration concurrency.conc for(a;b;c){d;}conc while (b){d;c;}conc do {d;c;}while b; Figure 2: Concurrent looping constructs.For each cases, adding conc indicates a parallel loop. Loop carried dependences are respected forscalar variables; others { array dependences and those through pointer structures { must be enforcedexplicitly by the programmer. Generally, loops with such dependences will be written as serial loops.Subject to the minimal serialization required to enforce the scalar inter-iteration dependences, theloop iterations may all execute concurrently. However, there are no concurrency guarantees, asequential execution must be acceptable. As in sequential loops in C++, continue and breakskip the remainder of the iteration in which they are executed and exit the loop respectively. Thisfeature allows parallel loops with more complex control
ow to be parallelized optimistically.4 Restrictions for Program OptimizationICC++ supports much of C++, but with several restrictions to enable program analysis, opti-mization, and automatic storage management. These restrictions have the a�ect of hiding theunderlying storage model from the programmer, and are similar to those proposed by Ellis andDetlefs, but are less restrictive.5 The following C++ features are disallowed:1. Interconverting arrays and pointers2. Pointers to simple types (int,
oat, char, etc.), with the exception of those needed for inter-facing to external C libraries3. Unsafe casts4. Union types5Ellis and Detlefs, Safe E�cient Garbage Collection for C++, DEC Systems Research Center Technical Report102, July 1993. 6

Note that C++ forbids pointer arithmetic on pointers, except within the con�nes of an array,and ICC++ prohibits the use of pointers to refer to arrays, therefore pointer arithmetic is e�ectivelydisallowed. Union types should be represented via derivation.ICC++ allows casts that it can check at compile or runtime, but forbids those that are rein-terpretations of memory. In terms of the new cast syntax adopted in the C++ draft standard,this means that static cast<T> is allowed, but some of the casts will be checked at runtimeand hence may generate runtime errors. dynamic cast<T*> is permitted and checked at runtime.const cast<T> is also permitted, but reinterpret cast<T> is excluded.65 Advanced Concurrent Programming Featuresspawn s;creates a new thread, executing the statement s, and the spawn statement completes immedi-ately. s can be any ICC++ statement. Identi�ers of simple type become read-only in s, preventingunsynchronized interaction between the spawning and the spawned threads. The spawned andspawning threads are scheduled fairly.return s;The return statement is similar to that in C++ returning a value to the current function'scaller and resuming execution of that caller. If there is no return, the compiler will automaticallyinsert one if the procedure function does not use reply in any way.void reply(�); // � is the return type of the functionICC++ provides a reply function with prototype shown above for each user-de�ned function.reply returns a value to the function's caller, but does not terminate execution of the currentfunction, allowing caller/callee concurrency. Since reply is a function, a pointer to it can becaptured and passed out of the function.Reply functions can be used to delegate responsibility for producing an answer. For exam-ple, to support an explicit continuation passing style, programmers can use void functions foreach such continuation passing call, and spawn to generate concurrency. For example, spawnreply(forward call(...)) implements tail forwarding where forward call(...) executes andits return value is used as the return value of the current function.6 Performance PragmasICC++ also provides a variety of performance pragmas which allow the programmer to commu-nicate information to the compiler and to control the behavior of the runtime system. Examplesinclude map-aggregate, and new-local which provide placement control for collections and in-dividual objects respectively. local(a,b) tests the relative position of two objects. Additionalperformance pragmas are being explored for object caching and consistency, as well as for control-ling compiler speculation.6See The Design and Evolution of C++ for a detailed discussion of the new cast syntax.7

