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Abstract

Control and data flow information is vital for the optimization of high level programming
languages. Language features such as object-orientation and first class functions and selectors
link data flow and control flow. For example, in an object-oriented program an object’s run time
type is used to determine the function (method) executed at an invocation point via dynamic
dispatch. We present an iterative analysis which derives control and data flow information
simultaneously. This analysis adapts to the structure of the program, efficiently deriving flow
information at a cost proportional to the precision of the information obtained. The analysis
results are directly applicable to such optimizations as static binding, inlining and unboxing.
This analysis has been implemented in the Illinois Concert compiler, and we report quantitative
results for a number of object-oriented programs.

1 Introduction

Control and data flow information is vital to optimizing compilers of high level languages. It is useful
for constant, copy and lambda propagation [31], static binding, inlining and speculative inlining [9,
19], type recovery [33], safety analysis [24], customization [9], specialization [15] and cloning [18, 26]
and other interprocedural optimizations [11]. In high level languages, data values can determine the
code which is executed through first class functions and selectors as well as dynamic dispatch, and the
code determines the data values. As a result, control and data flow must be analyzed simultaneously
if precise information is to be obtained. The key to the precision of context sensitive flow analysis
is the contour [33] representation. Contours represent the calling environments of a function; for
example 0CFA uses one contour per function while 1CFA uses one for each call site [32].

Other flow analyses [20, 22] have used a fixed contour representation or adapted the representation
with respect to the values of function arguments [1]. However, shallow fixed representations can
require excessive amounts of memory [21] and imperative update of memory locations introduce cycles
into the flow graph which can invalidate adaptive decisions after they have been made. Moreover,
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contours representing objects or closures can also benefit from representation adaption based on the
values of their variables [27].

We present an iterative combined control and data flow analysis (IFA) which adapts the contour
representation for both functions and objects to the program to derive information at a cost propor-
tional to the amount of information obtained. The analysis constructs the flow graph locally from
data flow and interprocedurally by abstract interpretation of call sites. We begin with a shallow
analysis (similar to 0CFA) to produce a conservative global flow graph, then extend the contour rep-
resentation where additional precision is required, repeating this process until the desired precision
is reached.

We have implemented this analysis in the Illinois Concert system and applied it to a number of
object-oriented programs. QOur results indicate that precise information can be obtained for many
common program structures including map functions, polymorphic containers and factory objects.
Moreover, this additional information can be used directly for such optimizations as static binding,
inlining, unboxing and data representation optimizations. We demonstrate this by showing that
through TFA and cloning [26] approximately 99% of the methods in our test cases can be statically
bound.

This paper is organized as follows. Section 2 describes basic flow analysis and our notation.
Section 3 describes the language and the internal representation to which it is converted for analysis.
The contour representation and basic analysis is presented in Section 4 and the algorithm for ex-
tending precision in Section 5. Aspects of the algorithm are discussed in Section 6. Section 7 reports
our empirical results. Finally, we cover related work in Section 8, and conclude in Section 9.

2 Background

Context sensitive flow analysis of high level programming languages is a control and data flow
analysis which combines elements of abstract interpretation [12] and data flow analysis [16]. Efficient
implementations build the flow graph by abstract interpretation and update the values by propagation
along the edges of the flow graph. Such implementations have been called constraint-based [23] since
the flow graph resembles a constraint network, where the edges are constraints and the nodes are
variables. For example, a flow analysis to determine the set of classes whose instances a variable
might take on generates flow edges when an object of class C is created indicating that the result must
be in the set containing at least C, {C}. Using [v] to denote the set of classes for variable v and N,
and N¢ to denote the flow graph nodes for v and C respectively, the constraints and corresponding
flow edges for creation and assignment would be:

program text | constraint | flow edge
r = new C [z] 2 {C} | No — N,
r=y [0 2[w] | Ny — No

When a call site is encountered during construction of the flow graph, the data flow values at the
call site are used to determine the functions which may be invoked based on the dispatch semantics
of the language. For example, in a single-dispatch object-oriented language, the methods (functions)
are determined by the data flow values of the selector and receiver (target) object arguments. The
flow graph computes a conservative approximation to these reaching problems. For example, given



a call site with a selector s with reaching selectors S and a reciever o with reaching classes C, flow
edges are constructed for all methods in the cross product S x C' (allowing for inheritance).

Since abstract interpretation of the call sites (construction of the flow graph) uses the data flow
values (the current solution) to determine the functions called [22], the data flow values are updated
concurrently with flow graph construction. The meet function for the data flow values is union and
the transfer functions are derived by abstract interpretation. For instance, the transfer function for
the set of class names Name for the flow graph node representing the target object o at a call site
with possible functions F C S x C' would be:

Class(0) oyt = Class(0)iy, N{c| (z,¢) € F}

Likewise, constants, primitive functions and tests for equivalence with singleton objects (like NIL)
produce transfer functions which affect the data flow values at nodes.

The context sensitivity of flow analysis follows from the contour representation [33, 20]. In
the theory of flow analysis, the language to be analyzed is first given an exact semantics which
is essentially an interpreter. The contours for such a semantics represent the call frames, include
call path and determine variable bindings. For analysis, cost and precision are balanced by using
abstract contours which represent some set of exact contours. A contour representation can therefore
vary from coarse (one contour per function) to fine (one contour per call frame). Since unique flow
graph nodes for local variables are created for each contour, a separate (context sensitive) solution
is obtained for the calling contexts they represent. The selection of efficient contour representations
is the subject of this paper.

3 Language
definitions (define name ((variable | (variable name+))*) expression*®)
binding constructs | (let ((variable expressiong)*) expression*)
(Let* ((variable expressiong)*) expression;™)
conditionals (if expressiong expressiony erpressions)
(while expressiony expression;™)
assignment (set! expressiony expression; expressions)
variables self, identifier
constants Integer,1,2,3,... =>,<,+,—,...

Table 1: Language Syntax

The language we will use is a simple object-oriented language with definitions, binding constructs,
conditionals, assignment, variables and constants. The syntax of this language is given in Table 1.
Definitions are used to define both generic functions and classes where the list of variables represents
parameters and instance variables respectively. The name defined by a definition is available globally
and definitions sharing the same name form a single generic function. The run time type of the
arguments is matched with the names of the parameter to determine which version is executed. The
variable self is treated specially, indicating the object defined or, if used as an argument, the object
whose instance variables are scoped. For example, a simple class A with accessor function get-a and
put-a for its instance variable a can be defined as:



(define A (a)
(define get-a ((self A)) a)
(define put-a ((self A) (value Integer)) (set! a value))
self)

Similarly, a generic function which returns double the value of an integer or of the a instance
variable of an object of class A can be defined as:

(define double ((a A)) (+ (get-a a) (get-a a)))
(define double ((a Integer)) (+ a a))

Before analysis the simple language is converted to a variant of Static Single Assignment (SSA)
form [13, 34]. SSA form inserts ¢-Nodes, essentially assignments with multiple right hand sides where
control flow merges, for example after a conditional, and renames variables so that each variable
appears on the left hand side of only one assignment. In addition to simplifying the construction
of the flow graph, this renaming prevents interference between transfer function. For example, on
the left side of Figure 1 the variable a variously holds instances of class A and Integer, to which
are applied get-a and + respectively. The transfer function requires that the type of a contain only
those classes to which both get-a and 4 can be applied. Since there are no such classes, the analysis
will incorrectly report that no type can be found for a. SSA conversion prevents this problem by
creating new variables for each use of a on the right side of Figure 1. Similarly, instance variables
are converted to SSA as aliasing information permits [29], or moved to temporaries before use to
prevent interference.

(set! a (new A)) (set! a; (new A))
(get-a a) (get-a ay)

(set! a 1) (set! ay 1)

(set! a (+ a a)) (set! a3 (+ a3 ay))

Figure 1: Code before (left) and after (right) SSA Conversion

However, SSA conversion alone is not sufficient since it handles conflicts only for variables which
are assigned. A more common problem is presented by the use (reading) of a variable under different
conditions. In order to prevent these conflicts we introduce -Nodes which, analogous to ¢-Nodes
rename variables which are read along different control flow paths. For example, if two different
functions (get-a and +) are applied to a variable in the two branches of a conditional (see Figure 2)
the transfer function for the flow node corresponding to variable a would constrain the type of a to
those classes supported by both functions.

(a1,a2) = ¥(a)

(if ... (if ...
(get-a a) (get-a aj)
(... (+aa))) (.. (+ a2 a2)))

as = ¢(a;,as)

Figure 2: Code before (left) and after (right) SSU Conversion

The resulting program representation is called Static Single Use (SSU) form [25]. It is similar to
[4] and is computed through a simple extension of the SSA conversion algorithm [13, 34].



4 Analysis

Iterative Flow Analysis (IFA) consists of two phases: analysis and incremental precision extension
(discussed in Section 5). The analysis phase constructs the flow graph, while continuously updating
the node values. The simple language coupled with SSU form, which induces an explicit local data
flow graph, greatly simplifies the abstract semantics over other analyses [20, 35] allowing us to
concentrate on the iteration algorithm. In particular, the simple language binds all variables in the
function or self argument’s contours, preventing the capture of variables from surrounding scopes.
Extension of the analysis to additional language features is discussed in Section 8.

4.1 Definitions

n € Node = Label x Contour N € Nodes = P(Node)
e € Edge = Node x Node E € Edges = P(Fdge)
c € Contour = N C € Contours = P(Contour)
v € Value = P(Node) V eValues = Node — Value
r € Restrict = Value; x ... x Value, R € Restricts = Contour — Restrict
i € Invoke = P(Contour) I € Invokes = Node — Invoke

Figure 3: The Flow Graph

The definition of the flow graph appears in Figure 3. Each expression in the program is given a unique
Label except variables which use the label of the expression which binds them for local variables,!
or their definition for instance variables and definitions which use their name. C'ontours are unique
identifiers representing abstract calling environments; we use the natural numbers A" where 0 is the
top level environment. The Value of a node is the set of nodes representing the values (constants,
function names, or object contours) which reach that node. Each contour Restricts the values its
parameters can take on. The I'nvokes function records the abstract call graph, mapping call nodes
to invoked contours.

Flow(n) = {m|(n,m)€ E}
Back(n) = {m|(m,n) € E}
Function(n) = {l|v € V(n)Av = (l,¢) Al € {primitive function, functionname} }
Class(n) = {l|v € V(n)Av =(l,¢) Al € {primitive class, classname} }
Object(n) = {c|v € V(n)Av' = (l,¢) Al € {primitive class, classname} }
Name(v) = {(,0)]|v evAv =(,¢)}

Figure 4: Functions on the Flow Graph

We define two functions for moving along the edges of the flow graph: Flow and Back which
takes a node to the set nodes in the forward and backward flow directions respectively. We also define
functions to access the set of Frunction labels (generic function names or primitive functions), the set
of Class labels (class names or primitive classes) and the set of Object values (which originate from
the contour of self of top level functions). Finally, we use definitions in the top level environment to

'In SSU form, local variables are assigned only once.



stand for the definitions independent their contour and access these with Name. These definitions
represent the set of all contour therefrom derived. Conceptually:

{(1,0)} = {(,) ey

4.2 Flow Graph Construction

Construction of the flow graph uses a worklist of call nodes. Calls are taken from the worklist, the
called contours are determined, and the local contribution to the flow graph is determined. The
called functions are drawn from the applicable versions of generic functions reaching the function
argument of the invocation. Functions are applicable when for each argument there is a reaching
Name which matches one of those associated (see Table 1) with the corresponding parameter. One
or more contours are then selected for each function. In Section 5.2 we discuss selection of contours
in detail. Finally, those call sites Nodes whose arguments Values have changed are added to the
worklist.

The flow graph nodes for local variables and expressions are defined by their label and the
selected contour. The nodes for instance variables are defined by their label and the Object value(s)
of the self argument. The flow graph edges are the SSU assignments, the flow from arguments
to parameters and from the function result to the call result. The transfer functions for parameter
nodes impose the dispatch constraints (Section 2). For example, values are restricted to those having
the names associated with the parameter. The transfer functions for a contour ¢ also restrict the
values flowing from argument a; to be V(a;) N R(c);, enabling the use of separate contours for
different combinations of values. Since any given variable can only hold one value at one time,
separate analysis is safe so long as each element of the cross product of values is represented by some
contour (the cross product rule). This is achieved in the alternative contour representation of [20]
by single-value based analysis of curried functions.

4.3 Imprecision and Polymorphism

(define power (x y)

(if >y 0) (define tuple (1 r)
(* x (power x (- y 1))) (define left ((self tuple)) 1)
(one x))) self)
(let O (let )
(power 1 2) (left (tuple 1 2))
(power 1.0 2)) (left (tuple 1.0 2)))
Figure 5: Functional Polymorphism Figure 6: Polymorphic Objects

To simplify the exposition of the iterative algorithm, we differentiate function imprecision from data
imprecision. Imprecisions are nodes whose values are not singleton sets. Function imprecisions
are those of nodes defined by the surrounding function’s contour. Data imprecisions refer to nodes
defined by object contours (instance variables). Imprecisions result from incomplete input, flow
insensitivity, and (for mutable locations) temporal insensitivity. This flow analysis focuses on the
second sort which often results from the use of polymorphism functions or objects. Intuitively, the
level of polymorphism is the depth of the polymorphic function call path or polymorphic reference



path (see Figures 5 and 6). Flow analyses typically produces precise results for up to a fixed level
of polymorphism; for instance, 0CFA handles no polymorphism while 1CFA [31] handles one level.
Since real programs use varying levels of polymorphism in different places, efficient analyses adapt
locally to those levels. In the next section we present Iterative Flow Analysis (IFA) which uses
the results from simpler analyses at lower levels to adapt the contour representation for successive
iterations.

5 Iterative Flow Analysis (IFA)

Iterative Flow Analysis (IFA) uses the results of the previous iteration (starting with 0CFA) to
extend the contour representation for the next iteration. Iteration is required because during analysis
assignment to mutable locations (instance variables) can cause the value of nodes to change after their
contours have been selected. After each iteration, the contour representation is extended by splitting
the set of invocations associated with a contour (see Figure 3) to differentiate uses of the function or
object it represents. A new analysis iteration starts by clearing the values V' and the edges ¥ which
make up the flow graph. However, the abstract call graph I which captures the local levels of context
sensitivity is preserved. In this way, the analysis adapts to the structure of the program. The result
is an efficient allocation of analysis resources to the many levels of polymorphism in programs.

5.1 Splitting

Splitting divides contours, increasing the number of flow graph nodes and potentially eliminating
imprecisions from the analysis results. Splitting polymorphic functions (function splitting) divides
the invocations associated with a function contour over a number of smaller of more specific contours.
Splitting polymorphic objects (data splitting) divides the invocations associated with the creation of
objects of a particular class over a number of contours representing subsets of the instances which
are used in different ways.

In its simplest form, splitting relies on the values of arguments, selecting a contour the values of
whose parameters most closely match those of the arguments. The calls are processed in depth first
fashion so the arguments have approximations of their final values when the contours for the call are
selected. In order to minimize the number of iterations, the partial information is used to eagerly split
function contours. Similarly, we can eagerly split contours representing objects. However, since the
selection of these contours occurs at the point where the objects are created and before the instance
variables are used, it generally is less effective. Eager splitting occurs as part of contour selection.

5.2 Selecting Contours

When a call is encountered, the set of applicable functions is determined and then contours are
selected. For a given target function, the transfer functions for the dispatch are applied to the values
of the arguments to determine the values which will flow into the parameters for this call (Section 4.2).
While a contour could be created for each element of the cross product of entering values (w = []; v;),
this would be expensive and, in general, prevent termination (see Section 6). Instead we select
contours based on information from the last iteration and then eagerly split contours based on the
names of the argument values, leaving splitting based on the contour component (Object) of the
values to be done non-eagerly.



The contours for a call from node n are selected in three steps. First, from the cached contours
I(n) we select those whose restriction cross product []; r; intersects w, favoring those which intersect
the smallest number of elements, and remove those elements from w. For any remaining elements
of w we select from all contours associated with the function those whose restrictions intersect w.
Finally, we form subsets out of any remaining elements by applying Name to each parameter value
(IT; Name(v;)) and create contours for each identical result with the singleton Names as restric-
tions. Intuitively these contours are insensitive to particular contours reaching their parameters,
but are (eagerly) differentiated with respect to the names of the functions or classes reaching those
parameters.

5.3 Function Splitting

Function splitting partitions contours, enabling separate information to be obtained for different uses
of the function. In its simplest form, we examine the values of the arguments of all the invocations
for a particular contour, and if one of the argument’s value is a strict subset of the corresponding
parameter value, a new contour is created for that invocation. In practice, there may be many object
contours for a particular class definition which distinguish subsets of the class’s instances important
to only a fraction of functions. So instead we start from a specific imprecision which we wish to
eliminate (e.g. where a type check or dynamic dispatch would be required) and look for the possible
causes.

Using the functions described in Figure 4 we traverse the flow graph. Starting from the point of
imprecision we look back for a set of confluences® (in data flow terms, meets a Ab where a, b # () and
a # b). Given a node n with imprecise Val (one of Function, Object or Class) we find the least set
of confluences Con f(n, Val) which obey:

] otherwise

Conf(n,Val) { {n'} if In’ € Back(n) A Val(n) # Val(n')

Conf(n,Val) D Conf(n',Val) where n’ € Back(n)

The contours of argument nodes in C'on f(n, Val) represent the first order contribution to the im-
precision, and splitting them is the first way in which the imprecision may be eliminated. Imprecision
can also arise from interprocedural control flow ambiguity due to secondary imprecisions in other
arguments. For example, since the result value is the meet (union) of the results of all the possible
functions invoked, if the set of functions reaching a call is imprecise, the result can be imprecise.
Similarly, the parameters of the invoked functions might be imprecise as a result of the extraneous
flow edges. Lastly, imprecisions in object contours can lead to imprecise results of instance variable
accesses. We extend C'on f(n, Val) to Conf’(n,Val) to handles these cases, where 7 is an invocation:

Conf'(n,Val) = Conf(n,Val) U
{(n" | n' € Conf(n,Val) Vv |Val(n)| > 1) A
(n' is an argument or return variable of ¢ A
(n"” € Conf'(Sel f Argument(i), Object) V
n” € Conf' (FunctionArgument (i), Function) V
n'" € Conf'(DispatchArgument(i), Class)))}

2This is not to be confused with the Church-Rosser property. Instead, we draw on definition 1 from the Oxford
English Dictionary (second edition): A flowing together; the junction and union of two or more streams or moving

Sfluids.



The three occurrences of Conf’ lower down account for the effects of imprecise object contours,
imprecise reaching functions and imprecise generic function dispatch respectively. The newly split
contours are distinguished in the next analysis phase through the changes to abstract call graph I or
additional restrictions R. For confluences (Con f(n, Val) is non-empty) at an argument node (/, ¢),
we create new contours C’ with identical restrictions V¢! € C'.R(¢/) = R(c), but with I mapping
callers with identical values to seperate contours (i.e. |JV(v' € Back((l,c")) = V((I,¢))). For an
imprecision (|[Val(n)| > 1) at argument node n at position 7, we create new contours with identical
invokes (VI € Label.I(l,c) = I(l,¢)) and modify the restrictions r = R(¢) to differentiate the
elements of Val(n) (e.g. |V(r;)| = 1). Different contours will them be selected in the next iteration.

(power 1 2) (power 1.0 2) (power 1 2) (power 1.0 2)
{Integer} X{Integer} ——= {Integer,Float} {Float} X{Integer} ——= {Integer,Float} {Integer} X{Integer} ——= {Integer} {Float}x{Integer} ——= {Float}

(contour l)\ / (contour 1) (contour 2)

Function Splitting

(define power (x vy) (define power (x vy) (define power (xy)
| > o) o)

Xt {Integer,Float} Xqt {Integer} Xyt {Float}

yq' {Integer} Vi {Integer} Yy! {Integer}

return l: {Integer,Float} return 1: {Integer} return R : {Float}

Figure 7: Function Splitting for Integers and Floats

Figure 7 illustrates function splitting involving the power function from Figure 5. At the left, the
actual arguments for the formal parameters x and y coming from (power 1 2) and (power 1.0 2)
have different C'lasses, so there is a confluence. The imprecision manifests itself in a confluence at
the return value {Integer,Float}, when it is clear that the value for the first call is Integer and for
the second Float. Splitting introduces two sets of nodes x1,y; and xg,y2, eliminating the confluence.

5.4 Data Splitting

Data splitting partitions contours based on the usage of the objects they represent. It is more complex
than function splitting because the point of confluence (the instance variable) is separated from the
point at which the contour was created in the flow graph. In fact, since object contours flow through
the graph, splitting the object contour alone is not enough; we must ensure new contours remain
distinct as they flow through the flow graph.

Object((11,0)) = {1} Object((12,0)) = {1} Object((11,0)) = {1} Object((12,0)) = {2}
(1eft (tuplelZ)ll) (left (tuple12)|2) Data Splitting (1eft (newtuplelz)ll) (left (newtuple12)|2)
———
I'1 : {Integer,Float} |1 : {Integer} I 5 {Float}

Figure 8: Data Splitting for Imprecision at 1

Figure 8 is an example of data splitting based on the program example in Figure 6. On the left,
the two creation points, (tuple 1 2) and (tuple 1.0 2) produce the same contour. As a result,



the value of the instance variable 1 is {Integer,Float}. Splitting the object contour discriminates
the two cases, produce precise results for both cases.

Data splitting involves four basic operations.

1. Identifying the assignments to the instance variable which give rise to the imprecision.

2. Identifying the paths in the flow graph which the instance variable’s contour took from its
creation point to the assignments.

3. Ensuring that these paths are distinct.

4. Dividing the contour into a set of contours.

The first step is to identify the conflicting assignments to the same instance variable with the same
contour. Next we find the flow paths from the creation of the contour ¢ which defines the instance
variable node n (e.g. n = ([, ¢)) to the assignments. These paths must be disjoint to propagate the
distinct contours we introduce by data splitting, or we will fail remove the imprecision. We ensure
this by function and data splitting along the flow paths where necessary. With paths in hand, we
resolve the conflicting values assigned into different contours splitting the original contour.

(define A (a)
(define set_a ((self A) value)
(set! a value))

self)
(let ((x (B).) 5 I((c,0) ={1})
(y (M) i3 1((4,0) ={1H
(set_a x 1), 55 1((e,0) = {21
(set_a y 1.0); i3 1((£,0)={3}H

Figure 9: Data Splitting Example

To illustrate some of the equations we will use the example in Figure 9. In this example, two
instances of class A are created. The function set_a is then used to set the a instance variable of
each to a different type of number.

Identifying the Assignments First, we find the nodes which are assigned (have a flow edge to)
the imprecise instance variable. These are grouped so that all the nodes in each group have identical
values with respect to the type of the imprecision, indicated by the parameterizing function Val. We
define the function AssignSets(n,Val) which takes a node n, an imprecise instance variable, and
return a set s of sets of nodes s;, each of which represents a different use of the instance variable.

AssignSets(n,Val) = s where Usi = Back(n) AVs; € s,n" € s;,n" € 5;.Val(n') = Val(n")

7

The nodes in Back(n) are the right hand sides of assignments to the imprecise instance variable.
Figure 10 shows the flow graph for our example, and the assignment sets derived.

10



V (1,0) : {Integer} V (1.0,0) : {Float} V (self,1) : {1}

TN

V (value,2) : {integer}  V (value,3) : {Float} Vx0): {1} V(.0 :{1}
T~
V (1) : {Integer,Float} V(self2): {1}V (self,3): {1}
Name data flow Contour data flow
AssignSets((a, 1), Name) = {{(value,2),(value, 3)}}

Figure 10: Data Flow and Assignment Sets Example

Identifying the Paths Next, we compute the flow paths which the instance variable’s contour
took from its creation point to the assignments. For each element a of AssignSets(n,Val) we find
the self nodes Self(a) of the functions containing the assignments a. The Object values of these
nodes contain the contour ¢ which defines the instance variable node n = (I, ¢). Then we compute the
paths taken by the contour from its creation point (the node (self,c)) to Sel f(a). These paths must
to be distinct in order to eliminate the imprecision. Intuitively, if the contour’s paths merge they will
be applied to the same functions with the same values (by the cross product rule of Section 4.2).

a € AssignSets(n,Val)
Self(a) = {(self,c)|(l,c) € a}
Path(a) = Closure(Back,Self(a))

We compute the paths Path(a) for each assignment a by taking the closure of the function Back
over the set containing the self nodes for the functions containing the assignments. The self nodes
are found with the function Self(a) by extracting the function contour from a.

The paths Path(a) are those which would be taken by a new contour created to eliminate the
portion of the imprecision Val(a). For example, in Figure 11 1 travels to valuey through self; and
Xg. Since this path must be distinct from the other paths the appearance of a node on more than one
of these paths represents a secondary imprecision. For each node we need to know the subset paths
in which it is contained.

AllPaths(n,Val) {p | p= Path(a) A a = AssignSet(n,Val)}
NodePaths(n',n,Val) = {ps|n’ € psApse& AllPaths(n,Val)}

We define the function AllPaths(n,Val) to be all the paths for all the assignment sets. Further,
we define NodePaths(n,Val) to be the subset of all the paths which a particular node n’ is on.

Ensuring Discrimination Using the paths determined above, we now apply the confluence finding
algorithm recursively to determine the confluences of the potential contours represented by these
paths. However, the paths are defined by the assignments, and join at the creation point whereas
the other values are distinct when created but join at merges in the flow graph. Thus the path can

11



be thought of as flowing backward in the data flow graph. This requires modification of the C'on f
function:

Flow 1if Val = Path

Back otherwise

FlowOrBack(Val) = {

if In’ € (FlowOrBack(Val))(n) AVal(n) # Val(n')

otherwise

Conf(n,Val) = { én}

The new Conf uses the FlowOrBack(Val) function which is either Back as before or Flow
when Val refers to the paths. AssignSet requires a analogous change, and the rest of the algorithm
is identical.

Path({(value,2)}) = {(self,2),(x,0),(c,0)}
Path({(value,3)}) = {(self,3),(y,0),(d,0)}

Splittable(0, (a, 1), Class) = {{(c,0)},{(d,0)}}

Figure 11: Paths and Splittability Example

Resolving the Imprecision The last step is the actual splitting of the object contours. When two
or more paths do not share any nodes, the contour can be split and a new contour created for each
path or set of paths not sharing nodes. Figure 11 provides an example of a contour is determined
to be splittable. The new contour will cause the node representing the instance variable at the point
of the imprecision to split, removing the imprecision. The function Splittable(c,n, Val) determines
the subsets of creation points for contour ¢ which can be profitably split for the imprecision at node
n of type Val:

Splittable(c,n, Val) {t|tCsA U NodePaths(n' € s,n,Val) # AllPaths(n,Val) A

vn' €t,n"” € t, NodePaths(n',n,Val) N NodePaths(n" n,Val) # 0}
where s = {n|né€pApée AllPaths(n,Val) A Back(n) = {(self,c)}}

Using s the nodes which represent the creation points for the object contour ¢, we determine the
subsets of creation points whose paths are not disjoint. Since the creation points are the end of the
paths, non-disjointness implies equality and that the union of these subsets will be s. Further, since
creation points correspond to invocations on the class (object creation) function, Splittable(c, n,Val)
computes the sets the invocations for the new contours. Thus, if

Splittable(c,n,Val) = AllPaths(n,Val)

the object contour cannot be profitably split. When the object contour is split, the newly created
contours are substituted for the original in the restrictions for argument nodes along the corresponding
paths. Thus the new contours will follow the distinct paths in the next iteration, and their instance
variables will be assigned a subset of the values of the original, removing the imprecision.
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6 Discussion

In this section we discuss termination and complexity issues, and how features of less restrictive
languages than that of Section 3 can be handled. Since the contour representation used by IFA is
not static and recursively defined, recursion in the program being analyzed requires special handling.

6.1 Recursion

Since the definition of contours is recursive, ensuring termination requires limiting the number of
contours produced by recursive program structures. There are three types of these structures:

e Recursive functions
e Recursive data structures
e [Function-data recursion

The first two types are normal recursive functions and recursive types. The third type represents
the case where a recursive function creates objects on which it is later invoked. This is the case for
such common programming idioms as insertion into a linked list. While contours are represented
by unique identifiers, their uniqueness is determined by their callers I and their restrictions R. The
first two types of recursive structures induce other contours by invocation I while the third induces
them through restrictions R.

After each iteration and before splitting, we identify the strongly connected components (SCCs)
in the graph whose nodes are the contours and whose edges are:

e a contour ¢ and the contours it invokes {¢’ | ¢ € I((l,¢))}
e a contour ¢ and the contours it restricts {¢’ | (I, ¢) € R(c);}

The SCCs in this graph contain the contours which have a part in defining each other. To prevent
non-termination we do not allow invocations or restrictions between contours in the same SCC to
cause splitting. Furthermore, invocations into recursive cycles can also lead to non-termination
as recursive cycles are successively “peeled”. These invocations are also prohibited from splitting
beyond a constant level (in our implementation, two levels). Allowing invocations on the cycle to
split to a constant level enables analysis of recursive structures with a period less than or equal to
the constant since contours can form cycles up to that length.

6.2 Complexity

Termination is ensured by limiting the number of contours produced by recursion. However, since
Nodes and Values are defined by labels (program points) and contours, which in turn can be distin-
guished by their values at each argument, the theoretical complexity is exponential. Nevertheless, in
practice, we have found the complexity to be related to both the size and levels of polymorphism of the
analyzed program. Furthermore, we have found that the level of polymorphism in programs increases
relatively slowly with program size, and the complexity of analysis along with it (see Section 7).
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6.3 Additional Language Features

The simple language defined in Section 3 does not have some features which are present in sufficiently
related languages to be of interest here. In particular, it does not allow variables captured from
surrounding lexical scopes (closures), and has neither first class continuations nor arrays. Closures
can be handled by extending the notion of contours to include a map from the Labels of those
variables to C'ontours [20] and by using data splitting to extend the precision of captured variables.
First class continuations are handled by building a second flow graph with nodes for each primary flow
graph node containing a continuation and edges which are the inverse of those in the primary graph.
The values in the secondary graph are those to which the continuations are applied. Appropriate
transfer functions pass values between the two graphs [25] when the continuation is used. Finally,
the contents of arrays can be analyzed homogeneously as a single instance variable, using a special
Label to represent array contents.

7 Implementation and Empirical Results

We have implemented the analysis algorithm and tested it on more than 40,000 lines of Concurrent
Aggregates (CA) [10]. CA is a single dispatch and single inheritance object-oriented language similar
to the simple language described in Section 3, but extended for concurrency and including first class
continuations and messages. The implementation is fully integrated into the compiler and complete;
no language features were excluded. In this section we present an empirical study on a selection of
programs. These programs were chosen to represent a cross section of applications, library functions
and test cases. All but the smallest three were written by different authors.

Program ion | network | circuit | pic | mandel | tsp | mmult | poly | test

Lines 1934 1799 1247 | 759 642 | 500 139 41 39

Our test suite spans a range of program sizes between 40 and 2000 lines. The ion program
simulates the flow of ions across a biological membrane. network simulates a queuing network.
circuit is an analog circuit simulator. pic is a particle-in-cell code. The man program computes the
Mandelbrot set using a dynamic algorithm. tsp solves the traveling salesman problem. The mmult
program multiplies integer and floating point matrices using a polymorphic library. poly evaluates
integer and floating point polynomials. test is a synthetic code designed to test the algorithm’s
effectiveness. All programs were compiled with the standard CA prologue (240 lines of code).?

7.1 Analysis

We implemented three different analysis algorithms: 0CFA with one flow graph node per program
variable, OPS [22] with contours distinguished by their immediate caller (i.e. one level of caller-
based splitting for functions and objects), and Iterative Flow Analysis (IFA). We compared these
algorithms based on precisions, time and space complexity.

®The compiler, language manual [10] and codes are available via at http://www-csag.cs.uiuc.edu.
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Algorithm | Progs | Progs Type | Runtime
Typed | Failed | Checks (secs)

IFA 9 0 0 199
OPS 3 6 99 150
0CFA 0 9 718 34

7.1.1 Precision

We use two criteria for precision: typing (assignment of types such that run time type checks are
not required) and elimination of dynamic dispatch. In this section we cover the former, leaving the
latter for Section 7.2. The table above shows that 0CFA was unable to type even simple programs.
OPS fared little better, typing only three of nine programs. However, IFA was able to type all the
programs. The times are for our implementation in CMU Common Lisp/PCL on a Sparc10/31.

Program | Lines OPS | Time | TFA/
Typed? | Sec. | OPS

ion 1934 NO 714 1.2
circuit 1247 NO 290 2.1
pic 759 NO 363 2.5
tsp 500 NO 56 1.4
mmult 139 NO 78 3.5
test 39 NO 15 5.1

network 1799 YES 234 .65
mandel 642 YES 25 42
poly 41 YES 18 2.2

Figure 12: Efficiency of Type Inference Algorithms

7.1.2 Time Complexity

Figure 12 shows the time taken by the three algorithms which were implemented in the same frame-
work using identical data structures. Note that the speed of IFA compares favorably to that of OPS
in two of the three cases where the were both able to type the program. This is because IFA focuses
its effort only on areas of the program where it is required. However, when IFA produces better
information, it often required more time.

7.1.3 Space Complexity

We compare the space complexity by examining the number of contours used per method (the number
of nodes used by each algorithm are reported in the Appendix A). Figure 13 show the number of
contours required [FA and OPS as a multiple of the methods in the program. IFA requires 1.5 and
2.5 per method while OPS requires 2.5 - 4. While additional contours can result in greater precision,
IFA’s goal directed splitting reduces number required for a given level of precision.
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7.2 Optimization Opportunities

Here we examine the usefulness of the additional information provided by IFA for the purpose of
optimization. We compare code analyzed with IFA and optimized to that analyzed with 0CFA with
and without optimization. We neglect OPS for two resons: 1) we are aware several implementations
of 0CFA used for optimization and non of OPS and 2) in our test cases OPS produced little
additional information at much higher cost. The unoptimized code represents the lower bound on
efficiency, indicating the number of methods and messages required by a naive implementation. The
optimized O0CFA version uses customization [6] to create specialized versions of methods for each
receiver (target object) class. The optimized 1FA version further clones and specializes methods
based on the classes of all arguments [26, 14, 15].
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Figure 14: Dynamic Dispatch Sites In Code

7.2.1 Dynamic Dispatch Sites Removed
Figure 14 presents the effects of optimization and the IFA analysis on the percentage of dynamic

dispatch sites in the program code. The unoptimized code provides the baseline. In most cases
optimization increases the number of dynamic dispatch sites by inlining methods containing them in
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more than one place, but in two cases, optimization eliminates unreachable code containing dynamic
dispatches. The IFA analysis combined with cloning is able to remove 80 to 100 percent of the
dynamic dispatch sites in all cases.
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Figure 15: Percentage of Total Invocations Statically Bound (Dynamic Counts)

The dynamic effectiveness of dispatch removal was measured by running the programs on sample
input. Figure 15 reports the number of dynamic dispatches occurring during runs for code analyzed
with 0CFA and IFA. These percentages are with respect to the total number of invocations executed
for the unoptimized version of the code. In most cases, the 0CFA algorithm statically binds better
than 90 percent of the invocations, and the IFA algorithm better than 99 percent. However, many of
the statically bindable invocations will be eliminated by optimization, as we explain below.
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Figure 16: Percentage of Invocations Remaining after Optimization

7.2.2 Effect of Optimization

Standard optimizations including inlining can have a dramatic effect on the number of invocations
made during program execution. We inline statically bound methods using heuristics based on static
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frequency estimation [38], the size of both the caller and callee method, and the inline depth. In
Figure 16 we report the number of total invocations (static and dynamic) remaining after optimization.
For OCFA, optimizations eliminate all but an average of about 30 percent, while for IFA the result
is closer to 20 percent.
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Figure 17: Percentage of Remaining Invocations Dynamically Bound

From the percentage of invocations statically bound with respect to the total in unoptimized code
it might seem that 0CFA performed satisfactorily. However, since inlining decreases the number of
invocations dramatically, that conclusion is unjustified. Figure 17 reports the number of dynamic
dispatches with respect to the number of invocations remaining in the optimized code. For 0CFA,
better than 20 percent in most cases, and in some cases better than 50 percent of all invocations
require dynamic dispatch. For IFA with cloning, in all but one case less than 3 percent of the
remaining invocations require dynamic dispatch.*

8 Related Work

The use of non-standard abstract semantic interpretation for flow analysis in Scheme by Olin Shivers
[33] provides a good basis for this and other work on practical type inference. In particular, the ideas
of a call context cache to approximate interprocedural data flow and the reflow semantics to enable
incremental improvements in the solution foreshadow this work. Recently, Stefanescu and Zhou [35]
as well as Jagannathan and Weeks [20] have provided simplified frameworks for flow analysis.

Iterative type analysis and message splitting using run time testing are conceptually similar
techniques developed in the SELF compiler [6, 7, 8]. However, iterative type analysis does not type
an entire program, only small regions. Later work by Hélzle [19] on the SELF-93 compiler uses the
results of polymorphic inline caches to determine likely run time types, inserting type tests to ensure
that the expected actually occurs.

Type inference in object-oriented languages in particular has been studied for many years [36, 17].

*This normalization is somewhat misleading since the absolute number of invocations within the optimized IFA
code is less than that within optimized 0CFA code. As a result, the relative frequency of dynamic dispatches within
optimized code exaggerates the absolute number in IFA relative to OPS. The absolute numbers are reported in
Appendix A.
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Constraint-based type inference is described by Palsberg, Schwartzbach and Oxhgj in [23, 22]. Their
approach was limited to a single level of discrimination and motivated our efforts to develop an
extendible approach. Agesen [1, 2] extended the basic one level approach to handle the features of
SELF [37]. However, this approach uses a single pass, limiting it to eager splitting,.

The soft typing system of Cartwright and Fagan [5] extends a Hindley-Milner style type inference
to support union and recursive types as well as insert type checks. To this Aiken, Wimmers, and
Lakshman [3] add conditional and intersection types enabling the incorporation of flow sensitive
information. However, these systems are for languages which are purely functional where the question
of types involving assignment does not arise and extensions to imperative languages are not fully
developed. Lastly, our algorithm shares some features of the closure analysis and binding time
analysis phases used in self-applicative partial evaluators [30], again for purely functional languages.

9 Conclusion

We have developed and implemented an algorithm for context sensitive flow analysis of high level
programming langugages. This algorithm uses a novel contour representation which is iteratively
extended, enabling efficient analysis of many common programming structures. We have imple-
mented this algorithm as as part of the Illinois Concert System whose goal is to develop portable
efficient implementations of concurrent object-oriented languages on parallel machines. Our em-
pirical demonstrate that the algorithm produces information at a cost proportional to the amount
obtained and that the information is valuable for optimizing compilers.

Our compiler currently uses flow information with cloning [26] to eliminate dynamic dispatch,
inline functions and methods, unbox variables, as well as for interprocedural constant propagation and
locality approximation. This information has enabled us to achieve C-like performance for object-
oriented programs on numerical codes [29] and to specialize the calling conventions for distributed
programs [28]. We are currently expanding the framework for more interprocedural analyses, and
looking at ways to enable summarization [3] and to characterize the precision of the algorithm.
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A Experimental Results

The results of analysis for the three algorithms on a variety of complete, kernel and synthetic programs
appear in Table 2. TFA refers to our incremental inference algorithm, OPS refers to the inference
algorithm in [22], and 0CFA refers to a standard flow insensitive algorithm which allocates exactly
one type variable per static program variable.

| Program | Lines | Passes | Nodes | Invokes | Contours | Typed? | Checks | Im | Time |
TFA
ion 1934 5 50779 3470 760 YES 0 0 713.70
network 1799 3 29090 2228 730 YES 0 31 234.15
circuit 1247 6 34505 1801 430 YES 0 7 | 289.52
pic 759 6 40284 2128 357 YES 0 0 | 363.18
mandel 642 1 17257 1011 442 YES 0 0 25.48
tsp 500 3 10290 627 207 YES 0 0 56.24
mmult 139 7 11518 543 147 YES 0 0 78.35
poly 41 4 3819 234 90 YES 0 0 18.12
test 39 7 1581 130 76 YES 0 0 15.11
OPS
ion 1934 1 115800 7098 2817 NO 19 264 | B77.51
network 1799 1 73864 6018 2296 YES 0 87 | 357.47
circuit 1247 1 49849 2646 1097 NO 44 679 136.03
pic 759 1 48420 2783 1068 NO 28 196 144.16
mandel 642 1 26280 1442 562 YES 0 0 60.78
tsp 500 1 18203 1150 472 NO 2 31 40.78
mmult 139 1 10928 595 216 NO 4 104 22.36
poly 41 1 4233 250 137 YES 0 0 8.25
test 39 1 1353 123 100 NO 2 0 2.94
0CFA
ion 1934 1 34729 3380 396 NO 260 | 1096 131.16
network 1799 1 18874 1804 407 NO 132 926 58.77
circuit 1247 1 15491 976 190 NO 111 405 28.93
pic 759 1 16065 1300 180 NO 119 390 37.68
mandel 642 1 8755 760 116 NO 59 524 16.52
tsp 500 1 7006 571 130 NO 27 225 15.79
mmult 139 1 3842 231 61 NO 4 89 7.60
poly 41 1 1848 138 48 NO 4 55 3.84
test 39 1 1001 108 44 NO 2 19 2.92

Table 2: Results of Iterative Flow Analysis

The number of Passes is determined by the algorithms automatically when it determines that no
run time type errors are possible. Nodes is the number of flow graph nodes used by the algorithm.
Invokes is the number of invocations (abstract calls) analyzed. Contours is the number of contours.
In 0CFA this corresponds to the number of methods. A program can be Typed? by an algorithm if
it can prove an absence of run time type errors. Checks is the number of type checks which must be
made to ensure such an absence. The number of imprecisions I'm indicates number of nodes which
were not resolved to a singleon value. The implementation is approximately 2600 lines of largely
unoptimized Common Lisp/CLOS and Time in seconds is reported for CMU Common Lisp/PCL
on a Sparcl0/31.
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