
Iterative Flow AnalysisJohn Plevyak Andrew A. ChienDepartment of Computer Science1304 W. Spring�eld AvenueUrbana, IL 61801fjplevyak,achieng@cs.uiuc.eduAbstractControl and data ow information is vital for the optimization of high level programminglanguages. Language features such as object-orientation and �rst class functions and selectorslink data ow and control ow. For example, in an object-oriented program an object's run timetype is used to determine the function (method) executed at an invocation point via dynamicdispatch. We present an iterative analysis which derives control and data ow informationsimultaneously. This analysis adapts to the structure of the program, e�ciently deriving owinformation at a cost proportional to the precision of the information obtained. The analysisresults are directly applicable to such optimizations as static binding, inlining and unboxing.This analysis has been implemented in the Illinois Concert compiler, and we report quantitativeresults for a number of object-oriented programs.1 IntroductionControl and data ow information is vital to optimizing compilers of high level languages. It is usefulfor constant, copy and lambda propagation [31], static binding, inlining and speculative inlining [9,19], type recovery [33], safety analysis [24], customization [9], specialization [15] and cloning [18, 26]and other interprocedural optimizations [11]. In high level languages, data values can determine thecode which is executed through �rst class functions and selectors as well as dynamic dispatch, and thecode determines the data values. As a result, control and data ow must be analyzed simultaneouslyif precise information is to be obtained. The key to the precision of context sensitive ow analysisis the contour [33] representation. Contours represent the calling environments of a function; forexample 0CFA uses one contour per function while 1CFA uses one for each call site [32].Other ow analyses [20, 22] have used a �xed contour representation or adapted the representationwith respect to the values of function arguments [1]. However, shallow �xed representations canrequire excessive amounts of memory [21] and imperative update of memory locations introduce cyclesinto the ow graph which can invalidate adaptive decisions after they have been made. Moreover,An early version of some of this material appeared in the Proceedings of the 1994 Conference onObject-Oriented Programming Systems, Languages and Applications [27].1



contours representing objects or closures can also bene�t from representation adaption based on thevalues of their variables [27].We present an iterative combined control and data ow analysis (IFA) which adapts the contourrepresentation for both functions and objects to the program to derive information at a cost propor-tional to the amount of information obtained. The analysis constructs the ow graph locally fromdata ow and interprocedurally by abstract interpretation of call sites. We begin with a shallowanalysis (similar to 0CFA) to produce a conservative global ow graph, then extend the contour rep-resentation where additional precision is required, repeating this process until the desired precisionis reached.We have implemented this analysis in the Illinois Concert system and applied it to a number ofobject-oriented programs. Our results indicate that precise information can be obtained for manycommon program structures including map functions, polymorphic containers and factory objects.Moreover, this additional information can be used directly for such optimizations as static binding,inlining, unboxing and data representation optimizations. We demonstrate this by showing thatthrough IFA and cloning [26] approximately 99% of the methods in our test cases can be staticallybound.This paper is organized as follows. Section 2 describes basic ow analysis and our notation.Section 3 describes the language and the internal representation to which it is converted for analysis.The contour representation and basic analysis is presented in Section 4 and the algorithm for ex-tending precision in Section 5. Aspects of the algorithm are discussed in Section 6. Section 7 reportsour empirical results. Finally, we cover related work in Section 8, and conclude in Section 9.2 BackgroundContext sensitive ow analysis of high level programming languages is a control and data owanalysis which combines elements of abstract interpretation [12] and data ow analysis [16]. E�cientimplementations build the ow graph by abstract interpretation and update the values by propagationalong the edges of the ow graph. Such implementations have been called constraint-based [23] sincethe ow graph resembles a constraint network, where the edges are constraints and the nodes arevariables. For example, a ow analysis to determine the set of classes whose instances a variablemight take on generates ow edges when an object of class C is created indicating that the result mustbe in the set containing at least C, fCg. Using [[v]] to denote the set of classes for variable v and Nvand NC to denote the ow graph nodes for v and C respectively, the constraints and correspondingow edges for creation and assignment would be:program text constraint ow edgex = new C [[x]] � fCg NC �! Nxx = y [[x]] � [[y]] Ny �! NxWhen a call site is encountered during construction of the ow graph, the data ow values at thecall site are used to determine the functions which may be invoked based on the dispatch semanticsof the language. For example, in a single-dispatch object-oriented language, the methods (functions)are determined by the data ow values of the selector and receiver (target) object arguments. Theow graph computes a conservative approximation to these reaching problems. For example, given2



a call site with a selector s with reaching selectors S and a reciever o with reaching classes C, owedges are constructed for all methods in the cross product S � C (allowing for inheritance).Since abstract interpretation of the call sites (construction of the ow graph) uses the data owvalues (the current solution) to determine the functions called [22], the data ow values are updatedconcurrently with ow graph construction. The meet function for the data ow values is union andthe transfer functions are derived by abstract interpretation. For instance, the transfer function forthe set of class names Name for the ow graph node representing the target object o at a call sitewith possible functions F � S � C would be:Class(o)out = Class(o)in \ fc j (x; c) 2 FgLikewise, constants, primitive functions and tests for equivalence with singleton objects (like NIL)produce transfer functions which a�ect the data ow values at nodes.The context sensitivity of ow analysis follows from the contour representation [33, 20]. Inthe theory of ow analysis, the language to be analyzed is �rst given an exact semantics whichis essentially an interpreter. The contours for such a semantics represent the call frames, includecall path and determine variable bindings. For analysis, cost and precision are balanced by usingabstract contours which represent some set of exact contours. A contour representation can thereforevary from coarse (one contour per function) to �ne (one contour per call frame). Since unique owgraph nodes for local variables are created for each contour, a separate (context sensitive) solutionis obtained for the calling contexts they represent. The selection of e�cient contour representationsis the subject of this paper.3 Languagede�nitions (define name ((variable j (variable name+))*) expression*)binding constructs (let ((variable expression0)*) expression1*)(let* ((variable expression0)*) expression1*)conditionals (if expression0 expression1 expression2)(while expression0 expression1*)assignment (set! expression0 expression1 expression2)variables self, identi�erconstants Integer,1,2,3,... =,>,<,+,�,...Table 1: Language SyntaxThe language we will use is a simple object-oriented language with de�nitions, binding constructs,conditionals, assignment, variables and constants. The syntax of this language is given in Table 1.De�nitions are used to de�ne both generic functions and classes where the list of variables representsparameters and instance variables respectively. The name de�ned by a de�nition is available globallyand de�nitions sharing the same name form a single generic function. The run time type of thearguments is matched with the names of the parameter to determine which version is executed. Thevariable self is treated specially, indicating the object de�ned or, if used as an argument, the objectwhose instance variables are scoped. For example, a simple class A with accessor function get-a andput-a for its instance variable a can be de�ned as:3



(define A (a)(define get-a ((self A)) a)(define put-a ((self A) (value Integer)) (set! a value))self)Similarly, a generic function which returns double the value of an integer or of the a instancevariable of an object of class A can be de�ned as:(define double ((a A)) (+ (get-a a) (get-a a)))(define double ((a Integer)) (+ a a))Before analysis the simple language is converted to a variant of Static Single Assignment (SSA)form [13, 34]. SSA form inserts �-Nodes, essentially assignments with multiple right hand sides wherecontrol ow merges, for example after a conditional, and renames variables so that each variableappears on the left hand side of only one assignment. In addition to simplifying the constructionof the ow graph, this renaming prevents interference between transfer function. For example, onthe left side of Figure 1 the variable a variously holds instances of class A and Integer, to whichare applied get-a and + respectively. The transfer function requires that the type of a contain onlythose classes to which both get-a and + can be applied. Since there are no such classes, the analysiswill incorrectly report that no type can be found for a. SSA conversion prevents this problem bycreating new variables for each use of a on the right side of Figure 1. Similarly, instance variablesare converted to SSA as aliasing information permits [29], or moved to temporaries before use toprevent interference.(set! a (new A))(get-a a)(set! a 1)(set! a (+ a a)) (set! a1 (new A))(get-a a1)(set! a2 1)(set! a3 (+ a2 a2))Figure 1: Code before (left) and after (right) SSA ConversionHowever, SSA conversion alone is not su�cient since it handles conicts only for variables whichare assigned. A more common problem is presented by the use (reading) of a variable under di�erentconditions. In order to prevent these conicts we introduce  -Nodes which, analogous to �-Nodesrename variables which are read along di�erent control ow paths. For example, if two di�erentfunctions (get-a and +) are applied to a variable in the two branches of a conditional (see Figure 2)the transfer function for the ow node corresponding to variable a would constrain the type of a tothose classes supported by both functions.(if ...(get-a a)(... (+ a a))) (a1,a2) =  (a)(if ...(get-a a1)(... (+ a2 a2)))a3 = �(a1,a2)Figure 2: Code before (left) and after (right) SSU ConversionThe resulting program representation is called Static Single Use (SSU) form [25]. It is similar to[4] and is computed through a simple extension of the SSA conversion algorithm [13, 34].4



4 AnalysisIterative Flow Analysis (IFA) consists of two phases: analysis and incremental precision extension(discussed in Section 5). The analysis phase constructs the ow graph, while continuously updatingthe node values. The simple language coupled with SSU form, which induces an explicit local dataow graph, greatly simpli�es the abstract semantics over other analyses [20, 35] allowing us toconcentrate on the iteration algorithm. In particular, the simple language binds all variables in thefunction or self argument's contours, preventing the capture of variables from surrounding scopes.Extension of the analysis to additional language features is discussed in Section 8.4.1 De�nitionsn 2 Node = Label �Contoure 2 Edge = Node� Nodec 2 Contour = Nv 2 V alue = P(Node)r 2 Restrict = V alue1 � :::� V alueni 2 Invoke = P(Contour) N 2 Nodes = P(Node)E 2 Edges = P(Edge)C 2 Contours = P(Contour)V 2 V alues = Node! V alueR 2 Restricts = Contour! RestrictI 2 Invokes = Node! InvokeFigure 3: The Flow GraphThe de�nition of the ow graph appears in Figure 3. Each expression in the program is given a uniqueLabel except variables which use the label of the expression which binds them for local variables,1or their de�nition for instance variables and de�nitions which use their name. Contours are uniqueidenti�ers representing abstract calling environments; we use the natural numbers N where 0 is thetop level environment. The V alue of a node is the set of nodes representing the values (constants,function names, or object contours) which reach that node. Each contour Restricts the values itsparameters can take on. The Invokes function records the abstract call graph, mapping call nodesto invoked contours.F low(n) = fm j (n;m) 2 EgBack(n) = fm j (m;n) 2 EgFunction(n) = fl j v0 2 V (n) ^ v0 = (l; c) ^ l 2 fprimitive function; functionnameggClass(n) = fl j v0 2 V (n) ^ v0 = (l; c) ^ l 2 fprimitive class; classnameggObject(n) = fc j v0 2 V (n) ^ v0 = (l; c) ^ l 2 fprimitive class; classnameggName(v) = f(l; 0) j v0 2 v ^ v0 = (l; c)gFigure 4: Functions on the Flow GraphWe de�ne two functions for moving along the edges of the ow graph: Flow and Back whichtakes a node to the set nodes in the forward and backward ow directions respectively. We also de�nefunctions to access the set of Function labels (generic function names or primitive functions), the setof Class labels (class names or primitive classes) and the set of Object values (which originate fromthe contour of self of top level functions). Finally, we use de�nitions in the top level environment to1In SSU form, local variables are assigned only once. 5



stand for the de�nitions independent their contour and access these with Name. These de�nitionsrepresent the set of all contour therefrom derived. Conceptually:f(l; 0)g = f(l; c0) j c0 2 Cg4.2 Flow Graph ConstructionConstruction of the ow graph uses a worklist of call nodes. Calls are taken from the worklist, thecalled contours are determined, and the local contribution to the ow graph is determined. Thecalled functions are drawn from the applicable versions of generic functions reaching the functionargument of the invocation. Functions are applicable when for each argument there is a reachingName which matches one of those associated (see Table 1) with the corresponding parameter. Oneor more contours are then selected for each function. In Section 5.2 we discuss selection of contoursin detail. Finally, those call sites Nodes whose arguments V alues have changed are added to theworklist.The ow graph nodes for local variables and expressions are de�ned by their label and theselected contour. The nodes for instance variables are de�ned by their label and the Object value(s)of the self argument. The ow graph edges are the SSU assignments, the ow from argumentsto parameters and from the function result to the call result. The transfer functions for parameternodes impose the dispatch constraints (Section 2). For example, values are restricted to those havingthe names associated with the parameter. The transfer functions for a contour c also restrict thevalues owing from argument ai to be V (ai) \ R(c)i, enabling the use of separate contours fordi�erent combinations of values. Since any given variable can only hold one value at one time,separate analysis is safe so long as each element of the cross product of values is represented by somecontour (the cross product rule). This is achieved in the alternative contour representation of [20]by single-value based analysis of curried functions.4.3 Imprecision and Polymorphism(define power (x y)(if (> y 0)(* x (power x (- y 1)))(one x)))(let ()(power 1 2)(power 1.0 2))Figure 5: Functional Polymorphism (define tuple (l r)(define left ((self tuple)) l)self)(let ()(left (tuple 1 2))(left (tuple 1.0 2)))Figure 6: Polymorphic ObjectsTo simplify the exposition of the iterative algorithm, we di�erentiate function imprecision from dataimprecision. Imprecisions are nodes whose values are not singleton sets. Function imprecisionsare those of nodes de�ned by the surrounding function's contour. Data imprecisions refer to nodesde�ned by object contours (instance variables). Imprecisions result from incomplete input, owinsensitivity, and (for mutable locations) temporal insensitivity. This ow analysis focuses on thesecond sort which often results from the use of polymorphism functions or objects. Intuitively, thelevel of polymorphism is the depth of the polymorphic function call path or polymorphic reference6



path (see Figures 5 and 6). Flow analyses typically produces precise results for up to a �xed levelof polymorphism; for instance, 0CFA handles no polymorphism while 1CFA [31] handles one level.Since real programs use varying levels of polymorphism in di�erent places, e�cient analyses adaptlocally to those levels. In the next section we present Iterative Flow Analysis (IFA) which usesthe results from simpler analyses at lower levels to adapt the contour representation for successiveiterations.5 Iterative Flow Analysis (IFA)Iterative Flow Analysis (IFA) uses the results of the previous iteration (starting with 0CFA) toextend the contour representation for the next iteration. Iteration is required because during analysisassignment to mutable locations (instance variables) can cause the value of nodes to change after theircontours have been selected. After each iteration, the contour representation is extended by splittingthe set of invocations associated with a contour (see Figure 3) to di�erentiate uses of the function orobject it represents. A new analysis iteration starts by clearing the values V and the edges E whichmake up the ow graph. However, the abstract call graph I which captures the local levels of contextsensitivity is preserved. In this way, the analysis adapts to the structure of the program. The resultis an e�cient allocation of analysis resources to the many levels of polymorphism in programs.5.1 SplittingSplitting divides contours, increasing the number of ow graph nodes and potentially eliminatingimprecisions from the analysis results. Splitting polymorphic functions (function splitting) dividesthe invocations associated with a function contour over a number of smaller of more speci�c contours.Splitting polymorphic objects (data splitting) divides the invocations associated with the creation ofobjects of a particular class over a number of contours representing subsets of the instances whichare used in di�erent ways.In its simplest form, splitting relies on the values of arguments, selecting a contour the values ofwhose parameters most closely match those of the arguments. The calls are processed in depth �rstfashion so the arguments have approximations of their �nal values when the contours for the call areselected. In order to minimize the number of iterations, the partial information is used to eagerly splitfunction contours. Similarly, we can eagerly split contours representing objects. However, since theselection of these contours occurs at the point where the objects are created and before the instancevariables are used, it generally is less e�ective. Eager splitting occurs as part of contour selection.5.2 Selecting ContoursWhen a call is encountered, the set of applicable functions is determined and then contours areselected. For a given target function, the transfer functions for the dispatch are applied to the valuesof the arguments to determine the values which will ow into the parameters for this call (Section 4.2).While a contour could be created for each element of the cross product of entering values (w = Qi vi),this would be expensive and, in general, prevent termination (see Section 6). Instead we selectcontours based on information from the last iteration and then eagerly split contours based on thenames of the argument values, leaving splitting based on the contour component (Object) of thevalues to be done non-eagerly. 7



The contours for a call from node n are selected in three steps. First, from the cached contoursI(n) we select those whose restriction cross productQi ri intersects w, favoring those which intersectthe smallest number of elements, and remove those elements from w. For any remaining elementsof w we select from all contours associated with the function those whose restrictions intersect w.Finally, we form subsets out of any remaining elements by applying Name to each parameter value(QiName(vi)) and create contours for each identical result with the singleton Names as restric-tions. Intuitively these contours are insensitive to particular contours reaching their parameters,but are (eagerly) di�erentiated with respect to the names of the functions or classes reaching thoseparameters.5.3 Function SplittingFunction splitting partitions contours, enabling separate information to be obtained for di�erent usesof the function. In its simplest form, we examine the values of the arguments of all the invocationsfor a particular contour, and if one of the argument's value is a strict subset of the correspondingparameter value, a new contour is created for that invocation. In practice, there may be many objectcontours for a particular class de�nition which distinguish subsets of the class's instances importantto only a fraction of functions. So instead we start from a speci�c imprecision which we wish toeliminate (e.g. where a type check or dynamic dispatch would be required) and look for the possiblecauses.Using the functions described in Figure 4 we traverse the ow graph. Starting from the point ofimprecision we look back for a set of conuences2 (in data ow terms, meets a^b where a; b 6= ; anda 6= b). Given a node n with imprecise V al (one of Function, Object or Class) we �nd the least setof conuences Conf(n; V al) which obey:Conf(n; V al) � � fn0g if 9n0 2 Back(n) ^ V al(n) 6= V al(n0); otherwiseConf(n; V al) � Conf(n0; V al) where n0 2 Back(n)The contours of argument nodes in Conf(n; V al) represent the �rst order contribution to the im-precision, and splitting them is the �rst way in which the imprecision may be eliminated. Imprecisioncan also arise from interprocedural control ow ambiguity due to secondary imprecisions in otherarguments. For example, since the result value is the meet (union) of the results of all the possiblefunctions invoked, if the set of functions reaching a call is imprecise, the result can be imprecise.Similarly, the parameters of the invoked functions might be imprecise as a result of the extraneousow edges. Lastly, imprecisions in object contours can lead to imprecise results of instance variableaccesses. We extend Conf(n; V al) to Conf 0(n; V al) to handles these cases, where i is an invocation:Conf 0(n; V al) = Conf(n; V al) [f(n00 j n0 2 Conf(n; V al) _ jV al(n)j > 1) ^(n0 is an argument or return variable of i ^(n00 2 Conf 0(SelfArgument(i); Object) _n00 2 Conf 0(FunctionArgument(i); Function) _n00 2 Conf 0(DispatchArgument(i); Class)))g2This is not to be confused with the Church-Rosser property. Instead, we draw on de�nition 1 from the OxfordEnglish Dictionary (second edition): A owing together; the junction and union of two or more streams or movinguids. 8



The three occurrences of Conf' lower down account for the e�ects of imprecise object contours,imprecise reaching functions and imprecise generic function dispatch respectively. The newly splitcontours are distinguished in the next analysis phase through the changes to abstract call graph I oradditional restrictions R. For conuences (Conf(n; V al) is non-empty) at an argument node (l; c),we create new contours C0 with identical restrictions 8c0 2 C0:R(c0) = R(c), but with I mappingcallers with identical values to seperate contours (i.e. SV (v0 2 Back((l; c0)) = V ((l; c0))). For animprecision (jV al(n)j > 1) at argument node n at position i, we create new contours with identicalinvokes (8l 2 Label:I(l; c0) = I(l; c)) and modify the restrictions r = R(c0) to di�erentiate theelements of V al(n) (e.g. jV (ri)j = 1). Di�erent contours will them be selected in the next iteration.
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1 Figure 7: Function Splitting for Integers and FloatsFigure 7 illustrates function splitting involving the power function from Figure 5. At the left, theactual arguments for the formal parameters x and y coming from (power 1 2) and (power 1.0 2)have di�erent Classes, so there is a conuence. The imprecision manifests itself in a conuence atthe return value fInteger,Floatg, when it is clear that the value for the �rst call is Integer and forthe second Float. Splitting introduces two sets of nodes x1,y1 and x2,y2, eliminating the conuence.5.4 Data SplittingData splitting partitions contours based on the usage of the objects they represent. It is more complexthan function splitting because the point of conuence (the instance variable) is separated from thepoint at which the contour was created in the ow graph. In fact, since object contours ow throughthe graph, splitting the object contour alone is not enough; we must ensure new contours remaindistinct as they ow through the ow graph.
1

l1 l2
(left (new tuple 1 2)  )

l1
(left (new tuple 1 2)  )

l2

1 2

Data Splitting(left (tuple 1 2)  ) (left (tuple 1 2)  )

: {Integer} : {Float}lll : {Integer,Float}

Object((l1,0)) = {1} Object Object Object((l2,0)) = {1} ((l1,0)) = {1} ((l2,0)) = {2}Figure 8: Data Splitting for Imprecision at lFigure 8 is an example of data splitting based on the program example in Figure 6. On the left,the two creation points, (tuple 1 2) and (tuple 1.0 2) produce the same contour. As a result,9



the value of the instance variable l is fInteger,Floatg. Splitting the object contour discriminatesthe two cases, produce precise results for both cases.Data splitting involves four basic operations.1. Identifying the assignments to the instance variable which give rise to the imprecision.2. Identifying the paths in the ow graph which the instance variable's contour took from itscreation point to the assignments.3. Ensuring that these paths are distinct.4. Dividing the contour into a set of contours.The �rst step is to identify the conicting assignments to the same instance variable with the samecontour. Next we �nd the ow paths from the creation of the contour c which de�nes the instancevariable node n (e.g. n = (l; c)) to the assignments. These paths must be disjoint to propagate thedistinct contours we introduce by data splitting, or we will fail remove the imprecision. We ensurethis by function and data splitting along the ow paths where necessary. With paths in hand, weresolve the conicting values assigned into di�erent contours splitting the original contour.(define A (a)(define set_a ((self A) value)(set! a value))self)(let ((x (A)c) ;; I((c; 0) = f1g)(y (A)d) ;; I((d; 0) = f1g)(set_a x 1)e ;; I((e; 0) = f2g)(set_a y 1.0)f ;; I((f; 0) = f3g)Figure 9: Data Splitting ExampleTo illustrate some of the equations we will use the example in Figure 9. In this example, twoinstances of class A are created. The function set a is then used to set the a instance variable ofeach to a di�erent type of number.Identifying the Assignments First, we �nd the nodes which are assigned (have a ow edge to)the imprecise instance variable. These are grouped so that all the nodes in each group have identicalvalues with respect to the type of the imprecision, indicated by the parameterizing function V al. Wede�ne the function AssignSets(n; V al) which takes a node n, an imprecise instance variable, andreturn a set s of sets of nodes si, each of which represents a di�erent use of the instance variable.AssignSets(n; V al) = s where [i si = Back(n) ^ 8si 2 s; n0 2 si; n00 2 si:V al(n0) = V al(n00)The nodes in Back(n) are the right hand sides of assignments to the imprecise instance variable.Figure 10 shows the ow graph for our example, and the assignment sets derived.10
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V V (self,1) : {1}AssignSets((a; 1);Name) = ff(value; 2); (value; 3)ggFigure 10: Data Flow and Assignment Sets ExampleIdentifying the Paths Next, we compute the ow paths which the instance variable's contourtook from its creation point to the assignments. For each element a of AssignSets(n; V al) we �ndthe self nodes Self(a) of the functions containing the assignments a. The Object values of thesenodes contain the contour c which de�nes the instance variable node n = (l; c). Then we compute thepaths taken by the contour from its creation point (the node (self; c)) to Self(a). These paths mustto be distinct in order to eliminate the imprecision. Intuitively, if the contour's paths merge they willbe applied to the same functions with the same values (by the cross product rule of Section 4.2).a 2 AssignSets(n; V al)Self(a) = f(self; c) j (l; c) 2 agPath(a) = Closure(Back; Self(a))We compute the paths Path(a) for each assignment a by taking the closure of the function Backover the set containing the self nodes for the functions containing the assignments. The self nodesare found with the function Self(a) by extracting the function contour from a.The paths Path(a) are those which would be taken by a new contour created to eliminate theportion of the imprecision V al(a). For example, in Figure 11 1 travels to value2 through self2 andx0. Since this path must be distinct from the other paths the appearance of a node on more than oneof these paths represents a secondary imprecision. For each node we need to know the subset pathsin which it is contained.AllPaths(n; V al) = fp j p = Path(a) ^ a = AssignSet(n; V al)gNodePaths(n0; n; V al) = fps j n0 2 ps ^ ps 2 AllPaths(n; V al)gWe de�ne the function AllPaths(n; V al) to be all the paths for all the assignment sets. Further,we de�ne NodePaths(n; V al) to be the subset of all the paths which a particular node n0 is on.Ensuring Discrimination Using the paths determined above, we now apply the conuence �ndingalgorithm recursively to determine the conuences of the potential contours represented by thesepaths. However, the paths are de�ned by the assignments, and join at the creation point whereasthe other values are distinct when created but join at merges in the ow graph. Thus the path can11



be thought of as owing backward in the data ow graph. This requires modi�cation of the Conffunction: F lowOrBack(V al) = � F low if V al = PathBack otherwiseConf(n; V al) = � fng if 9n0 2 (F lowOrBack(V al))(n) ^ V al(n) 6= V al(n0); otherwiseThe new Conf uses the FlowOrBack(V al) function which is either Back as before or Flowwhen V al refers to the paths. AssignSet requires a analogous change, and the rest of the algorithmis identical. Path(f(value; 2)g) = f(self; 2); (x; 0); (c; 0)gPath(f(value; 3)g) = f(self; 3); (y; 0); (d;0)gSplittable(0; (a; 1); Class) = ff(c; 0)g; f(d; 0)ggFigure 11: Paths and Splittability ExampleResolving the Imprecision The last step is the actual splitting of the object contours. When twoor more paths do not share any nodes, the contour can be split and a new contour created for eachpath or set of paths not sharing nodes. Figure 11 provides an example of a contour is determinedto be splittable. The new contour will cause the node representing the instance variable at the pointof the imprecision to split, removing the imprecision. The function Splittable(c; n; Val) determinesthe subsets of creation points for contour c which can be pro�tably split for the imprecision at noden of type V al:Splittable(c; n; V al) = ft j t � s ^[NodePaths(n0 2 s; n; V al) 6= AllPaths(n; V al) ^8n0 2 t; n00 2 t; NodePaths(n0; n; V al) \NodePaths(n00; n; V al) 6= ;gwhere s = fn j n 2 p ^ p 2 AllPaths(n; V al) ^Back(n) = f(self; c)ggUsing s the nodes which represent the creation points for the object contour c, we determine thesubsets of creation points whose paths are not disjoint. Since the creation points are the end of thepaths, non-disjointness implies equality and that the union of these subsets will be s. Further, sincecreation points correspond to invocations on the class (object creation) function, Splittable(c; n; V al)computes the sets the invocations for the new contours. Thus, ifSplittable(c; n; V al) = AllPaths(n; V al)the object contour cannot be pro�tably split. When the object contour is split, the newly createdcontours are substituted for the original in the restrictions for argument nodes along the correspondingpaths. Thus the new contours will follow the distinct paths in the next iteration, and their instancevariables will be assigned a subset of the values of the original, removing the imprecision.12



6 DiscussionIn this section we discuss termination and complexity issues, and how features of less restrictivelanguages than that of Section 3 can be handled. Since the contour representation used by IFA isnot static and recursively de�ned, recursion in the program being analyzed requires special handling.6.1 RecursionSince the de�nition of contours is recursive, ensuring termination requires limiting the number ofcontours produced by recursive program structures. There are three types of these structures:� Recursive functions� Recursive data structures� Function-data recursionThe �rst two types are normal recursive functions and recursive types. The third type representsthe case where a recursive function creates objects on which it is later invoked. This is the case forsuch common programming idioms as insertion into a linked list. While contours are representedby unique identi�ers, their uniqueness is determined by their callers I and their restrictions R. The�rst two types of recursive structures induce other contours by invocation I while the third inducesthem through restrictions R.After each iteration and before splitting, we identify the strongly connected components (SCCs)in the graph whose nodes are the contours and whose edges are:� a contour c and the contours it invokes fc0 j c0 2 I((l; c))g� a contour c and the contours it restricts fc0 j (l; c) 2 R(c0)igThe SCCs in this graph contain the contours which have a part in de�ning each other. To preventnon-termination we do not allow invocations or restrictions between contours in the same SCC tocause splitting. Furthermore, invocations into recursive cycles can also lead to non-terminationas recursive cycles are successively \peeled". These invocations are also prohibited from splittingbeyond a constant level (in our implementation, two levels). Allowing invocations on the cycle tosplit to a constant level enables analysis of recursive structures with a period less than or equal tothe constant since contours can form cycles up to that length.6.2 ComplexityTermination is ensured by limiting the number of contours produced by recursion. However, sinceNodes and V alues are de�ned by labels (program points) and contours, which in turn can be distin-guished by their values at each argument, the theoretical complexity is exponential. Nevertheless, inpractice, we have found the complexity to be related to both the size and levels of polymorphism of theanalyzed program. Furthermore, we have found that the level of polymorphism in programs increasesrelatively slowly with program size, and the complexity of analysis along with it (see Section 7).13



6.3 Additional Language FeaturesThe simple language de�ned in Section 3 does not have some features which are present in su�cientlyrelated languages to be of interest here. In particular, it does not allow variables captured fromsurrounding lexical scopes (closures), and has neither �rst class continuations nor arrays. Closurescan be handled by extending the notion of contours to include a map from the Labels of thosevariables to Contours [20] and by using data splitting to extend the precision of captured variables.First class continuations are handled by building a second ow graph with nodes for each primary owgraph node containing a continuation and edges which are the inverse of those in the primary graph.The values in the secondary graph are those to which the continuations are applied. Appropriatetransfer functions pass values between the two graphs [25] when the continuation is used. Finally,the contents of arrays can be analyzed homogeneously as a single instance variable, using a specialLabel to represent array contents.7 Implementation and Empirical ResultsWe have implemented the analysis algorithm and tested it on more than 40,000 lines of ConcurrentAggregates (CA) [10]. CA is a single dispatch and single inheritance object-oriented language similarto the simple language described in Section 3, but extended for concurrency and including �rst classcontinuations and messages. The implementation is fully integrated into the compiler and complete;no language features were excluded. In this section we present an empirical study on a selection ofprograms. These programs were chosen to represent a cross section of applications, library functionsand test cases. All but the smallest three were written by di�erent authors.Program ion network circuit pic mandel tsp mmult poly testLines 1934 1799 1247 759 642 500 139 41 39Our test suite spans a range of program sizes between 40 and 2000 lines. The ion programsimulates the ow of ions across a biological membrane. network simulates a queuing network.circuit is an analog circuit simulator. pic is a particle-in-cell code. Theman program computes theMandelbrot set using a dynamic algorithm. tsp solves the traveling salesman problem. The mmultprogram multiplies integer and oating point matrices using a polymorphic library. poly evaluatesinteger and oating point polynomials. test is a synthetic code designed to test the algorithm'se�ectiveness. All programs were compiled with the standard CA prologue (240 lines of code).37.1 AnalysisWe implemented three di�erent analysis algorithms: 0CFA with one ow graph node per programvariable, OPS [22] with contours distinguished by their immediate caller (i.e. one level of caller-based splitting for functions and objects), and Iterative Flow Analysis (IFA). We compared thesealgorithms based on precisions, time and space complexity.3The compiler, language manual [10] and codes are available via at http://www-csag.cs.uiuc.edu.14



Algorithm Progs Progs Type RuntimeTyped Failed Checks (secs)IFA 9 0 0 199OPS 3 6 99 1500CFA 0 9 718 347.1.1 PrecisionWe use two criteria for precision: typing (assignment of types such that run time type checks arenot required) and elimination of dynamic dispatch. In this section we cover the former, leaving thelatter for Section 7.2. The table above shows that 0CFA was unable to type even simple programs.OPS fared little better, typing only three of nine programs. However, IFA was able to type all theprograms. The times are for our implementation in CMU Common Lisp/PCL on a Sparc10/31.Program Lines OPS Time IFA/Typed? Sec. OPSion 1934 NO 714 1.2circuit 1247 NO 290 2.1pic 759 NO 363 2.5tsp 500 NO 56 1.4mmult 139 NO 78 3.5test 39 NO 15 5.1network 1799 YES 234 .65mandel 642 YES 25 .42poly 41 YES 18 2.2Figure 12: E�ciency of Type Inference Algorithms7.1.2 Time ComplexityFigure 12 shows the time taken by the three algorithms which were implemented in the same frame-work using identical data structures. Note that the speed of IFA compares favorably to that of OPSin two of the three cases where the were both able to type the program. This is because IFA focusesits e�ort only on areas of the program where it is required. However, when IFA produces betterinformation, it often required more time.7.1.3 Space ComplexityWe compare the space complexity by examining the number of contours used per method (the numberof nodes used by each algorithm are reported in the Appendix A). Figure 13 show the number ofcontours required IFA and OPS as a multiple of the methods in the program. IFA requires 1.5 and2.5 per method while OPS requires 2.5 - 4. While additional contours can result in greater precision,IFA's goal directed splitting reduces number required for a given level of precision.15
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Figure 13: Contours per Method7.2 Optimization OpportunitiesHere we examine the usefulness of the additional information provided by IFA for the purpose ofoptimization. We compare code analyzed with IFA and optimized to that analyzed with 0CFA withand without optimization. We neglect OPS for two resons: 1) we are aware several implementationsof 0CFA used for optimization and non of OPS and 2) in our test cases OPS produced littleadditional information at much higher cost. The unoptimized code represents the lower bound one�ciency, indicating the number of methods and messages required by a naive implementation. Theoptimized 0CFA version uses customization [6] to create specialized versions of methods for eachreceiver (target object) class. The optimized IFA version further clones and specializes methodsbased on the classes of all arguments [26, 14, 15].
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I F AFigure 14: Dynamic Dispatch Sites In Code7.2.1 Dynamic Dispatch Sites RemovedFigure 14 presents the e�ects of optimization and the IFA analysis on the percentage of dynamicdispatch sites in the program code. The unoptimized code provides the baseline. In most casesoptimization increases the number of dynamic dispatch sites by inlining methods containing them in16



more than one place, but in two cases, optimization eliminates unreachable code containing dynamicdispatches. The IFA analysis combined with cloning is able to remove 80 to 100 percent of thedynamic dispatch sites in all cases.
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Figure 15: Percentage of Total Invocations Statically Bound (Dynamic Counts)The dynamic e�ectiveness of dispatch removal was measured by running the programs on sampleinput. Figure 15 reports the number of dynamic dispatches occurring during runs for code analyzedwith 0CFA and IFA. These percentages are with respect to the total number of invocations executedfor the unoptimized version of the code. In most cases, the 0CFA algorithm statically binds betterthan 90 percent of the invocations, and the IFA algorithm better than 99 percent. However, many ofthe statically bindable invocations will be eliminated by optimization, as we explain below.
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Figure 16: Percentage of Invocations Remaining after Optimization7.2.2 E�ect of OptimizationStandard optimizations including inlining can have a dramatic e�ect on the number of invocationsmade during program execution. We inline statically bound methods using heuristics based on static17



frequency estimation [38], the size of both the caller and callee method, and the inline depth. InFigure 16 we report the number of total invocations (static and dynamic) remaining after optimization.For 0CFA, optimizations eliminate all but an average of about 30 percent, while for IFA the resultis closer to 20 percent.
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Figure 17: Percentage of Remaining Invocations Dynamically BoundFrom the percentage of invocations statically bound with respect to the total in unoptimized codeit might seem that 0CFA performed satisfactorily. However, since inlining decreases the number ofinvocations dramatically, that conclusion is unjusti�ed. Figure 17 reports the number of dynamicdispatches with respect to the number of invocations remaining in the optimized code. For 0CFA,better than 20 percent in most cases, and in some cases better than 50 percent of all invocationsrequire dynamic dispatch. For IFA with cloning, in all but one case less than 3 percent of theremaining invocations require dynamic dispatch.48 Related WorkThe use of non-standard abstract semantic interpretation for ow analysis in Scheme by Olin Shivers[33] provides a good basis for this and other work on practical type inference. In particular, the ideasof a call context cache to approximate interprocedural data ow and the reow semantics to enableincremental improvements in the solution foreshadow this work. Recently, Stefanescu and Zhou [35]as well as Jagannathan and Weeks [20] have provided simpli�ed frameworks for ow analysis.Iterative type analysis and message splitting using run time testing are conceptually similartechniques developed in the SELF compiler [6, 7, 8]. However, iterative type analysis does not typean entire program, only small regions. Later work by H�olzle [19] on the SELF-93 compiler uses theresults of polymorphic inline caches to determine likely run time types, inserting type tests to ensurethat the expected actually occurs.Type inference in object-oriented languages in particular has been studied for many years [36, 17].4This normalization is somewhat misleading since the absolute number of invocations within the optimized IFAcode is less than that within optimized 0CFA code. As a result, the relative frequency of dynamic dispatches withinoptimized code exaggerates the absolute number in IFA relative to OPS. The absolute numbers are reported inAppendix A. 18



Constraint-based type inference is described by Palsberg, Schwartzbach and Oxh�j in [23, 22]. Theirapproach was limited to a single level of discrimination and motivated our e�orts to develop anextendible approach. Agesen [1, 2] extended the basic one level approach to handle the features ofSELF [37]. However, this approach uses a single pass, limiting it to eager splitting.The soft typing system of Cartwright and Fagan [5] extends a Hindley-Milner style type inferenceto support union and recursive types as well as insert type checks. To this Aiken, Wimmers, andLakshman [3] add conditional and intersection types enabling the incorporation of ow sensitiveinformation. However, these systems are for languages which are purely functional where the questionof types involving assignment does not arise and extensions to imperative languages are not fullydeveloped. Lastly, our algorithm shares some features of the closure analysis and binding timeanalysis phases used in self-applicative partial evaluators [30], again for purely functional languages.9 ConclusionWe have developed and implemented an algorithm for context sensitive ow analysis of high levelprogramming langugages. This algorithm uses a novel contour representation which is iterativelyextended, enabling e�cient analysis of many common programming structures. We have imple-mented this algorithm as as part of the Illinois Concert System whose goal is to develop portablee�cient implementations of concurrent object-oriented languages on parallel machines. Our em-pirical demonstrate that the algorithm produces information at a cost proportional to the amountobtained and that the information is valuable for optimizing compilers.Our compiler currently uses ow information with cloning [26] to eliminate dynamic dispatch,inline functions and methods, unbox variables, as well as for interprocedural constant propagation andlocality approximation. This information has enabled us to achieve C-like performance for object-oriented programs on numerical codes [29] and to specialize the calling conventions for distributedprograms [28]. We are currently expanding the framework for more interprocedural analyses, andlooking at ways to enable summarization [3] and to characterize the precision of the algorithm.10 AcknowledgementsWe would like to thank Vijay Karamcheti, Xingbin Zhang, Julian Dolby and Mahesh Subramaniamfor their work on the Concert System and Tony Ng, Jesus Izaguirre and Doug Beeferman for writingapplications and for working with early versions of the algorithm's implementation. We would alsolike to thank our reviewers for their comments.The research described in this paper was supported in part by National Science Foundationgrant CCR-9209336, O�ce of Naval Research grants N00014-92-J-1961 and N00014-93-1-1086, andNational Aeronautics and Space Administration grant NAG 1-613. Additional support has beenprovided by a generous special-purpose grant from the AT&T Foundation.References[1] O. Agesen, J. Palsberg, and M. Schwartzbach. Type inference of Self: Analysis of objects with dynamicand multiple inheritance. In Proceedings of ECOOP '93, 1993.19
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A Experimental ResultsThe results of analysis for the three algorithms on a variety of complete, kernel and synthetic programsappear in Table 2. IFA refers to our incremental inference algorithm, OPS refers to the inferencealgorithm in [22], and 0CFA refers to a standard ow insensitive algorithm which allocates exactlyone type variable per static program variable.Program Lines Passes Nodes Invokes Contours Typed? Checks Im TimeIFAion 1934 5 50779 3470 760 YES 0 0 713.70network 1799 3 29090 2228 730 YES 0 31 234.15circuit 1247 6 34505 1801 430 YES 0 7 289.52pic 759 6 40284 2128 357 YES 0 0 363.18mandel 642 1 17257 1011 442 YES 0 0 25.48tsp 500 3 10290 627 207 YES 0 0 56.24mmult 139 7 11518 543 147 YES 0 0 78.35poly 41 4 3819 234 90 YES 0 0 18.12test 39 7 1581 130 76 YES 0 0 15.11OPSion 1934 1 115800 7098 2817 NO 19 264 577.51network 1799 1 73864 6018 2296 YES 0 87 357.47circuit 1247 1 49849 2646 1097 NO 44 679 136.03pic 759 1 48420 2783 1068 NO 28 196 144.16mandel 642 1 26280 1442 562 YES 0 0 60.78tsp 500 1 18203 1150 472 NO 2 31 40.78mmult 139 1 10928 595 216 NO 4 104 22.36poly 41 1 4233 250 137 YES 0 0 8.25test 39 1 1353 123 100 NO 2 0 2.940CFAion 1934 1 34729 3380 396 NO 260 1096 131.16network 1799 1 18874 1804 407 NO 132 926 58.77circuit 1247 1 15491 976 190 NO 111 405 28.93pic 759 1 16065 1300 180 NO 119 390 37.68mandel 642 1 8755 760 116 NO 59 524 16.52tsp 500 1 7006 571 130 NO 27 225 15.79mmult 139 1 3842 231 61 NO 4 89 7.60poly 41 1 1848 138 48 NO 4 55 3.84test 39 1 1001 108 44 NO 2 19 2.92Table 2: Results of Iterative Flow AnalysisThe number of Passes is determined by the algorithms automatically when it determines that norun time type errors are possible. Nodes is the number of ow graph nodes used by the algorithm.Invokes is the number of invocations (abstract calls) analyzed. Contours is the number of contours.In 0CFA this corresponds to the number of methods. A program can be Typed? by an algorithm ifit can prove an absence of run time type errors. Checks is the number of type checks which must bemade to ensure such an absence. The number of imprecisions Im indicates number of nodes whichwere not resolved to a singleon value. The implementation is approximately 2600 lines of largelyunoptimized Common Lisp/CLOS and Time in seconds is reported for CMU Common Lisp/PCLon a Sparc10/31. 22


