
ICC++ { A C++ Dialect for High PerformanceParallel Computing?A. A. Chien, U. S. Reddy, J. Plevyak and J. Dolby??Department of Computer Science1304 W. Spring�eld AvenueUrbana, IL 61801Abstract. ICC++ is a new concurrent C++ dialect which supportsa single source code for sequential and parallel program versions, theconstruction of concurrent data abstractions, convenient expression ofirregular and �ne-grained concurrency, and high performance implemen-tations. ICC++ programs are annotated with potential concurrency, fa-cilitating both sharing source with sequential programs and automaticgrain size tuning for e�cient execution. Concurrency control is at the ob-ject level; each object ensures the consistency of its own state. This con-sistency can be extended over larger data abstractions. Finally, ICC++integrates arrays into the object system and the concurrency model. Inshort, ICC++ addresses concurrency and its relation to abstractions {whether they are implemented by single objects, several objects, or ob-ject collections. The design of the language, its rationale, and currentstatus are all described. Keywordsconcurrent languages, parallelism, object-parallel programming, memory consis-tency, concurrent object-oriented programming.1 IntroductionObject-oriented approaches to writing parallel programs support modularity,polymorphism, and code reuse which provide crucial leverage for managingthe complexity of concurrency and distribution. This leverage aids in writinghigh performance programs which exploit complex irregular and adaptive com-putational methods as well as intricate distributed data structures. However,concurrency interacts subtly with abstractions, so a concurrent object-oriented? The research described in this paper was supported in part by NSF grants CCR-9209336 and MIP-92-23732, ONR grants N00014-92-J-1961 and N00014-93-1-1086and NASA grant NAG 1-613. Andrew Chien is supported in part by NSF YoungInvestigator Award CCR-94-57809. Uday S. Reddy is supported by the NationalScience Foundation, grant NSF-CCR-93-03043?? The authors can be contacted at (217) 333-6844 (phone) and (217) 333-3501 (fax),and by e-mail at fachien, reddy, jplevyak, dolbyg@cs.uiuc.edu.

language must be carefully designed to preserve the bene�ts of object-orientedtechniques. Furthermore, language design impacts achievable e�ciency, so suchlanguages must also be designed with modern compiler optimization techniquesin mind.ICC++ is based upon C++ because, since C++ has been widely adopted,leveraging it exploits both existing software development tools and the trainingof many programmers. However, C++ introduces a number of complications,most of which derive from the exposure of low-level implementation information.Examples include pointers, especially pointer arithmetic within objects and ar-rays, and a restrictive but unsafe type system. In the design of ICC++, we haveattempted to preserve C++, modifying or augmenting the language only whereit was absolutely necessary for concurrency and for e�ective compiler analysis.We believe that for a parallel object-oriented language to be widely accepted,it must support the following capabilities:{ construction of concurrent data abstractions,{ convenient expression of irregular and �ne-grained concurrency,{ high sequential and parallel performance, and{ single source code for sequential and parallel program versionsData abstractions are the key element of object-oriented programming; itmust be possible to build a data abstraction and assure its correctness in anumber of concurrency environments. These data abstractions must be able tosupport high levels of concurrency to provide modularity for highly concurrentprogram structures. Object-oriented programs are by their nature �ne-grained(many objects and procedures are small), and the natural expression of concur-rency is often in these units. Performance is important, as it is often the raisond'être of parallelism. Parallelizing a program must not preclude its e�cient exe-cution on one or a small number of processors. If data locality is high, parallelC++ codes must produce C-like e�ciency to be competitive. A single sourcecode is important because the vast majority of software is developed for unipro-cessors; single source allows many programs to be parallelized without radicalrewriting. ICC++ supports these four capabilities with three key features:Extensional Concurrency Constructs ICC++ provides language constructs forspecifying available concurrency as a partial order of execution. These languageconstructs encourage the speci�cation of irregular parallelism because concur-rency can be speci�ed by annotating blocks or loops without disturbing the sur-rounding program structure. Speci�cation of available concurrency also supportse�cient implementation, allowing the system to serialize execution as necessaryfor e�ciency.Flexible Object Concurrency Model ICC++ speci�es an object consistency modelwhich allows programmers to reason about a data abstraction's correctness. Inaddition, ICC++ also speci�es concurrency guarantees for objects, enabling pro-grammers to reason about progress. Because it may be preferable to implement

a data abstraction with several objects, the consistency model can be extendedover multiple objects structurally and procedurally.Integrated Arrays and Objects ICC++ integrates arrays and objects, provid-ing concurrent arrays with an object interface. These object collections can beused to build concurrent abstractions, providing modularity for a wide range ofconcurrent program structures.ICC++ was designed as part of the Illinois Concert project, and is describedfully in [15, 23]. We have researched the design of concurrent object orientedprograms [35, 13, 17, 16], building numerous application programs totaling over40,000 lines. In addition, we have studied the design of concurrent object-orientedlanguages and their implementation [38, 37, 25, 14, 12], exploring a variety ofaggressive compiler and runtime techniques. The design of ICC++ was based onthis experience, and an extensive survey of parallel object-oriented approaches.An implementation based on the Illinois Concert system has been in progresssince February 1995, and has recently become operational. Performance resultsare not yet available, but we expect them to be in line with previous publishedstudies using the Concert system [14, 19, 37, 38, 36].The remainder of the paper is organized as follows. The three key featuresenumerated above are described in Sections 2, 3 and 4 respectively. An ex-tended example ICC++ program is examined in Section 5. In Section 6, themost pertinent related work is briey described and related issues are discussed.Finally, Section 7 closes by summarizing the paper.2 ConcurrencyThe speci�cation of concurrency should be as exible as possible, while sup-porting a single source with sequential program versions and e�cient sequentialand parallel implementations. Therefore concurrency should be introduced as anextension to existing syntactic structures and the concurrent constructs shouldleave implementations maximal exibility. ICC++ provides concurrent blocksand concurrent loops as extensions to standard C++ syntax so as to enableincremental parallelization of existing code. Furthermore, both the blocks andloops introduce available concurrency, not guaranteed concurrency, providingimplementation freedom.32.1 conc BlocksThe primary construct for introducing available concurrency is the conc block,an extension of the C++ compound statement, which speci�es that the containedstatements are only partially ordered based upon local data dependences. concblocks are de�ned as follows:3 ICC++ also includes primitives which guarantee concurrency for situations wherea guarantee is required [23]; however, these primitives are expensive as they dictatean implementation to the system, and should be used with care.

conc f S1; ... ; Sn; gis a compound statement which de�nes the following partial order � on itsconstituents: Si � Sj () i < j and Si) Sjwhere Si)Sj indicates that statement Sj depends upon Si. Statements in aconc block are executed such that if Si � Sj , then Si will be executed completelybefore Sj is begun. Sj depends upon Si if1. any identi�er assigned in Si is read in Sj , or2. if Si contains a jump statement.The �rst rule allows concurrent operations upon objects via pointers, whilepreserving sequential semantics for local variables, including the pointers them-selves. Thus conc f a->b(); a->c();g would be concurrent but conc f a =new Foo(); a->b(); g would be sequential. Jump statements are goto, breakand continue; the second rule gives them natural semantics, serializing the concblock around them. A conc block exits after all statements within it have com-pleted. As in C++, nested blocks are treated as single statements.These rules are designed to expose concurrency upon objects, while preserv-ing sequential semantics where natural; this enables the introduction of con-currency with small perturbation to program structure. Sequentializing for localvariables allows preexisting compound statements that declare and use local vari-ables to be transformed into conc blocks, exposing concurrency for calls uponobjects within them. Similarly, permitting control ow within conc blocks, andproviding a natural semantics for it, allows conc to be applied to preexistingcode with such irregular control structures.By exposing available concurrency rather than guaranteed concurrency, theconc block provides crucial implementation latitude. Since there is no require-ment for fair scheduling of the statements within the block, they can be sequen-tialized and calls may be inlined where appropriate. Furthermore, the implemen-tation can choose where to exploit concurrency depending upon the grain sizeand scale of the target machine.2.2 conc LoopsEach of the C++ looping constructs can be modi�ed by conc producing concfor, conc while, and conc do while. C++ is unusual in that no loop constructhas a distinguished loop variable, as does for in Pascal and do in Fortran.Thus, the semantics of the concurrent loop forms must be designed carefully toexpose cross-iteration concurrency while retaining reasonable behavior for the lo-cal variables. Furthermore, the concurrent loops must be compatible extensions:since all C++ loops allow control ow operations, the concurrent loops mustsupport them as well. conc loops are dynamically unfolding conc blocks. Thus,loop carried (read after write) dependences are respected only for scalar vari-ables, but not for others such as array dependences and those through pointerstructures.

conc while (i < 5) { if (i < 5) conc {a->foo(i); a->foo(i);i++; i++;} ==> if (i < 5) conc {a->foo(i);i++;...The above code fragment exempli�es how the dynamically unfolding concblock works. This code executes as follows. First the if test is evaluated, and thenthe outer conc block starts. The call on foo and the i++ both start immediately.As soon as the i++ �nishes, the nested if statement starts, and this cycle repeatsuntil the if test fails. Note that the nested if must wait for the i++, but notfor the call to foo. Thus, the calls to foo operate concurrently, but the indexvariable i is sequentialized properly.The motivation of this design parallels that of conc blocks. Permitting controlow and respecting scalar variable dependences within concurrent loops simpli-�es adding concurrency to preexisting sequential loops. As with conc blocks, con-current loops specify available concurrency and make no guarantees about actualconcurrency. This allows the implementation considerable latitude in schedulingiterations, such as running groups of iterations sequentially on di�erent nodes.2.3 ExamplesIn our experience with the Concurrent Aggregates language, we have found thesemantics of conc blocks and loops to be widely useful. Some example concstructures are shown below.void qsort(int A[], int p, int r) { void qsort(int A[], int p, int r) {if (p < r) { if (p < r) conc {int q = partition(A,p,r); int q = partition(A,p,r);qsort(A,p,q); qsort(A,p,q);qsort(A,q+1,r); qsort(A,q+1,r);} }} }The canonical qsort program fragment above illustrates adding a conc toincrementally parallelize a program; the sequential code is on the left, the par-allel code on the right. conc blocks respect dependences for local variables, anddependences are created only by assignments. Thus, the two calls to qsort willbe constrained to occur after partition because the call to partition assignsq and the calls to qsort use it. So adding a conc to this function introducesconcurrency trivially.Particle particles[] = new Particles[particle_count];conc for(int i = 0; i < particle_count; i++)conc for(int j = 0; j < particle_count; j++)particle[i]->check_collision(particle[j]);

The above loops illustrate how sequential behavior is preserved while stillexposing concurrency. Since loop carried dependences are respected for i and j,the loop tests and index increments all behave as in sequential for loops, butthe calls to check collision proceed in parallel.3 Objects, Data Abstraction, and ConcurrencyThe core of object-oriented programming is building abstractions { encapsulateddata and operations upon it which de�ne a well-speci�ed interface. These op-erations perform logically atomic updates to the abstraction's state; and eachoperation must maintain the consistency of that state. Support for such abstrac-tions in sequential languages is well understood [30, 34], but the situation is morecomplex for concurrent languages [1, 43, 17, 2, 4, 9, 24, 22]. Concurrency allowsonly a partial order on state updates, complicating the notion of consistency.Any concurrent model must preserve the notion of logically atomic operationsupon an abstraction in a concurrent setting.Concurrency models must also be designed with programmability and single-source maintenance in mind. For instance, a simple model in which every mem-ber function had exclusive access to the object for its duration would, in a naiveimplementation, make nested calls deadlock. This would naturally entail muchprogramming around the language and drastic changes to any conceivable se-quential source. Even if directly nested calls were allowed, all concurrent callsupon a single object would be sequentialized; this is, in our experience, a veryburdensome restriction and a fruitful source of deadlock.The ICC++ object concurrency model thus aims to maintain logically atomicoperations, while being as permissive as possible. The model has three ele-ments: an object consistency model and mechanisms for extending that modelover multiple objects, for building larger data abstractions, and across multipleabstractions.43.1 Object Data AbstractionsTo support object abstractions, ICC++ de�nes an object consistency model andobject concurrency guarantees. The consistency model preserves the notion oflogically atomic operations by ensuring that method calls do not disrupt eachother. Since this model is de�ned by the language, it does not depend on usageconventions for correctness as in [8, 24, 9, 40, 6]. Concurrency guarantees de�newhich member calls will run concurrently, allowing programmers to reason aboutprogress and deadlock.Object Consistency In ICC++, concurrent method invocations on an objectare constrained such that intermediate object states created within a member4 This concurrency model has been designed with the Inheritance Anomaly in mind,but we defer discussion of that issue to Section 6.

function are not visible. In essence, this means that their e�ect on the membervariables is as if the member functions operated one after another. This preservesthe same notion of consistency as for sequential objects: a series of member callseach leaving the object in a consistent state. Nested calls (i.e. calls on this)are an extension of the caller for concurrency control purposes. Finally, directaccess to object state from outside member functions (e.g. a->field name) aresubjected to the same consistency model through implicit accessor members.Object Concurrency Guarantees Concurrency guarantees enable a pro-grammer to reason about concurrency to ensure progress. ICC++ guaranteesthat all member function calls for which the order of execution explicitly cannota�ect �nal object state will execute concurrently. This is determined by syntac-tic examination: each member function is examined to determine which membervariables it might read and write, either in itself or transitively through callsupon this. A given pair of member functions are guaranteed to be concurrent ifneither can read any member variable the other may write. Speci�c examples forwhich concurrency is guaranteed include two methods which share no membervariables and those that employ read-only sharing of member variables.Examples The following simple class provides an example of how the concur-rency model works.class Particle {double mass;double x_vel, y_vel, x_pos, y_pos;double x_vel_1, y_vel_1;PListElt *my_neighbors;public:void check_collision(Particle *other) {if (collision_test(x_pos, other->x_pos, y_pos, other->y_pos))x_vel_1 += other.x_vel * (other.mass/mass);y_vel_1 += other.y_vel * (other.mass/mass);}}void update(void) {x_vel = x_vel_1;y_vel = y_vel_1;x_pos += x_vel;y_pos += y_vel;}}; The idea behind check collision is that two particles collide if they arecloser than epsilon apart, and so a�ect each others' velocity. check collisionwill be called for each pair of particles, and then update will be called to changeeach particle's velocity and position.

Particle particles[PCount];conc for(int i = 0; i < PCount; i++)conc for(int j = 0; j < PCount; j++)particles[i].check_collision(particles[j]);conc for(int i = 0; i < PCount; i++)particles[i].update();The combination of consistency and concurrency guarantees assures that con-current calls to check collision for each of a particle's neighbors do not createrace conditions updating x vel 1 and y vel 1, and that there is no deadlockwhen two particles call check collision on each other.3.2 Object Ensemble Abstractions { integralDynamic data abstractions are often most conveniently implemented as ensem-bles of objects such as trees, networks and other pointer-based structures. Con-currency control must allow consistency to be maintained upon such multi-objectabstractions. The integral type speci�er, when applied to a member variable,extends object abstraction consistency to include all references to that membervariable. In short, all references to it will be considered read/write operationson that �eld, providing local serialization. Note that this does not prevent inter-ference, since the object whose reference is declared integral could be shared.3.3 Composing Abstractions Procedurally { friendA fundamental aspect of coordinating concurrent activities is the need to performcoordinated updates across several distinct abstractions [21, 31], involving someform of transactions. friend functions in C++ are considered member func-tions upon all arguments for which they are friends, and thus friend functionsin ICC++ can be used to procedurally compose operations on several objectsinto a single consistent operation subject to the same object consistency and con-currency guarantees as above. That is, the friend function will be consistentwith respect to all of its arguments for which it operates as a friend.3.4 ExamplesA queue abstraction illustrates composing multiple objects into an abstraction,requiring the use of integral.class Queue { class queueElt {integral queueElt *head; friend class Queue;integral queueElt *tail; queueElt *next;integral queueElt *prev;public:Queue(void) { void set_prior(queueElt *e) {

head = new queueElt; prev = e;tail = new queueElt; prev->next = this;head->next = tail; }tail->prev = head;} queueElt *unsnap(void) {if (!prev || !next)void enqueue(queueElt *elt) { return NULL;head->next->set_prior(elt); else {head->next = elt; prev->next = next;elt->prev = head; next->prev = prev;} next = NULL;prev = NULL;queueElt *dequeue(void) { return this;return tail->prev->unsnap(); }} }friend bool operator<(Queue&, Queue&); };}; Since enqueue and dequeue work only with the head and tail memberrespectively, items can be inserted and removed from the queue concurrently.In fact, enqueue and dequeue are guaranteed to be concurrent. dequeue returnsNULL when the queue is empty. When the queue is empty or nearly so, enqueueand dequeue operate upon the same list elements, and care must be taken toavoid race conditions. When the queue is empty (having only head and taildummies) enqueue and dequeue both access the head object, and dequeue willalways return NULL. When there is one item, unsnap and set prior will notinterfere on that object, preserving the queue's consistency.5 When there aretwo items, set prior and unsnap access the same element concurrently, buttouch di�erent parts of its state. The integral declarations on head and tailprevent multiple enqueues or dequeues from interleaving.bool operator <(Queue &left, Queue &right) {int length = 0;for(QueueElt *ptr = left.head->next; ptr != left.tail) {length++; ptr = ptr->next; }for(ptr = right.head->next; ptr != right.tail) {length--; ptr = ptr->next; }return (length < 0);} This function takes and compares the lengths of the two queues; taking thelength of a Queue object requires exclusive access to the queue to prevent in-sertions and deletions while the length is being taken, which could result in5 the integral declaration on queueElt::tail prevents set prior and unsnap frominterleaving their updates to prev.

wrong answers. However, a comparison requires the lengths of two queues, andfriend allows the operator <(Queue *, Queue *) to prevent disruptions toeither queue while the lengths are being measured.3.5 DiscussionThe concurrency control model for objects is critical not only for programma-bility, but for execution e�ciency as well. Our concurrency control model isdescribed in terms of visible state changes, rather than locking or exclusivity, toallow the compiler to optimize concurrency control. In the absence of an oper-ational view of locking (and the lock granularity), concurrency guarantees arealso necessary. Declaring intermediate states to be invisible naturally makes ob-jects thread-safe { allowing object state to be safely cached in registers undercompiler control. Our consistency model could be implemented by monitors ormany variants of read/write locking.Composing objects into larger abstractions structurally and procedurally is adi�cult problem that recurs in virtually all concurrent systems. While transac-tions and nested transactions provide an elegant, exible model, they are far tooexpensive for object-level concurrency. For �ne-grained concurrency, overhead ofa few instructions is all that can be tolerated for the common case. Our integralmechanism meets this cost constraint. The friend mechanism is more expen-sive, potentially requiring remote locking, and is included as a building block forwhen such expensive structures are really essential.4 Arrays, Objects, and CollectionsArrays are important both for concurrency and data distribution in many con-current programs. ICC++ provides collections which compatibly extend C++arrays, integrating them into the object model. This allows array-level functional-ity to be expressed as members of an array class. These collection classes supporta wide variety of concurrency patterns, from a data-parallel array model to morecomplex concurrent abstractions. They are related to collections in pC++ [29]when used for data parallelism, but each element can access the entire collection,allowing them to implement more complex composite behavior as well. Finally,collections allow distributions to be explicitly speci�ed (see [23]).4.1 De�ning Object CollectionsCollections are de�ned with standard class declarations, with the addition of[] to the class name and are declared just as arrays. This declaration createsseparate classes for the elements, called type, and for the collection itself, calledtype[]. Member variables and functions can be de�ned for both classes; decla-rations for the entire collection use explicit type quali�cation. Each element in acollection has a private set of the element members, and the collection membersform a separate object which is shared across all elements. Collections can be

nested, and intermediate levels are both collections themselves and elements ofthe enclosing level.// implicit definition // explicit definitiondouble grid_cell_size; class Grid_1D[] {class GridCell { Particle particles[];Particle particles[]; int particle_count;int particle_count; double Grid_1D[]::cell_size;} grid[50]; } grid[50];The above code shows two ways to create a grid collection. The implicitde�nitions correspond to traditional arrays, but the explicit de�nition exposesthe two classes Grid 1D[] and Grid 1D, allowing the variable cell size to bedeclared as a collection member. Note that collection objects are declared justlike arrays.Collections may be nested just like arrays, such classes being declared withmultiple sets of []. The inner levels of such nested collections are both collectionsthemselves and elements of their enclosing collection. Also, since collections areclasses, they support derivation. It works class-wise so that derived inheritsfrom base, derived[] inherits from base[] and so forth.4.2 Data-Parallel CollectionsThe simplest use of collections is to express data parallelism, by which we meansynchronous application of the same method to every element of the collection.This construes data parallelism as object-parallel as in pC++[29], rather thanas the vector operations common in data parallel Fortran. The ability to de-clare collection-level functionality as collection members allows collections toencapsulate data parallelism beneath a collection interface.class Grid[][] {Particle particles[];int particle_count;double Grid[][]::cell_size;public:void update(void) {conc for(int i = 0; i < particle_count; i++)particles[i]->update();}void check_collisions(void) {conc for(int i = 0; i < particle_count; i++)conc for(int j = 0; j < particle_count; j++)particle[i]->check_collision(particle[j]);}void Grid[][]::do_all(void (Grid::*op)(void)) {

conc for(int i = 0; i < size(); i++)conc for(int j = 0; j < (*this)[0].size(); j++)(*this)[i][j].*op();}}; The Grid elements check collisions member calls check collision foreach particle pair in the grid cell. The Grid::update member calls update foreach particle in the cell. The size() member functions is prede�ned for allcollection classes, and returns the number of elements in the collection. Dataparallel calls across the collection would use the Grid[][] member functiondo all to fan a given Grid member function out across each element. Suchcollection members allow vector operation syntax like that in pC++ or Dome[5]to be used, as shown below.Grid grid[50][50];for(int i = 0; i < NUM_ITERATIONS; i++) {grid.do_all(Grid::check_collisions);grid.do_all(Grid::update);}4.3 Concurrent AbstractionsCollections are a convenient way of expressing distributed abstractions whichpresent a concurrent interface. Collections have prede�ned members which giveelements access to the entire collection: index() yields an element's position inthe collection, size() returns the collection's size and <type>[]::this refersto the collection object itself.6template<class Element>class MultiSet[] {Element elts[];int elt_count;public:Element add_elt(Element elt) {return elts[elt_count++] = elt;}int find_elt(Element elt) {return MultiSet[]::this->find_elt(elt);}int find_elt_internal(Element elt) {int count = 0;for(int i = 0; i < elt_count; i++)6 There are other prede�ned collection members [23]

if (elts[i] == elt) count++;return count;}int MultiSet[]::find_elt(Element elt) {int count = 0;conc for(int i = 0; i < size(); i++)count += (*this)[i].find_elt_internal(elt);}}; The MultiSet abstraction is a distributed multi-set in which di�erent ele-ments are stored in each collection element. Elements are inserted into speci�celements and looking up an element therefore must look across the entire collec-tion. The ability of elements to access the entire collection allows the MultiSetelements to cooperatively implement a concurrent interface to the abstraction:multiple calls to add elt can proceed simultaneously when called upon di�erentelements of the collection, as shown below.MultiSet<int> set[17];conc for(int i = 0; i < 100; i++)set[i%17].add_elt(i);Note that the use of templates and collections allows the MultiSet to bea reusable abstraction that presents a concurrent interface. This combinationsupports reusable libraries of concurrent abstractions.4.4 DiscussionCollections in ICC++ represent a uni�cation of collections as distributed arraysof objects as in [29, 10] and the aggregate approach as in [18]. The array ap-proach is more compatible with the preexisting C++ notion of arrays and o�ersthe advantage of separating the collection and constituent types. This can allowdistinct members to be de�ned upon each type. A drawback to the independenceof the types is that the element members have no primitive mechanism to referto the whole collection, making it harder to implement concurrent abstractionslike the MultiSet above. The aggregate approach supports cooperation amongstthe constituents, but by combining the array and constituent types, it compli-cates deriving collections from classes. By creating two distinct but related types,ICC++ collections combine the advantages of both approaches.This approach to collections, by integrating arrays into the object model, alsodivorces arrays and pointers7, which has two bene�ts. First, it increases typesafety by preventing the confusion of arrays of objects and pointers to singleobject allowed by using pointers for arrays. Second, and more importantly, iteliminates one di�culty for program analysis: pointer arithmetic.7 This necessitates some changes to C++ syntax [23]

5 Extended ExampleThe constructs described so far are designed to allow exible expression of con-currency and incremental parallelization of existing programs. We illustrate howthese constructs are used in a simple distinct element example, in which parti-cles are moving about in space, colliding with one another. The overall programmoves the particles around the grid for a succession of time steps. Each iterationconsists of three phases: checking for collisions, updating the particles' positionsand �nally moving the particles between grid cells.Grid grid[][];for(int i = 0; i < TIME_STEPS; i++) {grid->do_all(Grid::check_collisions);grid->do_all(Grid::update);grid->do_all(Grid::regrid);} The top-level loop is simple because each phase has been encapsulated asone data-parallel operation across the entire collection grid. The three phasesproceed as follows.handling collisions applies a test for contact among particles. All forces im-parted by collisions are also calculated. The code for this phase was presentedin Section 4.2; recall that parallelism was exposed both across particles, andacross collisions. It was noted in [13] that an auxiliary contact list had to begenerated for each particle to vectorize this loop, but ICC++'s more exibleconcurrency model makes this unnecessary.updating particles velocities and positions merely involves updating thevelocities of the particles with the forces calculated from the collisions andchanging their positions based upon their velocities. The code for this phasewas also presented in Section 4.2, and is a straightforward data-parallel op-eration across the particles.regriding involves moving particles from one grid cell to another as their posi-tions change over time.void Particle::regrid(Grid *cell) {int old_col = cell.index();int old_row = (*cell.Grid[]::this).index();double size = cells.size;int new_row = x_pos / size;int new_col = y_pos / sizeif (new_row != old_row || new_col != old_col) {cell.remove(this);(*cell.Grid[][]::this)[new_row][new_col].add(this);}}

void Grid::regrid(void) {for(int i = 0; i < particle_count; i++)particle[i].regrid(this);}This code is similar in structure to the update code, being a data paralleloperation across the particles. However, the need to move particles betweengrid cells causes more complex patterns of concurrency control; multipleadd and remove calls will be made to grid cells, and the consistency modelensures that they will not result in race conditions.Thus all phases can be parallelized with ICC++. Contrast this with [13],where part of the particle interaction phase (the contact list generation) wascompletely sequential in the data-parallel version, limiting the potential speedup.6 Discussion and Related Work6.1 C++ CompatibilityIn the design of ICC++, our intention was to avoid any gratuitous incompat-ibilities with sequential C++ programs. As a result, large sections or even en-tire C++ programs can be incorporated directly as ICC++ programs. However,there are two important di�erences. First, ICC++ eliminates pointer arithmetic,requiring explicit array type declarations for collections (encapsulated arrays).This change ensures that pointers are not used to point into arbitrary locations,which would reduce the e�ectiveness of aggressive compiler analysis techniques.Second, to support concurrent abstractions, objects must have well-de�ned con-currency control semantics. Our semantics ensures that concurrency control over-head is low (avoiding expensive callback checking), but can deadlock in cases ofmutual recursion. External C++ functions can be called easily from ICC++,and bidirectional interoperability will be achieved with CORBA IDL bindingsof ICC++ and C++. In summary, we believe ICC++ will allow many programsto be migrated from C++ with with modest e�ort, and the resulting ICC++programs can be converted into legal C++ programs with purely mechanicaltransformations.While our experience with ICC++ so far con�rms that most C++ programscan be simply adapted, the standard template library poses particular problems.The draft C++ standard requires that container classes provide references toelements; since ICC++ does not allow pointers or references to built in types, thismeans that containers for such types cannot be constructed in ICC++. Forward,bidirectional and random access iterators have the same constraint. Thus, classessuch as list<int> or forward iterator<int> require special treatment. We areexploring alternate implementations for such classes, using helper classes.6.2 Derivation and ConcurrencyThe Inheritance Anomaly threatens to undermine the concurrent object-orientedapproach by turning two basic mechanisms against each other: derivation and

concurrency. The problems described by [32] involve the sequencing of messages;that is, when certain messages may be handled by a given object. In a sequentialobject-oriented language, when one tries to dequeue from an empty queue, thedequeue generates an error rather than being delayed until such time as there issomething to get, as in the examples in [32]. Due to its C++ heritage, ICC++takes the same approach, and there is no notion of messages being delayed un-til they can be handled. All synchronization must be ensured through controlstructures, such as sequential blocks, provided by the language.6.3 Parallel C++ E�ortsThe many approaches to parallel C++ can be divided into two categories: data-parallel and task-parallel extensions. Data parallel extensions of C++ [29, 28]employ collections or aggregates [17, 39] to describe parallelism, using objectsto increase the exibility of the data parallel model. However, data parallellanguages cannot easily express more irregular and client-server forms of con-currency, limiting their domain of applications. Rewriting sequential programsas e�cient data parallel programs often requires signi�cant reorganization, ase�cient alignment into parallel collections can cause major program structuredisruptions.The diversity of task-parallel extensions of C++ is much greater and can beloosely categorized based on their treatment of objects and concurrency. First,there are languages (or libraries) that introduce concurrency without changingthe object model [6, 8, 40, 24]. These systems require the programmer to buildconcurrency control by convention, providing no language support for objectconsistency or for building abstractions from larger collections of objects. Second,many languages (or libraries) use objects to encapsulate concurrency, exploitingobjects to represent data parallel collections or coarse-grained tasks [5, 22]. Inthese languages concurrency control may be expressed explicitly in a library,or implicitly via data ow dependences [22]. Concurrency in these models isgenerally expensive, and used only sparingly for coarse-grained abstractions.Finally, Compositional C++ provides atomic functions, but these are only usefulfor individual objects { they are not allowed to access another object { andhence can only be used to build single object data abstractions.8 In contrast tothese language designs, ICC++ provides an object model that integrates bothconcurrency control and concurrency guarantees, and is extensible, supportingconcurrent data abstractions built with several objects.Another important distinction amongst parallel C++'s is the scheduling orconcurrency guarantees provided by the language. Data parallel languages havesequential semantics, so the data parallel C++'s provide no concurrency guar-antees. Of the task parallel C++ dialects, Charm++ provides explicit controlover scheduling [24], and Compositional C++ [9] provides guaranteed fair thread8 MPC++ is another parallel C++ dialect worthy of mention, but since MPC++ pro-vides a programmable language syntax and semantics it is di�cult to make speci�ccomparisons.

scheduling for all par constructs. In contrast, ICC++ emphasizes the annotationof potential concurrency, and gives concurrency guarantees in an data-orientedform. This gives the implementation freedom to select an execution granularity(thread sizes) for e�ciency, facilitating e�cient sequential execution.6.4 Other Concurrent Object-Oriented LanguagesThough there are a wide variety of non-C++ concurrent object-oriented lan-guages [43, 2, 17, 33, 27, 3], we focus on Actor-based languages [1] because theyclosely integrate the notion of actors (objects) and concurrency. This allows pro-grammers to reason at the level of object-operation. However, the actor modelprovides no clear basis for building data abstractions from collections of objects,and the actor model provides no concurrency guarantees. In contrast, ICC++includes both concurrency guarantees and language support for building abstrac-tions from ensembles (structures or collections) of objects. In addition, to datemost of the Actor based languages have been ine�cient in implementation. Re-cent work in our group [37, 38, 36] and others [41, 26] demonstrates that actorlanguages need not be ine�cient.6.5 Illinois Concert ProjectICC++ is the second language supported by the Concert project (the �rst isConcurrent Aggregates [17, 11]). The Illinois Concert system is a complete de-velopment environment for irregular parallel applications [19]. It supports a con-current object-oriented programming model and includes a globally optimizingcompiler, e�cient runtime, symbolic debugger, and an emulator for program de-velopment. This system employs novel compiler techniques [37, 38, 36] and run-time techniques [38, 25] to achieve e�cient execution of �ne-grained programs onboth sequential and parallel platforms. The Concert system has demonstrated se-quential performance matching C and surpassing C++ on demanding numericalbenchmarks such as the Livermore Kernels [38], and superior speedups and highabsolute performance on a parallel molecular dynamics application (CEDAR [7])on the the Cray T3D [20] and Thinking Machines CM-5 [42]. The implementa-tion of ICC++ which has just become operational exploits the same aggressivecompiler analysis and code optimization, so we expect similar performance inthe near future.7 SummaryICC++ is a new C++ dialect designed to support both e�cient sequentialand parallel execution. By allowing concurrency to be introduced incrementally,ICC++ allows sequential and parallel program versions to be maintained withsingle source and permits convenient expression of irregular and �ne-grainedconcurrency. By de�ning a simple object consistency model and a exible set ofextensions, ICC++ supports the construction of concurrent data abstractions.

Distributed data abstractions are further supported with the notion of collections{ a compatible extension of arrays. Finally, by focusing on programmer annota-tion for potential concurrency, not actual concurrency, ICC++ allow the systemto optimize execution granularity to match the underlying machine, providingboth high performance sequential and parallel execution (on both distributedmemory and shared memory systems).ICC++ has been implemented based on the compiler and runtime technol-ogy extant in the Concert system, and future work will include not only exten-sive performance benchmarking, but also evaluation of the language and systemthrough building several large-scale applications.References1. G. Agha. Concurrent object-oriented programming. Communications of the As-sociation for Computing Machinery, 33(9):125{41, September 1990.2. Pierre America. A parallel object-oriented language with inheritance and subtyp-ing. In Proceedings of ECOOP/OOPSLA '90, pages 161{8, 1990.3. Birger Andersen. A genereal, grain-size adaptable, object-oriented programminglanguage for distributed computers. Technical report, Department of ComputerScience, University of Copenhagen, Copenhagen, Denmark, June 1992. Ph.D. the-sis (partial).4. Henri E. Bal. The Shared Data-Object Model as a Paradigm for ProgrammingDistributed Systems. PhD thesis, Vrije Universiteit Te Amsterdam, Amsterdam,1989.5. Adam Beguelin, Erik Seligman, and Micheal Starkey. Dome: Distributed objectmigration environment. Technical Report CMU-CS-94-153, School of ComputerScience, Carnegie-Mellon University, May 1994.6. B.N. Bershad, E.D. Lazowska, and H.M. Levy. Presto: A system for object-orientedparallel programming. Software| Practice and Experience, 18(8):713{732, August1988.7. M. Carson and J. Hermans. Molecular Dynamics and Protein Structure, chapterThe Molecular Dynamics Workshop Laboratory, pages 165{6. University of NorthCarolina, Chapel Hill, 1985.8. Rohit Chandra, Anoop Gupta, and John L. Hennessy. Data locality and loadbalancing in COOL. In Proceedings of the Fourth ACM SIGPLAN Symposium onPrinciples and Practice of Parallel Programming, 1993.9. K. Mani Chandy and Carl Kesselman. Compositional C++: Compositional par-allel programming. In Proceedings of the Fifth Workshop on Compilers and Lan-guages for Parallel Computing, New Haven, Connecticut, 1992. YALEU/DCS/RR-915, Springer-Verlag Lecture Notes in Computer Science, 1993.10. S. Chatterjee. Compiling nested data parallel programs for shared memory mul-tiprocessors. ACM Transactions of Programming Languages and Systems, 15(3),1993.11. A. A. Chien and W. J. Dally. Concurrent Aggregates (CA). In Proceedings ofSecond Symposium on Principles and Practice of Parallel Programming. ACM,March 1990.12. A. A. Chien, W. Feng, V. Karamcheti, and J. Plevyak. Techniques for e�cient ex-ecution of �ne-grained concurrent programs. In Proceedings of the Fifth Workshop

on Compilers and Languages for Parallel Computing, pages 103{13, New Haven,Connecticut, 1992. YALEU/DCS/RR-915, Springer-Verlag Lecture Notes in Com-puter Science, 1993.13. A. A. Chien, M. Straka, J. Dolby, V. Karamcheti, J. Plevyak, and X. Zhang. Acase study in irregular parallel programming. In DIMACS Workshop on Speci�ca-tion of Parallel Algorithms, May 1994. Also available as Springer-Verlag LNCS.14. Andrew Chien, Vijay Karamcheti, and John Plevyak. The Concert system { com-piler and runtime support for e�cient �ne-grained concurrent object-oriented pro-grams. Technical Report UIUCDCS-R-93-1815, Department of Computer Science,University of Illinois, Urbana, Illinois, June 1993.15. Andrew Chien and Uday Reddy. ICC++ language de�nition. Concurrent SystemsArchitecture Group Memo, Also available from http://www-csag.cs.uiuc.edu/,February 1995.16. Andrew A. Chien. Application studies for concurrent aggregates. Technical report,Massachusetts Institute of Technology, Arti�cial Intelligence Laboratory, Cam-bridge, Massachusetts, 1990.17. Andrew A. Chien. Concurrent Aggregates: Supporting Modularity in Massively-Parallel Programs. MIT Press, Cambridge, MA, 1993.18. Andrew A. Chien and William J. Dally. Experience with concurrent aggregates(ca): Implementation and programming. In Proceedings of the Fifth DistributedMemory Computers Conference, Charleston, South Carolina, April 8-12 1990.SIAM.19. Andrew A. Chien and Julian Dolby. The Illinois Concert system: A problem-solving environment for irregular applications. In Proceedings of DAGS'94, TheSymposium on Parallel Computation and Problem Solving Environments., 1994.20. Cray Research, Inc., Eagan, Minnesota 55121. CRAY T3D Software OverviewTechnical Note, 1992.21. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. MorganKaufmann, San Mateo, California, 1993.22. A. Grimshaw. Easy-to-use object-oriented parallel processing with Mentat. IEEEComputer, 5(26):39{51, May 1993.23. Concurrent Systems Architecture Group. The ICC++ reference manual. Concur-rent Systems Architecture Group Memo, June 1995.24. L. V. Kale and Sanjeev Krishnan. CHARM++: A portable concurrent objectoriented system based on C++. In Proceedings of OOPSLA'93, 1993.25. Vijay Karamcheti and Andrew Chien. Concert { e�cient runtime support for con-current object-oriented programming languages on stock hardware. In Proceedingsof Supercomputing'93, 1993.26. Woo Young Kim and Gul Agha. E�cient support for location transparency inconcurrent object-oriented programming languages. In Proceedings of the Super-computing '95 Conference, San Diego, CA, December 1995.27. H. Konaka. An overview of ocore: A massively parallel object-based language.Technical Report TR-P-93-002, Tsukuba Research Center, Real World ComputingPartnership, Tsukuba Mitsui Building 16F, 1-6-1 Takezono, Tsukuba-shi, Ibaraki305, JAPAN, 1993.28. James Larus. C**: a large-grain, object-oriented, data parallel programming lan-guage. In Proceedings of the Fifth Workshop for Languages and Compilers forParallel Machines, pages 326{341. Springer-Verlag, August 1992.29. J. Lee and D. Gannon. Object oriented parallel programming. In Proceedings ofthe ACM/IEEE Conference on Supercomputing. IEEE Computer Society Press,

1991.30. Barbara Liskov. Data abstraction and hierarchy. ACM SIGPLAN Notices,23(5):17{34, May 1988.31. Barbara Liskov. Distributed programming in argus. Communications of the ACM,31(3):300{313, March 1988.32. S. Matsuoka and A. Yonezawa. Research Directions in Object-Based Concurrency,chapter \Analysis of Inheritance Anomaly in Object-Oriented Concurrent Lan-guages". MIT Press, 1993.33. Stephan Murer, Jerome A. Feldman, Chu-Cheow Lim, and Martina-Maria Seidel.pSather: Layered extensions to an object-oriented language for e�cient parallelcomputation. Technical Report TR-93-028, International Computer Science Insti-tute, Berkeley, CA, June 1993 November 1993.34. N. Wirth and M. Reiser. Programming in Oberon { Steps beyond Pascal andModula. Addison Wesley, 1992.35. T. Ng, X. Zhang, V. Karamcheti, and A. A. Chien. Parallel macromolecular dy-namics on the Concert System. In Submitted for publication, 1995.36. John Plevyak and Andrew Chien. E�cient cloning to eliminate dynamic dispatchin object-oriented languages. Submitted for Publication, 1995.37. John Plevyak and Andrew A. Chien. Precise concrete type inference of object-oriented programs. In Proceedings of OOPSLA'94, Object-Oriented ProgrammingSystems, Languages and Architectures, pages 324{340, 1994.38. John Plevyak, Xingbin Zhang, and Andrew A. Chien. Obtaining sequential e�-ciency in concurrent object-oriented programs. In Proceedings of the ACM Sympo-sium on the Principles of Programming Languages, pages 311{321, January 1995.39. G. Sabot. The Paralation Model. MIT Press, Cambridge, Massachusetts, 1988.40. K. Smith and A. Chatterjee. A C++ environment for distributed application exe-cution. Technical Report ACT-ESP-015-91, Microelectronics and Computer Tech-nology Corporation (MCC), November 1990.41. K. Taura, S. Matsuoka, and A. Yonezawa. An e�cient implementation scheme ofconcurrent object-oriented languages on stock multicomputers. In Proceedings ofthe Fifth ACM SIGPLAN Symposium on the Principles and Practice of ParallelProgramming, 1993.42. Thinking Machines Corporation, 245 First Street, Cambridge, MA 02154-1264.The Connection Machine CM-5 Technical Summary, October 1991.43. Akinori Yonezawa, editor. ABCL: An Object-Oriented Concurrent System. MITPress, 1990. ISBN 0-262-24029-7.
This article was processed using the LATEX macro package with LLNCS style

