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AbstractHigh level programming language features have long been seen as improving programmer ef-�ciency at some cost in program e�ciency. When features such as object-orientation and�ne-grained concurrency, which greatly simplify expression of complex programs, are used par-simoniously, their e�ectiveness is mitigated. It is my thesis that these features can be imple-mented e�ciently through interprocedural analysis and transformation. By specializing theirimplementation to the contexts in which they are used, the program's e�ciency is not adverselya�ected by the 
exibility of the language. The speci�c contributions herein are: 1) an adaptive
ow analysis for practical precise analysis of object-oriented programs, 2) a cloning algorithmfor building specialized versions of general abstractions, 3) a set of optimizations for removingobject-oriented and �ne-grained concurrency overhead, and 4) a hybrid sequential-parallel ex-ecution model which adapts to the availability of data. The e�ectiveness of this frameworkhas been empirically validated on standard benchmarks. It is publicly available as part of theIllinois Concert system (http://www-csag.cs.uiuc.edu).
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PrefaceThe reasonable man adapts himself to the world; the unreasonable one persistsin trying to adapt the world to himself. Therefore all progress depends on theunreasonable man. George Bernard ShawThis thesis had both a conception and a birth. The conception occurred when I discoveredSmalltalk in 1981. A thought was planted that expressiveness could be joined with simplicityand clarity. However, being unreasonable, I desired e�ciency and concurrency as well. Thebirth occurred in 1992, when I began work on what would later be the Concert project, whosepurpose was to combine the simplicity of Smalltalk with the pervasive concurrency of Actors,and yet automagically be as e�cient as FORTRAN on distributed memory MIMD machines.At the time, the best pure object-oriented systems were several times slower than C, andshared-memory vector and SIMD machines reigned supreme. Today, concurrent object-orientedprogramming has been popularized and networks of workstations (NOWs) are the rage. Today,the sequential e�ciency of the Concert systemmatches C, exceeds that of C++, and the parallele�ciency approaches FORTRAN with message passing.This thesis is organized into four parts. The �rst part is background (Chapters 2 and 3). Ifyou are already familiar with object-oriented and concurrent object-oriented concepts, you maystill wish to read the summaries (Sections 2.5 and 3.7) which de�ne some useful terms. Thesecond part describes the compilation framework in general (Chapter 4) and the Illinois Concertsystem in particular. The third part comprises the body of this thesis. For readers interestedin particular analyses or transformations, I have tried to make Chapters 5 through 8 relativelyindependent by including some background information and references back to the pertinentearlier parts of this thesis. Finally, part four (Chapter 9) discusses adaptive sequential-parallelexecution. vi
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Chapter 1IntroductionThe fact is, that civilization requires slaves. The Greeks were quite right here.Unless there are slaves to do the ugly, horrible, uninteresting work, culture andcontemplation become almost impossible. Human slavery is wrong, insecure, de-moralizing. On mechanical slavery, on the slavery of the machine, the future of theworld depends. Oscar Wilde. The Soul of Man Under Socialism, 1895The key to constructing large software systems is to write and reason through abstrac-tions, leaving the details of the implementation to the compiler. This follows from what Icall the programmer's uncertainty principle. This principle holds that when the limits of hu-man understanding are reached something must go, either the big picture or the small picture.Object-orientation and �ne-grain concurrency are tools for reasoning about the big picture.This thesis is about automating the details, the small picture.Object-oriented programming (OOP) is the byword of software engineering; promising toincrease productivity through abstraction and software reuse. Concurrent object-oriented pro-gramming (COOP) applies those tools to parallelism and distribution, with applications fromsupercomputing to web browsers. It is an axiom of this thesis that object-oriented programmingand �ne-grained concurrency are \The Right Thing" [75]. Instead of belaboring the point, Idefer to the references provided at the end of this thesis, the reader's intuition and the wisdomof future generations.OOP and COOP produce programs with structure quite di�erent from standard proceduralcodes, but with the same high demands for e�ciency. Traditional local optimization techniquesare poorly suited to the dynamic nature of OOP and COOP codes. The abstractions which free1



programmers from implementation details, hide information from compilers, and can result inpoor performance.It is my thesis that:Object-oriented programming and concurrent object-oriented programming can bemade e�cient through interprocedural analysis and transformation.That is, programs written in natural OOP and COOP style can be made as fast as theequivalent programs written in conventional languages and styles (i.e. procedural C).The core of this work is the recognition that as programs pass from abstract descriptionsof potential behavior to concrete events more information becomes available about what mighthappen until the potential collapses into a singularity of what did happen. The key to buildingan e�cient computation is to take advantage of this information as soon as it becomes availablewhen transformation is cheaper. For example, knowing the type, size and location of dataand the set of operations to perform enables the compiler to statically schedule the computer'sresources for maximum e�ciency. If some information is not known, for example, the size ofthe data, some scheduling must be done dynamically which is generally more costly; and theless information available, the less e�cient the computation.This emphasis on information leads to an optimization framework based on four elements:analysis The discovery of information by examination of the program text. As in real life,much interesting information is predicated: if A is true then B is true.specialization The optimization of a program section for particular conditions (e.g. A istrue); may involve replicating the section for several di�erent conditions.speculation The testing of a property (e.g. is A true?); followed by specialization.adaptation Modi�cation of behavior based on accumulated information.Analysis is capable of determining information early in the program's life cycle when it canbe applied with maximum impact; however, this information is often predicated or incomplete.For example, analysis might indicated that at a particular program point a piece of data mighthave one of three values (a,b, and c). Early in the program's execution the data might takeon one of the values a later taking on the others. Moreover, the analysis might have additional2



information for the case if the piece of data has the value a. How does analysis determinethis information, and what good is it? The answer to the �rst question is found in Chapter 5,which contains a discussion of adaptive 
ow analysis. Essentially, this analysis symbolicallyexecutes the program, then examines the information obtained, adapts itself to answer questionsabout things it did not resolve, and reanalyzes. The information obtained by analysis is usedthroughout compilation and execution.One use for the information produced by analysis is to specialize portions of the program fordi�erent situations. In describing the desired program behavior, object-oriented programmersuse general abstractions, such as sets of objects, again and again in a variety of circumstances.However, the very 
exibility which makes these abstractions useful under many conditions canmake them ine�cient in particular situations. By automatically building specialized versions ofthe general abstraction for those cases which are performance critical, both 
exible expressionand e�cient implementation can be achieved.In programs the operations performed often depend on the values of the input data. There-fore, it is not possible to know everything about the execution of the program from the programtext. However, analysis can often delineate the range of possible behavior, enabling to buildingof specialized code for di�erent possibilities. These specialized versions are based on specula-tions which must be veri�ed before they are actually executed, typically by testing at run time.These tests can be costly, so careful management of speculative information is important foroverall e�ciency.Finally, run time information can be used to adapt the implementation of the program forhigher e�ciency. For example, a portion of the program which often deals with data stored ondistant parts of the machine should overlap remote access with other operations. On the otherhand, parts of the program which use local data should proceed sequentially through theiroperations, eliminating the overhead of juggling outstanding remote requests for data. Thissituation is analogous to prescribing a specialized training regimen to an athlete with specialneeds. In this case, the running program adapts itself to the location of data.These four elements, analysis, specialization, speculation and adaptation, are useful, inturn, as the program passes from abstract description to concrete events. Analysis involvesno run time cost, but often provides only predicated information. Specialization can improvee�ciency, but may involve an increase in the size of the program as it replicates code for the3



di�erent predicated conditions. Speculation involves potentially costly run time tests, but itcan determine information unavailable at compile time. Finally, the program can adapt tobehavioral trends in behavior by collecting run time information and modifying its activitiesaccordingly.These elements are the central concepts in this thesis, and they appear both as the centralconcept of their own chapters: analysis (Chapter 5), specialization (Chapter 6), speculation(Chapter 8) and adaptation (Chapter 9), as well as in combination and in supporting rolesin these and other chapters. The contents of these chapters are summarized in Section 1.1below. The contributions represented by this work in relation to the state of art are describedin Section 1.4, and the overall organization of this thesis is discussed in Section 1.51.1 Thesis SummaryThis thesis describes a optimization framework containing novel techniques for context-sensitiveanalysis, specialization of abstractions, speculative optimization and adaptive execution. Itbegins by describing object-orientated and �ne-grained concurrent programming models, in-troducing terms and providing a basis for understanding the di�culty of producing e�cientimplementations for such programs. Then it describes the execution model, through whichthe program is mapped to the hardware. Next it describes the compilation framework whichperforms this mapping. This framework consists of a new context-sensitive analysis which isboth precise and practical, a new cloning algorithm for constructing specialized versions ofabstractions, and a collection of individual optimizations for object-oriented and �ne-grainedconcurrent programs. Finally, a new hybrid sequential-parallel execution enables the programto adapt to the location of data at run time.Programming ModelThe programming model is a simple pure object-oriented programming model [76] with objects(data), methods (operations), and classes which link them. It makes no distinctions are madebetween primitive types (e.g. integers) and user de�ned types (e.g. Set), and requires no typedeclarations, prototypes, or canonical hints (e.g. inline). To this object-oriented model, �ne-4



grained concurrency is added in a manner consistent with the principles of simplicity andabstraction. The concurrency model has three key features:� a shared name space,� dynamic thread creation, and� object level access control.A shared namespace allows programmers to separate data layout and functional correct-ness. Dynamic thread creation allows programmers to express the natural concurrency of theapplication, leaving the system to map it to the underlying machine, and object-level accesscontrol provides a basic mutual exclusion mechanism which can be used to construct largeratomic operations and synchronization structures.Execution ModelThe execution model is based on a set of conventional single-threaded processing elements witha memory hierarchy where some memory is less costly to access (i.e. \local"). In general, onlyobjects local to a processing element are operated on directly. The system synthesizes the globalnamespace of the programmingmodel by detecting and mapping operations on \remote" objectsto communication between processing elements. Concurrency in the programming model isachieved by multithreading the processing elements in software and parallel execution acrossnodes. Thus, each processing element can be viewed as a sequential machine augmented withruntime primitives for naming, locking, location, and concurrency control. This model supportsexisting massively parallel processors [173, 51] and networks of workstations [12].
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Each object has a global name, a set of locks to implement access control, and a queuefor ready and suspended threads which store their state in contexts , heap-allocated activationrecords. When a message is sent to an object, a future is created representing the return valueand a thread is started to compute the future value. When the return value is required by theinitial thread, the future is touched and the thread suspends until the value is present. Thus,a logical thread may split then rejoin or seem to migrate from processor to processor as inFigure 1.1.Compilation FrameworkThe compilation framework starts with a new interprocedural context-sensitive 
ow analysiswhich breaks through abstraction barriers. Classes and functions are then replicated (cloned)for the contexts in which they are used. An iterative cloning algorithm rebuilds the cloned callgraph using a modi�ed dispatch mechanism. Using the information �xed by cloning, classesand functions are specialized removing much of the overhead of object-orientation: instance(member) and local variables are unboxed, methods (virtual functions) are statically bound andinlining is performed speculatively based on the class of objects or function pointers for OOPand location or lock availability for COOP. Other optimizations include conversion of memberand global variables to locals, lifting and merging of access regions, removal of redundant lockand locality check operations, and redundant array operation removal.AnalysisThe 
ow analysis is a new context sensitive interprocedural analysis which adapts to the struc-ture of the program to e�ciently derive information at a cost proportional to the precision ofthe information obtained. Flow analysis of object-oriented programs is complicated by the in-teraction of data values and control 
ow information through dynamic dispatch and imperativeupdate of instance variables. To address these problems, this analysis combines simultaneousdata and control 
ow analysis with iterative adaptation to the structure of the program. A sim-ple, less control and data 
ow sensitive analysis is used to determine where more precise analysisis needed. Contours are used to summarize stack frames and groups of objects. Adaptation isachieved through the contour representation which describes the summarization mapping. It isextended locally to provide more precision and then the program is reanalyzed.6



CloningCloning builds specialized versions of classes and methods for optimization purposes. It beginswith the results of 
ow analysis, including the call graph and the set of contours. These contoursare partitioned into prototypical clones based on optimization criteria. Object contours arepartitioned into concrete types (implementation classes), and method contours are partitionedinto method clones. Next, an iterative algorithm is applied which repartitions the contoursuntil the call graph is realizable; until the objects can be created of correct concrete types, andthe correct clones can be invoked for each invocation site. The standard dynamic dispatchmechanism which selects the desired method based on the selector and class of the target ismodi�ed to be context sensitive using an invocation site identi�er.Optimization of Object-oriented ProgramsSeveral sources of ine�ciency are evident for object-oriented programs including: abstractionboundaries and polymorphism, small method size, high invocation density, data dependent in-vocations, data access overhead and potential aliasing. Invocation density is addressed throughinvocation optimizations: static binding, speculation and inlining. Data access overhead isaddressed by unboxing and the elimination of pointer-based accesses through conversion ofinstance variables to Static Single Assignment (SSA) form. Array alias analysis and a suiteof standard low level optimizations are also performed with the resulting implementations ase�cient as conventional C implementations.Optimization of Concurrent Object-oriented ProgramsConcurrent object-oriented programs also su�er from ine�ciency, in particular, resulting froma lack of information about the location and locking status of objects. Several optimizationsaddress these problems. Lock operations are optimized by taking advantage information pro-vided by the the call graph about when the access rights required by a method have alreadybeen acquired when the method is called. Also, analysis can recognize stateless methods whichdo not required access at all. Speculative inlining inserts tests around inlined code. Thesetests introduce access regions in which access to an object has been granted. These regions aretransformed to amortize the cost of speculation and to increase potential for conventional op-7



timizations. Memory hierarchy tra�c is optimized by using 
ow analysis information and thatprovided by access regions to cache data at higher levels of the memory hierarchy. Likewise,distributed global variables are optimized by using the call graph to detect temporally constantglobals and by caching their value. Finally, synchronization of threads is is optimized by carefulplacement of touches.Hybrid ExecutionThe program is implemented using hybrid sequential-parallel execution which enables the pro-gram to adapt at run time to the concurrency structure of the program and the location andavailability of data. Hybrid execution provides separately optimized sequential and parallelversions of methods. When possible, methods are executed sequentially using FIFO (First InFirst Out) order on a stack with low overhead. The parallel versions store their local data inpersistent heap-based contexts and are specialized for generating parallel work and for hidingthe latency of long running and/or non-local operations. One of three sequential calling conven-tion of increasing 
exibility is selected automatically for each method based on interproceduralanalysis, enabling the use of sophisticated synchronization structures at no cost to other partsof the program.1.2 The Concert SystemThe framework and algorithms described in this thesis were developed as part of the Concertproject and implemented as part of the Concert system (Section 4.1). The Concert system isa complete programming system for developing high performance concurrent object-orientedprograms for execution on large scale parallel machines. In addition to the compiler, whichembodies the optimizations in this thesis, there is a runtime specialized for each target platform,an emulator for quick turnaround debugging, a debugger and a standard library. The resultsreported in this thesis are for implementations produced by the Concert system.
8



1.3 ResultsThis thesis demonstrates a number of di�erent results for the various analyses and optimizations.However, this is a real and complete system. Each part of the framework depends on the otherparts. For example, the analysis (Chapter 5) alone does not improve the program. Cloning(Section 6) depends on 
ow analysis, but again does little in itself to improve e�ciency. Theoptimizations in Chapters 7 and 8 which do improve e�ciency fundamentally depend on 
owanalysis and cloning. Therefore, the overall performance results are presented in later chapters.Chapter 7 demonstrates that a pure dynamically-typed object-oriented language can obtainthe same e�ciency as C for a number of standard benchmarks. Moreover, it shows that thesame language can be more e�cient than C++ as compiled with a standard C++ compiler(G++). Likewise, Chapter 8 demonstrates that, for the Livermore Loops, essentially all theoverhead of a shared namespace and object-based protection scheme can be eliminated so thatthe COOP programs are as e�cient as C when the data is available. Finally, Chapter 9 showsthat �ne-grained concurrency can be implemented e�ciently with adaptive sequential-parallelexecution. Such hybrid execution can approach optimal e�ciency given by the total work andcommunication overhead implied by the data layout.1.4 ContributionsThe general contribution of this thesis is an optimization framework for object-oriented and�ne-grained concurrent languages. Individual contributions are: 1) an adaptive 
ow analysis forpractical, precise analysis of object-oriented programs, 2) a cloning algorithm for building spe-cialized versions of general abstractions, 3) a set of optimizations for removing object-orientedand �ne-grained concurrency overhead, and 4) a hybrid sequential-parallel execution modelwhich adapts to the availability of data.1. A new adaptive 
ow analysis [140, 141] which, is a signi�cant extension over previouswork. When initially published, it was demonstrated to be more e�cient than previous analyses[135], and it was the only analysis for object-oriented programs capable of handling arbitrarilycomplex type structures. It remains the only practical and demonstrated analysis capableof analyzing both polymorphic methods and polymorphic classes in the presence of imperativeupdate (i.e. real object-oriented programs as opposed to functional or functional object-oriented9



programs). The most powerful comparable analysis [2] is limited to polymorphic methods andhas not been used for context sensitive optimization (in [3] context sensitive information wassummarized before optimization).2. A new cloning algorithm [142] which represents the �rst application of whole programcloning to object-oriented programs. It solves several unique problems, including: specializationof classes including data layout, modi�cation of the dispatch mechanism for context sensitivity,and the discover of a realizable call graph. The closest comparable work by Cooper and Hall[85, 84, 48, 86, 49], is directed to handling specialization of FORTRAN based on values ofparameters, and is limited to forward data 
ow problems. In contrast, the new cloning algorithmhandles a more general class of data 
ow problems and includes data structure specialization.3. OOP and COOP speci�c optimizations which include several new or substantially new.The optimizations of locks, access regions and touches (Sections 8.1, 8.3 and 8.5) are new.The application of 
ow analysis and cloning information to the problem of decreasing memoryhierarchy tra�c is similar to conventional alias analysis, but the use of access region informationis new. However, the substantial contribution of this work is the demonstration over a suiteof standard programs that the set of optimizations described are su�cient to enable a puredynamically-typed language to match the e�ciency of C. Previous systems [28, 30, 95] wereseveral times slower than C.4. A new hybrid sequential-parallel execution model which di�ers from its predecessorsin that it provides two separately optimized versions of code; one optimized for sequentiale�ciency and one for parallel e�ciency. It also provides a hierarchy of calling conventions ofincreasing 
exibility and cost. These are selected automatically by the system based on therequirements of the code. As a result, hybrid execution is capable of matching the speed ofC when the required data is available and yet still provides support for continuation passing(Section 9.2.3) and latency hiding where required.Details of these contributions appear in Chapters 5; 6; 7 and 8; and 9 respectively.1.5 OrganizationThis thesis is organized into four parts. The �rst part is background material on the OOP andCOOP programming and execution models (Chapters 2 and 3). The second part describes the10



compilation framework in general (Chapter 4) and the Illinois Concert system in particular.The third part comprises the body. It describes adaptive 
ow analysis (Chapter 5), cloning(Chapter 6), and optimization of OOP and COOP (Chapters 7 and 8 respectively). Finally,part four (Chapter 9) discusses adaptive sequential-parallel execution.
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Chapter 2Programming ModelThe best way to do research is to make a radical assumption and then assume it'strue. For me, I use the assumption that object-oriented programming is the way togo. Bill JoyThis chapter describes objected-oriented and �ne-grained concurrent programming concepts,terminology and languages. It is not intended to be a comprehensive discussion of these topics,but rather to de�ne clearly the terms used in this thesis. Thus, the focus is on features as theya�ect optimization and ultimately performance. Three concurrent object-oriented languagesare discussed. Two, Concurrent Aggregates (CA) and Illinois Concert C++ (ICC++) aresupported by the Concert system. The last is the simple pedagogical language used in examplesthroughout this thesis.2.1 Object-OrientationObject-oriented programming is characterized by information hiding and reuse of speci�cations.1Object-oriented programming languages contain special features for these purposes, includingabstract data types for encapsulation, polymorphism for speci�cation over abstractions, andinheritance for successive re�nement of speci�cations. These language features in turn aresupported by implementation techniques which are discussed in Section 3.1For want of a better term, a speci�cation is a part of a program which may be incompleteby itself (e.g. an abstract class, C++ template or generic function).12



2.1.1 Abstract Data TypesThe objective of abstract data types is to encapsulate information about the implementationof an object. They describe an interface consisting of a set of operations. These operationsare abstract in the sense that their implementations are opaque; they are described by theinformation they require and produce, but not by the steps they perform. For example, comparethe two C++ [68] stack classes in Figure 2.1. The class on the left represents an abstract datatype. It describes only the abstract operations push() and pop() (the parentheses indicatethat these are functions). On the other hand, the class on the right describes a concreteimplementation of a stack as an array and count of elements.class Abstract_Stack {void push(int x);int pop();}; class Concrete_Stack {int data[100];int ndata;void push(int x) { data[ndata++] = x; }int pop() { return data[--ndata]; }};Figure 2.1: Abstract Class (left) and Concrete Implementation (right)This goal of information hiding or encapsulation, has two important rami�cations. First,the interface should by as simple as possible. In particular, extraneous information such asoptimization annotations and implementation directives should be avoided. Notions such asthe location of data, function calls, referencing and dereferencing should not be part of theabstraction. Second, abstract data types can be implemented by any data structure supportingthe operations. Thus, the more general the abstraction, the more options are available forimplementation. In Chapter 6, we will see how the compiler can leverage this 
exibility tobuild high performance implementations.2.1.2 PolymorphismPolymorphism is the ability of a speci�cation to operate on any abstraction which provides therequired abstract behavior. This enables speci�cations to be reused and factored into sharedand unshared parts.2 Sets of abstract operations are called signatures [131, 16]. For example,2The appropriate specialized parts are selected by dynamic dispatch (Section 2.1.4).13



the abstract class on the left in Figure 2.1 de�nes a signature containing the push() and pop()operations.The concept of polymorphism applies to variables and, by extension to classes and func-tions containing them. Polymorphic variables can contain any object supporting the operationsperformed on the variable. The set of these operations forms a signature, and the variablecan contain any object which conforms to that signature. Classes which contain polymorphicinstance variables de�ne polymorphic objects, and methods which take polymorphic argumentsare polymorphic functions. We will see in later chapters that these two types of polymor-phic speci�cations require special techniques if they are to be analyzed and optimized by thecompiler.2.1.2.1 Polymorphic VariablesPolymorphic variables are locations which can store any object conforming to some signature.Two polymorphic variable declarations appear in Figure 2.2, one on the left side for Lisp [107]and one on the right for C++. The Lisp variable a can be assigned objects of any type (facilitiesexist in Lisp for arbitrarily limiting the range of objects assigned). The C++ variable b can beassigned a pointer to any object which is of class B or a subclass of (derived from) B3.(defvar a nil) B* b = NULL;Figure 2.2: Polymorphic Variables in Lisp (left) and C++ (right)2.1.2.2 Polymorphic ClassesA common use of polymorphic variables is container classes, which can hold objects of morethan one class. For example, the two polymorphic stacks in Figure 2.3 can be used to containvarious kinds of objects. In the case of the Lisp (CLOS) [107] class on the left, the stack maycontain objects of any class, even di�erent classes simultaneously. The only operations the stackperforms on its contents (assigning and moving) are supported by all Lisp objects, hence thesignature of the contents conforms to any object. The C++ class (right), de�nes a stack which3In the future, we will use subclass to mean non-strict subclass; that is \a subclass of B"may include B. 14



can contain objects of any subclass of A. De�ning a stack in C++ which can contain any typeof object requires templates [165] and is discussed in Section 2.1.5.(defclass Stack () ...)(defun push ((s Stack) e) ...)(defun pop ((s Stack)) ...) class Stack {void push(A* e);A* pop();};Figure 2.3: Polymorphic Containers in Lisp (left) and C++ (right)2.1.2.3 Polymorphic FunctionsPolymorphic functions operate on arguments conforming to some signatures. Thus, we can havethe polymorphic functions dbl() in Figure 2.4 which can operate on any object supporting the+ operation. The Lisp code (top left) de�nes a function over all types supported by the +function. The Smalltalk [76] code (bottom left) de�nes a method (in C++ parlance, a virtualmember function) applicable to any class supporting the + method. In both Lisp and Smalltalkpolymorphic functions can be used as any other function. They can be passed as values #'dbl(Lisp) and #dbl (Smalltalk), and stored in variables. The ability to treat functions as �rst classcitizens is a signi�cant source of expressive power which complicates analysis.// polymorphic function (Lisp)(defun dbl (a)(+ a a))// polymorphic method (Smalltalk)dbl̂ self + self. // subclass polymorphic (C++)Addable& dbl(Addable& a){ return a + a; }// signature polymorphism (C++)signature S { S operator+(S); };S& dbl(S& a) { return a + a; }Figure 2.4: Polymorphic Functions: Lisp, Smalltalk (left) and C++ (right)C++ has several mechanisms supporting polymorphism. Figure 2.4 (right) provides someexamples. The primary mechanism in C++ for polymorphism is subclassing. The functiondbl() (top right) is applicable to objects of any subclass of Addable. This mechanism cannotbe used with primitive types (int, float, etc.) which are not part of the class hierarchy. Amechanism [16] has been proposed which extends the C++ language to enable the de�nition ofdbl() directly in terms of signatures (bottom). This has the added bene�t of separating thetyping and inheritance [23] (Section 2.1.3). Likewise, C++ templates [165] describe a set of15



monomorphic functions, an element of which is instantiated for each use. These are covered inSection 2.1.5.2.1.3 InheritanceInheritance is a language construct for building hierarchies. Inheritance can be applied both tointerfaces (signatures) and implementation (behavior). Applied to interfaces, inheritance canbe used to create a new signature with all the operations of an old signature and some additionaloperations.4 Similarly, a new implementation can be built by inheriting the behavior of a moregeneral one, and then adding to or rede�ning part of the behavior. For example, consider the updown counter on the left in Figure 2.5. Suppose we wish to create a modi�ed speci�cation whichrecords the highest point reached. We simply subclass the class UpDown to be UpDownCount, andrede�ne the behavior of the up() method. The new up() method calls the old up() methodand updates max.class UpDown {int val;void up();void down();}; class UpDownCount : UpDown {int max;void up() {UpDown::up();if (max<val) max=val;}};Figure 2.5: Superclass (base class) (left) and Subclass (derived class) (right)2.1.4 Dynamic DispatchDynamic dispatch (virtual function call) is the selection of the function to be executed basedon the run time class of the target object and the selector or generic function name. Thisallows function calls to exhibit di�erent behavior based on the class of an objects and supportsprogramming with polymorphism. Each method (virtual function) is an implementation of thegeneric function speci�c to objects of a particular class.For an example of dynamic dispatch, recall the two classes de�ned in Figure 2.5 which bothde�ne the up() method. If up() is invoked on a polymorphic variable a which might contain anobject either of the two classes UpDown or UpDownCount (left side of Figure 2.6), the appropriate4Viewing signatures as types, the new signature is a subtype of the old.16



version will be selected at runtime. The e�ect will be as if a sequence of conditionals selectedthe appropriate version of up() (right side). Transformations for minimizing dynamic dispatchoverhead are discussed in Chapters 6 and 7.void func(UpDown * a) {a->up();} void func(UpDown * a) {if (a->class == UpDown)a->UpDown::up();else if (a->class == UpDownCount)a->UpDownCount::up();}Figure 2.6: Dynamic Dispatch Unfolded2.1.5 Parametric PolymorphismParametric polymorphism is a limited form of polymorphism which allows classes and func-tions to be parameterized by the types of objects they support. Like inheritance, parametricpolymorphism can be used for both interfaces and implementations. For interfaces, parametricpolymorphism, like type declarations, constrain variables, allowing the programmer to moreeasily reason about the correctness of code. For implementations, parametric polymorphismbuilds a specialized version of a speci�cation for a particular situations as indicated by thevalues of the parameters.Templates [166] in C++ and generics in Ada [103] use parametric polymorphism simul-taneously for both interfaces and implementations. For example, in Figure 2.7 the template(left) describes a set of the dbl() functions applicable to any type supporting the + operator.However, in C++, no general dbl() function exists, hence it cannot be passed as an argumentor assigned to a variable. Instead, a speci�c function is generated from the speci�cation foreach use. Particular monomorphic instances are derived by applying a general speci�cation toa set of parameters (in this case derived from the calling environment) at compile time.Data types can also be speci�ed using parametric polymorphism. In Figure 2.7 the classStack is parameterized over the element type. When the stack is created, it is explicitly instan-tiated with the contents of type E (bottom right of Figure 2.7). In C++, instantiation typicallyinvolves the creation of specialized copies of templated code. This replication can expand thesize of the executable program tremendously (i.e. cause code bloat) [166]. While the stackspeci�cation is polymorphic, each instance is as if it were declared with a particular type and17



// template polymorphism (C++)template <class A>A dbl(A a) {return a + a;}...int i = dbl(1); // template polymorphism (C++)template <class E>class Stack {void push(E e);E pop();};...Stack<int> s;Figure 2.7: Function (left) and Class (right) Templatestherefore nominally monomorphic. These instances are still subject to subclass polymorphismand the associated ine�ciencies (Section 2.1.6 below). Techniques for automatically discoveringand optimizing parametric polymorphism and managing code size are discussed in Chapter 6.2.1.6 Implementation IssuesAbstractions appear in the programming model as classes and functions. If these are imple-mented directly, each class and function would have a single unique implementation and eachfunction (e.g. empty constructors) would have to be called. This can lead to very ine�cientcode. For example, take the (generic) class de�ned in Figure 2.8 and the two uses (one withan int and one with a double). One implementation would be to create a single version of theclass with an indirection to a separately stored and tagged a �eld. Another implementationmight build special classes for each uses of A and specialize all the code on objects of theseclasses.class A {a; // instance variableA(aa) : a(aa) {}; // constructor initializing a to aafunc(); // method} x(1),y(1.0); // two instancesFigure 2.8: Generic ClassFunctions abstract the operations of the executing program, and direct implementationswhich cross these these abstraction boundaries can be ine�cient. While the function call itselfmay require several instructions including dynamic dispatch, the greatest cost results fromthe loss of potential optimization. For example, Figure 2.9 uses the generic class A de�ned18



in Figure 2.8. The while loop on the left contains seven function calls (three read and onewrite accessor5 call for A::a, doit(), A::func() and done()). If we have the de�nitions forA, doit() and func() we can remove six of those calls producing the code on right. However,object-orientation complicates such inlining of methods....A x(intarg),y(floatarg);while (!done(x,y))y.a = doit(x.func,y.a); doit(x,y) { x+y }A::func() { a*2 }...let tx = intarg,ty = floatarg;while (!done(tx,ty))ty += tx*2;y.a = ty;Figure 2.9: Potential Optimization ExampleIn general, inlining of methods requires information about the actual (as opposed to de-clared) type of objects. Recall Figure 2.5 which de�nes two classes UpDown and UpDownCount.Now consider the code on the left in Figure 2.10.6 The function func() can be called on UpDownor UpDownCount objects. This prevents the code for up() from being inlined directly. The typedeclarations of C++ do not solve this problem. In the C++ code on the right func() is simi-larly called on objects of these types. In general, inlining such calls requires program analysis(Section 5) and transformation (Section 6).func(x) {...x.up;} void func(UpDown &x) {...x.up();}...func(*(new UpDown));func(*(new UpDownCount));Figure 2.10: Inlining of Methods (virtual functions)2.2 ConcurrencyThis thesis is concerned with concurrent programming languages (and their execution on par-allel hardware) not parallel programming languages. Parallelism is two operations happening5An accessor is a method which simply returns or sets an instance variable.6This example is written in the language described in Section 2.3.3.19



at the same time, a situation re
ected in the physical world by the simultaneous action of twodi�erent pieces of hardware. Concurrency is a looser term, indicating that active periods ofthe two operations may overlap. Concurrency allows, but does not require parallelism, and ismore natural in the abstract world of programming where it is often desirable to abstract awaythe mapping of conceptual operations to physical hardware. For example, concurrency includescoroutines where a single locus of control bounces between two tasks so that both are \active"but only one of which is physically executing at any given time. The key aspect of concurrencyis that that it is non-binding, so a perfectly valid execution of two concurrent operations issequential; execute one, wait for it to complete, then execute the other.Under this de�nition, a compiler can easily produce e�cient sequential code for any levelof concurrency in the program speci�cation (by simply ignoring it). In fact, because twoconcurrent tasks can be executed in any order, the more concurrency in the speci�cation, thegreater implementation freedom for the compiler. For example, in Figure 2.11, the code to theleft speci�es a traditional sequence of four operations. There is precisely one way to executethese calls correctly. The code to the right speci�es four concurrent operations. There aretwenty-four (four factorial) correct orders of execution for these calls.{ operation1();operation2();operation3();operation4();} conc {operation1();operation2();operation3();operation4();}Figure 2.11: Concurrency ExampleFine-grained concurrent programs are simpler (in a information theoretic sense) since theydo not specify unnecessary sequencing. In a more practical sense, modern superscalar andpipelined microprocessors are highly parallel (Section 3.1.1). Optimizing compilers for suchprocessors must work hard to remove excess sequentiality from speci�cations in order to producee�cient code for sequential languages. Thus, at some level, all programs executing on modernhardware are �ne-grained concurrent. 20



2.2.1 Concurrent StatementsConcurrency can either be tree-structured or irregular . Tree-structured concurrency is so namedbecause the task graph (where the nodes are tasks and the edges are dependencies betweentasks), is a tree. In Figure 2.12, a single task (top) has created four subtasks (bottom) throughconcurrent calls (possibly message sends to concurrent objects). These subtasks must synchro-nize with their parent upon completion. This noti�cation of termination makes tree-structuredconcurrency easier to reason about, analyze and optimize than irregular concurrency wherethe task can form a general graph. For this reason, many of the analyses and transformationsdiscussed in this thesis assume tree-structured concurrency.
task

call
replyFigure 2.12: Tree-Structured ConcurrencyWhile tree-structured concurrent child tasks generally complete before their parents, thisis not always the case. A subtask which has no outstanding subtasks may delegate the re-sponsibility of synchronizing with the parent to its last subtask. This allows the formation ofsynchronization structures such as forwarding and barriers as in Figure 2.13. The subtask for-warded to assumes the responsibility to synchronize with the parent, much like a tail recursivecall [45]. Similarly, all the tasks waiting on the barrier use it to synchronize with their parent.
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Forward BarrierFigure 2.13: Other Synchronization StructuresThere are two main mechanisms for generating tree-structured concurrency: concurrentblocks and concurrent loops. Within concurrent blocks statements are partially ordered topreserve a consistent view of local data. 21



2.2.1.1 Concurrent BlocksAs in Figure 2.11, a set of statements can be declared concurrent. The block completes onlywhen all the enclosing statements have completed. Again, concurrency is not mandatory: ifthe statements are simple (arithmetic operations for example) they may be executed in somesequential order. Note that even without concurrency, this 
exibility can provide extra freedomfor instruction scheduling (see Section 3.1.1).2.2.1.2 Concurrent LoopsConcurrent loops declare that (subject to the conditions expressed in Section 2.2.1.3) the itera-tions of the loop are concurrent. As a convenience to the programmer, ICC++ (Section 2.3.2)implicitly declares any concurrent loop body to be concurrent. Thus, the loop on the left ofFigure 2.14 is a sequential loop, each iteration of which is a set of concurrent statements. Inthis case, only one operation1() will ever be active at any time. On the other hand, all thestatements in all the iterations of the loop on the right are concurrent. Thus, MAX invocationsof operation1() might be active simultaneously.for (i=0;i<MAX;i++) conc {operation1();operation2();operation3();} conc for (i=0;i<MAX;i++) {operation1();operation2();operation3();}Figure 2.14: Sequential Loop of Concurrent Blocks (left) and Concurrent Loop (right)2.2.1.3 Local ConsistencyConcurrent objects ensure the consistency of their internal state by controlling concurrent accessto that state. In order to help ensure the consistency of function local state, operations againstit are not allowed to interfere with each other. The result of any such computation must be thatwhich would be produced by execution of the dependent chain in normal sequential executionorder. This preserves sequential semantics for function local operations by inducing a partialorder over statements.For example, the three statements on the left in Figure 2.15 are dependent since L2 dependson L1 (L2 reads the value of i which L1 writes) and L3 depends on L2 (it reads the previously22



conc {i = h; // L1i = i + j; // L2func(i); // L3} conc {func(i); // L4i++; // L5func(i); // L6}Figure 2.15: Local Consistency Exampleswritten value of i). Thus, the argument of func() will be the result of the sequential executionof these three statements. However, these statements need not be actually executed sequentially.On the right of Figure 2.15 only the statements L5 and L6 are dependent, in that order.In particular, statements L4 and L5 are dependent on the original assignment of i, but areotherwise independent. Such write after read dependencies are often called \false dependencies"for this reason.2.2.2 Concurrent ObjectsConcurrent objects are abstract data types which provide a consistent interface in a concurrentenvironment. They control concurrent access to their instance variables, provide for distributedconcurrency and make concurrency guarantees which enable the programmer to reason aboutprogress.2.2.2.1 Concurrency ControlIn order to provide a consistent interface, concurrent objects must control which messages areprocessed concurrently. For instance, a concurrent abstraction representing a collection cannotcompute the number of elements it contains at the same time that it is adding or deletingelements. Many control mechanisms are possible. The simplest is to allow an object to processonly one message a time [34, 43]. More complex schemes enable messages to be processed basedon the state they access [81] or through set inclusion [73, 128].The Concurrent Aggregates (Section 2.3.1) language subscribes to the model that a singlemessage can be processed by a given object at one time. This was found to be restrictive bothfor the programmer and the optimizer (see Section 8.1). ICC++ (Section 2.3.2) takes a morepermissive view, stating simply that intermediate object states cannot be seen. Essentially,this requires that result of a set of operations conform to some serialization. For example, inFigure 2.16, the calls to f3() and f2() can go on concurrently since they both read x. However,23



class A {x = 1;y = 1;f1() { x = x + y; }f2() { y = y + x; }f3() { func(x); }} a; ...conc {a.f1();a.f2();a.f3();}Figure 2.16: Concurrency Control Examplesneither f1() and f2() nor f1() and f3() can go on concurrently since f1() writes x whileboth the calls to f2() and f3() read x. This allows the programmer to control nondetermin-ism without requiring the program to be overspeci�ed. The �nal values of a.x and a.y arenondeterministic, but the sum of x and y must be 5.7.2.2.2.2 Distributed ConsistencyObject-oriented programs are composed of a number of interacting objects. In order to reasonabout the composite behavior of a group of objects it must be possible to compose a set oftransactions (messages) on a group of objects into a single transaction. The simplest mechanismfor distributed consistency is to provide a single object whose abstract type represents thecomposite behavior. For example, Figure 2.17 shows a concurrent hash table abstraction whichis implemented with a set of bucket objects. Since interactions with the buckets are moderatedby the hash table object, consistence can be maintained over the abstraction.2.2.2.3 Concurrency GuaranteesSome programs require concurrent objects to be able to overlap the processing of certain mes-sages in order to prevent deadlock. These concurrency guarantees can be as simple requiringthat an object be able to send a message to itself. Given an object consistency model in whichonly a single message can be executed at one time, an object sending a message to itself wouldresult in deadlock (e.g. as in CC++ [34]). Stronger concurrency guarantees increase the ex-pressiveness of the language as more programs which do not deadlock are possible. However,7More relaxed consistency models are possible, for example, one in which a consistent setof \old" values can be read would allow the example to result in x+y = 4 instead of 5 (seeSection 10.2) 24
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         AbstractionFigure 2.17: Example: Distributed Concurrent Abstractionweaker guarantees grant the scheduler more 
exibility, so concurrency guarantees must be bal-anced against implementation cost. For example, guarantees such as strong and weak fairness[6] can be expensive to implement since they require sophisticated scheduling.Concurrent Aggregates provides for guaranteed concurrency between di�erent objects, andthe ability to invoke methods on the current object, self (*this in C++). Moreover, CAguarantees that any message which is sent will eventually be processed.8 This has provenvery expensive for applications with recursive inner loops, even when global analysis is usedto carefully place scheduling operations. As a result, a compiler option allows this the fairnessguarantee to be disabled. ICC++ makes no such guarantee. Concurrency guarantees arediscussed further in Sections 3.2.5 and 3.2.1.2.2.2.2.4 ActorsSince they can operate asynchronously, concurrent objects are sometimes called actors [5].Likewise, the invocation of a method on a concurrent object is sometimes called a messagebecause, like a piece of mail, they need not be responded to immediately, and more than onecan be outstanding at one time. For example, messages sent to an actor (Figure 2.18 on left)build up until the actor can process them. Likewise, an actor (right) can send a number ofmessages o� at the same time.8Version 3.0 of the Concert compiler does not break iterative in�nite loops for local schedul-ing, though it does break recursion. 25
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Figure 2.18: Examples: In Box (left) and Outstanding Requests (right)2.2.3 Naming, Location and DistributionThe �ne-grained concurrent model does not include the location of objects or their distributionon the target platform within the language semantics. That is, the location of objects does notin
uence the meaning of a program. Programmer level names of objects do not include theirlocation, which is managed transparently. A discussion of the execution model which underliesthe implementation of the transparent global shared name space on distributed memory hard-ware appears in Chapter 3. Implementation and optimization of this model are discussed inChapters 8 and 9.2.2.4 Implementation IssuesFine-grained concurrent programs can be very ine�cient if implemented naively. These ine�-ciencies can result from the 
exibility of the programming model. In particular, protecting theconsistency of objects, providing location independence and simply managing the high degreeof concurrency provided by programs written to this model can be very expensive.2.2.4.1 Concurrency Control BoundariesAll objects mediate access to their internal state through an abstraction boundary. Likewise,concurrent objects mediate concurrent access to their state through concurrency control bound-aries. These boundaries are more expensive to pass through than abstraction boundaries sincethe accessing task may have to be delayed. For example, in Figure 2.19, the code on the leftde�nes three objects, two of which concurrently send a message to the third. As we can see26



on the right, one of the messages (nondeterministically) has to be delayed. The interaction ofscheduling and concurrency control boundaries is discussed in Sections 8 and 9.class A {msg();send(a) { a.msg(); }} x,y,z;conc {y.send(x);z.send(x);} IN
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QueueFigure 2.19: Concurrency Control Boundaries Example2.2.4.2 Locality BoundariesThe �ne-grained concurrent programming model does not include the notion of location ofobjects (Section 2.2.3). However, modern parallel and distributed computers are Non-UniformMemory Access (NUMA); the cost to access \nearer" data is less than the cost to access datafurther away. As we will see in Chapter 3, the cost of access to data can vary tremendously. Inorder to provide good performance, most accesses must be to near data. This induces regionsof locality, groups of objects which may access each other at lower cost. While the programmerneed not manage these regions explicitly, portions of the program which are to be executedin parallel must necessarily span them, requiring the compiler to manage them. In Chapter 3discusses the impact of crossing these locality boundaries.2.2.4.3 Excess ConcurrencyThe �ne-grained concurrent model encourages maximal expression of concurrency. Conceptu-ally, each interaction between concurrent activities requires a synchronization. This includesmessage sends, which must determine if the target object is capable of receiving the message,and scheduling, when a delayed message becomes active. An example of a set of concurrentobjects x, y and z synchronizing appears in Figure 2.20. Because y is processing a messagefrom z when x sends its message, x's message is delayed. When the amount of concurrencyexceeds that required, unnecessary synchronization can lead to ine�ciency. The interaction ofexcess concurrency and scheduling is discussed in Chapter 3.27
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schedule syncFigure 2.20: Synchronization between Concurrent Objects2.3 LanguagesThis section discusses languages which embody the concurrent object-oriented programmingmodel. The two languages with supported by the Concert system (Section 4.1) are ConcurrentAggregates (CA) [41, 43, 42, 40] and Illinois Concert C++ (ICC++) [38, 81, 35]. Whilesuper�cially very di�erent (CA has a Lisp-like syntax while ICC++ is derived from C++), thecompilation techniques required to obtain e�ciency for each language are almost identical. Thelanguage which will be used in the examples throughout this thesis (which is a blend of thetwo) re
ects this. However, since the particularities of the two languages supported by Concertin
uenced the implementation of the analyses and transformations as well as the test suite usedin their evaluation, they are discussed here.2.3.1 Concurrent Aggregates (CA)Concurrent Aggregates (CA) is a simple, untyped, pure object-oriented language [43]. It isclosely related to Concurrent Smalltalk (CST) [55, 54, 100] which itself is closely related toSmalltalk [76]. The syntax of CA is reminiscent of Lisp [107]; parentheses group each expres-sion and declaration. It has single inheritance, no type declarations, and �rst class selectorsand messages (essentially a rei�cation of a message send as a vector of arguments). It is pure inthe sense that everything is an object, including integers, 
oating point numbers and globals.However, unlike Smalltalk control 
ow is built in; it has conditionals, if, and while loops. Fur-thermore, all statements, expressions and arguments are assumed to be evaluated concurrently28



unless surrounded with an explicit sequential block. Figure 2.21 contains the naive Fibonacciprogram. Note that the recursive calls are concurrent.(method integer fib ()(reply (if (< n 2) 1)(+ (fib (- n 1)) (fib (- n 2)))))(method osystem initial_message ()(reply (fib 10)))Figure 2.21: Fibonacci in Concurrent AggregatesConcurrent Aggregates includes homogeneous collections of objects which collaborate toform an unserialized parallel abstraction. These are called aggregates (hence the name). Fig-ure 2.22 contains an example of the use of aggregates in CA. The aggregate top level formde�nes an aggregate class with nr reps representatives (elements). The value �eld in eachelement is initialized to zero by the forall (concurrent for) loop. Intra-aggregate addressingis through the sibling method. A count message sent to the aggregate is vectored to an arbi-trary element where it (sequentially) updates the local value and replys. The reply is usedfor synchronization; the sender of count knows the accumulation operation has been completedwhen it receives the reply. The sum method begins the summation on the �rst element. Eachelement accumulates to the total sum and the last element returns the total count over all theelements to the original caller of sum.2.3.2 Illinois Concert C++ (ICC++)ICC++ [38, 81, 35] is a �ne-grained concurrent dialect of C++, possessing the characteristicsdescribed in this chapter. It has concurrent blocks and loops (Sections 2.2.1.1 and 2.2.1.2),collections and object-based concurrency control (Section 2.2.2.1). It di�ers from CA and theexample language in that type declarations are required for all variables, functions and classes.9However, this information is simply discarded (after semantic checks in the front end) by thecompiler which calculates more precise information in the analysis phase (Section 5).9As of Version 1.0. We hope to change this in the future.29



(aggregate counters value ;; aggregate (class) definition(parameters nr_reps) ;; initialization parameters(initial nr_reps ;; initialization code, nr_reps elements(forall index from 0 below groupsize(set_value (sibling group index) 0))))(handler counters count (val) ;; handler (method) definition(sequential (set_value self (+ val (value self)))(reply val)))(handler counters sum () ;; pass message on to first sibling(forward (sum_internal (sibling group 0) 0)))(handler counters sum_internal (sum)(let ((newsum (+ sum (value self)))(nextindex (+ myindex 1)))(if (< nextindex groupsize)(forward (sum_internal (sibling group nextindex) newsum))(reply newsum))))Figure 2.22: Counter Collection (Aggregate) in CAOne of the goals of ICC++ was to be as compatible with C++ as possible. Nevertheless,ICC++ departs from C++ where such departures are necessary to preserve consistency in aconcurrent environment. In particular, like Java [168], ICC++ does not allow pointer arith-metic, pointers into objects, to fundamental types, or interconversion between pointers andarrays. ICC++ also requires accessor functions to be used to access all member variables.These functions are automatically de�ned. Furthermore, operations such as ++ and += whichare normally considered to be atomic are implemented as a single transaction. Figure 2.23shows the atomic ICC++ increment, a C/C++ style pointer based atomic increment (illegalin ICC++ as it requires a pointer into an object, breaking the object abstraction). Since C++is a sequential language, the �nal example (C++ style non-atomic increment) is equivalent inC++ but not in ICC++ where a concurrent operation setting the value of count between theread and the write might be lost. 30



// ICC++ atomic incrementself[].count++;// C/C++ style pointer based atomic incrementint * i = &(*this)[ARBITRARY].count;(*i)++;// C++ style non-atomic incrementCounter &element = (*this)[ARBITRARY];int i = element.count;element.count = i + 1; Figure 2.23: Atomic Operations2.3.3 Example LanguageSections 2.1.2, 2.1.3 and 2.1.5 point out several ways in which C++ fails to support the principlesof object-oriented programming. Moreover, C++ includes a number of features which are eitheroverly complex (overload resolution), dangerous (casts) or simply poorly considered (\accesscontrol", templates). To wit, the examples in this thesis will be in a variation of C++/ICC++with the following changes:� Methods need not be de�ned in the class de�nitions. This is a violation of encapsulationfor which C++ substitutes \access control".� No C++ style \access control" (i.e. private, protected, and public).� No type declarations, the let pseudo type can be used to introduce new bindings [164].The weak typing system of C++ is neither safe (because of casts) nor powerful. C++substitutes templates.� No templates. Instead, polymorphic functions are speci�ed by omitting type declarations.� No pointers, references, or inline objects. Instead we follow the Smalltalk/Scheme modelwhere all objects are by reference and any copies must be made explicitly.� All instance variables are accessed through accessor functions. For a write of instancevariable a the accessor is operator=a().31



� Methods (member functions) without arguments do not require parentheses (i.e. use a.finstead of. a.f()). These parentheses violate encapsulation since they di�erentiate sys-tem and user de�ned accessor functions, revealing the implementation.� Compound statements can contain a �nal (unterminated) expression which is the valueof the statement (i.e. f f(); 1 g has 1 as its value).� The return value of a function without a return is the value (if any) of its compoundstatement.� Tuples, comma separated lists of values which are essentially anonymous records, can beused to return multiple values from a function (e.g. (x,y) = func(), ICC++ [81]).The resulting language has the look of C++ and the clarity and simplicity of Smalltalk orScheme. Moreover, as we will see in succeeding chapters, it can be compiled to execute withthe e�ciency of C (Chapters 7 and 8)). That is not to say that the techniques that will bediscussed are not applicable to C++, only that many of C++'s features are not necessary toobtain that e�ciency.2.4 Related WorkThe subjects of this chapter are represented in the literature by three traditions. First, isobject-oriented programming alone. Then, there is the concurrent object-oriented tradition,including Actors. Finally, the subgroup of C++ based concurrent object-oriented languages isso large and diverse that it deserves separate coverage.2.4.1 Object-Oriented ProgrammingObject-oriented programming was initially popularized in the United States by Smalltalk [76]and Flavors [133]. More recently, C++ [165] has become very popular for general purpose pro-gramming in industry. Object-oriented languages are very diverse, but they generally fall alonga continuum between static and dynamic. Generally speaking, the more static the language,the more properties of its programs are determined at compile time. For example, Ada [103]has strong typing which constrains the types of objects at compile time, while in Smalltalk all32



data is dynamically typed (the type safety of operations is checked at run time). Similarly,C++ [165] does not provide for automatic garbage collection, while Modula-3 [89], Sather [164]and Ei�el [130] provide it as an option and it is an integral part of Lisp and Smalltalk. Self[176] is perhaps the most dynamic object-oriented language, allowing dynamic modi�cation ofthe delegation style method lookup path at runtime. Generally speaking, the more dynamicthe language the more powerful and the more di�cult to compile for e�cient execution.2.4.2 Concurrent Object-Oriented ProgrammingConcurrent object-oriented programming extends the object-oriented paradigm for concurrent,parallel and/or distributed computing. The Actors [92, 46, 5, 4] model, is based on a simplebut powerful semantics. A number of di�erent systems using this model have been created.For example, languages based on Actors include: the dialects of ABCL [183, 170, 186], HAL[101, 115], ACORE [126] and Rosette [174]. These systems are based on asynchronous messages.Other languages have added stronger typing systems, for example, Cantor [19] and POOL-T[10, 9, 11]. Several forms of concurrent Smalltalk have been created, including ConcurrentSmalltalk [184] and the language CST [98] which CA resembles. Sather, an Ei�el-like languagehas a more traditional parallel extension called pSather [134]. More recently, the languageOcore [116] has been developed by the Real World Computing Partnership.2.4.3 Parallel C++The other large body of COOP research has centered around parallel extensions to C++.This work can be roughly divided into two groups: data (object) parallel and task parallel.Languages in the data parallel group include pC++ [122] and C** [119]. In these languages,the operations speci�ed in a single thread of computation may be executed on disjoint datawithout interaction. These operations are expressed over aggregations of data objects [41, 149].This di�ers markedly from more general parallel languages which allow the user to specify morethan one logically concurrent thread of control as well as interactions between threads.There are many task parallel extensions to C++ which are divided into those based on fork-join and semaphore concurrency, object-based concurrency and extensible systems. Systemsbased on fork-join and semaphore concurrency including ESKit [158, 157], Presto [17], COOL[33], CC++ [34] and CHARM++ [108] provide facilities for programmers to construct objects33



containing threads and objects which protect their state. However, these systems do not providelanguage level object consistency nor do they provide mechanisms for building of multi-objectabstractions.ESKit C++ [158], Mentat [80], CHARM++ [108], and Compositional C++ [34] are allmedium-grained explicitly task parallel languages where the user controls grain size. None ofthese systems has developed a global optimization framework, probably owing to a desire toleverage existing C++ compiler technology. On the other hand, the subject of this thesis isautomatic optimization of �ne-grained concurrency through global analysis and transformation.2.5 SummaryObject-oriented programming is the process of describing abstractions. Through polymor-phism any abstraction can be used which supports the required set of operations (a signa-ture). Through inheritance one abstraction can extend the de�nition of another. Fine-grainedconcurrency enables the programmer to specify which operations may be executed in parallel.Fine-grained concurrent object-oriented programs consist of a set of concurrent objects whichinteract by sendingmessages to each other. These objects encapsulate their state in a concurrentenvironment through object-based concurrency control . Together, object-oriented programmingand �ne-grained concurrency ease the task of writing and understanding programs by enablingabstractions to be built with well de�ned behavior in a concurrent environment, enabling localreasoning about the behavior and meaning of programs. However, programming systems whichimplement these abstractions directly can be very ine�cient.
34



Chapter 3Execution ModelThe villainy you teach me I will execute, and it shall go hard, but I will better theinstruction. William Shakespeare. The Merchant of VeniceAn execution model abstracts the execution of a program. It is the medium of compilation,by which the high level programming language is mapped to the low level hardware, and a wayfor the compiler writer to reason about the e�ciency of that mapping. The execution modelpresented in this chapter consists of a model of the hardware (Section 3.1) of the target platform(i.e. CPU, network), a model software implementation (Section 3.2) and a runtime interface(Section 3.5) which connects the two. From these we infer a cost model which motivates theoptimizations in later chapters. As we will see, those optimizations sometimes break throughthese simple models when necessary for e�ciency.3.1 HardwareThe hardware model describes the target platforms and is used by the compiler to modelthe cost of operations. The goals of the model are portability and scalability; to provideaccurate cost estimates for a number of di�erent systems of di�erent size. It has two parts: thesequential microprocessor, whose characteristics are of interest in the evaluation of optimizationfor OOP (Chapter 7), and the parallel machine model for the evaluation of COOP speci�coptimizations (Chapter 8). Since the design of large scale parallel machines has not stabilized,we assume the least common denominator: a collection of commodity computers connected by35



a communicationmedium. This induces a simple two level locality model (i.e. local vs. remote).The impact of particular hardware features is considered in [111, 110].3.1.1 MicroprocessorThe vast majority of computers today, including large scale parallel machines, are constructedfrom commodity microprocessors. Such microprocessors consist of a number of functional unitsfor arithmetic, memory and control 
ow operations and a memory hierarchy. The memory hier-archy may contain registers, reservation stations (intermediate values in the pipeline), registerwindows, hardware thread contexts, level one, two and three caches and �nally local memory.Figure 3.1 contains a block diagram of an example microprocessor. Assuming that it is workconserving, an execution is e�cient if it can keep the functional units busy. Two factors fun-damentally limit e�ciency: e�ective use of the memory hierarchy and control 
ow ambiguities.Higher levels in the memory hierarchy can deliver more data per time unit, hence, given theability of the functional units to sink large amounts of data, e�ciency depends on how e�ec-tively the program uses those higher levels. Primarily this means that a program should use thevery highest level (registers) for most operations. As a secondary consideration, the programshould exhibit temporal locality of memory access [138].
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in Figure 3.2. This processor executes up to 40 instructions at once in a pipeline 12 clock cyclesdeep. A mispredicted branch typically incurs a 15-cycle latency [82]. For a processor whichcan dispatch three instructions per cycle to �ve functional units, this penalty is substantial.Dynamic dispatch is a prime culprit (see Section 3.1.3.1 below) contributing to control 
owambiguity and ine�cient use of processor resources.
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Execute RetireFigure 3.2: Microprocessor Pipeline3.1.2 Distributed Memory MulticomputerMultiple microprocessors are composed to form a parallel computer. Each of these processingelements has some local memory (possibly overlapping with other processors) which it canaccess more quickly than remote memory (which is generally local to other elements). Inthis model it is not important whether or not the hardware supports a single shared addressspace or cache coherence for remote memory. These access mechanisms are issues for thesoftware implementation. What is important is that memory access cost is non-uniform, Thismodel conforms to single processor or SMP (symetric multi-processing) nodes spanned by aninterconnection network. Figure 3.3 diagrams such a multi-computer with two dimensionalinterconnect.In the simplest case, mapping the program onto the hardware involves mapping objects tolocal memory and methods to threads (Section 3.2.1) on processing element associated withthat memory. This mapping is expressed in Figure 3.4. Each thread logically operates within(in order) an object, a processing element, a local memory space. When a thread sends amessage, the processing element on which it is located may switch to a new thread. Sinceswitches involves 
ushing the higher levels of the memory hierarchy in order to make room fordata for the new thread, processor e�ciency dictates that they should be minimized. However,37
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3.1.3.1 Control Flow AmbiguitiesObject-oriented programming encourages the use of abstract interfaces, inheritance and poly-morphic methods. The implementation of these features at run time by dynamic dispatch leadsto control 
ow ambiguities because the code to be executed depends on the type of an object orthe value of a selector variable. Eliminating dynamic dispatch requires analyzing the program todetermine under what circumstances control will 
ow in which direction. The code can then betransformed such that specialized versions are used when these conditions are static (i.e. knownat compile time). The dynamic dispatch can then be replaced with a direct call, eliminatingthe ambiguity. Chapters 5, 6 and 7 are concerned with such analysis and transformation.3.1.3.2 Memory Hierarchy Tra�cE�cient use of the memory hierarchy requires most data to be allocated in registers. Object-oriented programming encourages the use of dynamically allocated (inde�nite extent) objectswhich are accessed indirectly (by pointers). As a result, the instance variables of an objectare potentially aliased memory locations. In order to allocate instance variables to registersand eliminate the memory tra�c associated with accessing them, the compiler must showthat during their allocation to registers, the variables cannot be read or written through someother pointer. Chapter 7 considers this optimization in detail. Likewise, threads should alsouse registers for local data. However, these registers must be 
ushed to memory at contextswitches. In order to minimize this memory tra�c, the compiler groups and minimize contextswitch points (see Chapter 8).3.1.3.3 CommunicationThe cost of communication consists of two factors: overhead and latency. The overhead ofcommunication can be reduced by specializing the communication mechanisms using compiletime information. For example, directly executing a method from the communication bu�erincurs less overhead than using a general purpose interface (Section 9.2.4). Latency is a func-tion of the underlying communication hardware and the thread scheduling algorithm. Byimmediately scheduling messages which arrive at a node, latency can be reduced (Section 9.3).The remaining latency can be hidden by performing multiple long latency operations (message39



sends) concurrently, context switching and then restarting when all the results have arrived(Figure 8.17).3.2 SoftwareThe soft droppes of rain perce the hard marble John LilyThe execution of �ne-grained concurrent object-oriented program can be view as the inter-action of software constructs which implement program level constructs. There are three mainprogram level constructs: threads (Section 3.2.1), objects (Section 3.2.2), and messages (Sec-tion 3.3). Threads are associated with a contexts (Section 3.2.1.1) which hold the temporarydata use by the threads. Threads synchronize using futures (Section 3.2.1.3) which promise avalue to be delivered later and continuations (Section 3.2.1.4) which deliver the value. Objectsare composed of slots (Section 3.2.3) which can contain polymorphic variables or tagged datalocations. Objects protect this state from race conditions with locks (Section 3.2.5). Theyinteract by asynchronous method invocation (message passing, Section 3.3).3.2.1 ThreadsConcurrency is implemented at run time as a collection of �ne-grained (short lived) threads.The cost of creating, blocking and resuming these threads sets a lower bound on the number ofinstructions which they must contain for the program to be considered e�cient. For example,if the average thread executes one thousand instructions, but creating a thread requires twothousand instructions, only one-third of all instructions will be doing \useful" work. Thus,�ne-grained threads are not implemented at the operating system level which would require anexpensive change of hardware protection domain for scheduling. Instead, all the operations onthreads { creation, suspension and resumption { are implemented at the user level. E�cientimplementation of �ne-grained threads is discussed in detail in Chapter 9.3.2.1.1 ContextsA context is a non-LIFO (Last In First Out) store for thread local state. Contexts can bethought of as heap allocated stack frames. In sequential computation, a method must complete40



before its caller can continue. In �ne-grained concurrent computation, the caller may continue,and invoke additional methods. The storage for the temporary data for the second methodcannot be allocated on a simple stack since the �rst method has not yet completed. In general,the concurrent model induces a forest of contexts as opposed to a stack of frames (see Figure 3.5).
Heap−based ContextsStack−based FramesFigure 3.5: Stacks of Frames vs. Trees of ContextsA context is similar to a stack frame with additional �elds peculiar to object-orientationand concurrency. Figure 3.6 diagrams the model implementation of a context. Method isa reference to a method descriptor which is used during scheduling to determine the lockingrequirements and code of the method and, along with the Program Counter, by the garbagecollector to determine the types of unboxed temporary variables. Object refers to the objecton which the method was invoked, when the method exists, any locks acquired on this objectare released. Program Counter is the location within the method where the thread lastsuspended. Continuation is the continuation for this method and, much like a return address,forms the linkage with the calling method. Finally, Arguments and Temporaries containtagged or unboxed data used by the thread (see Section 3.4.3).
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This model implementation is only a starting point for optimization. Cloning (Chapter 6)and inlining (Chapter 7) break the connection between methods and the code bodies to whichcontexts are associated. Speculative inlining (Chapter 7) and access regions (Chapter 8) breakthe connection between objects and contexts by allowing the thread associated with a contextto operate on many objects, acquiring and releasing locks as required. For a variety of reasons,including portability, interfacing with external sequential code, e�ciency and resource reuse,a stack-based mechanism can be preferable. Chapter 9 describes a hybrid stack-heap schemewhich preserves the bene�ts of both systems by breaking the connection between contexts andthreads, only creating contexts for threads that require scheduling.3.2.1.2 SchedulingWhen threads are scheduled e�ects the execution in several ways. First, it determines thedynamic task structure and the amount of parallelism. A \bushy" task tree provides additionalunits of computation for load balancing and latency hiding, but scheduling and synchronizingthese tasks incurs overhead. Second, when a thread is scheduled e�ects the dependent threadswaiting for its result. If the result is not returned quickly, the dependent threads will be 
ushedfrom the higher levels of the memory hierarchy. They will then have to be reloaded at somecost. Finally, when one thread is created by another on the same processor, the second threadcan be scheduled immediately, enabling the threads to communicate through the highest levelsof the memory hierarchy (i.e. registers). This motivates an eager scheduling model default, andthe hybrid execution model presented in Chapter 9.3.2.1.3 FuturesNew threads are logically created for each concurrent invocations (Section 3.3). These threadssynchronize with their parent thread using futures [87, 121]. Futures are essentially promisesmade by a task to provide a result, possibly at some later time. In a �ne-grained concurrentmodel they are implicit, unlike MultiLisp [87] and Mul-T [117] where their insertion is theresponsibility of the programmer. They are automatically inserted so as to enforce user speci�edconcurrency constraints (sequential blocks) and local data 
ow (Section 2.2.1.3). For example,in Figure 3.7 the calls to func1() and func2() promise the results of their calculations as aand b respectively. These calls can be implemented as concurrent threads whose results may42



be computed at any time. The parent thread continues to the call func3() which requires theresults a and b. When these results are ready func3() can begin executing. Finally, whenfunc3() completes, func4() can begin executing.{ conc {a = func1();b = func2();c = func3(a,b);}func4();} a

b
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func4()Figure 3.7: Futures Examples3.2.1.4 ContinuationsWhen a future is originally created it is empty, and the right to determine the value of thefuture is called a continuation. The continuation is essentially a small closure which is appliedto provide the value of the future. Continuations are �rst-class citizens; they can be passedto another method or thread and it can be stored in memory. For example, in ConcurrentAggregates, the continuation can be accessed through the pseudo-variable requester or passedon to another invocation using the forward construct (see Section 2.3.1), while in ICC++ it isaccessible directly as an object called reply available in every method. When a thread wishesto test a future to see if its value has arrived yet, it touches the future. If the value has notarrived, the thread must suspend.conc {a = func1();...b = func2(a);} (aFuture,aContinuation) = MAKE_FUTURE(a);MAKE_THREAD(func1(),aContinuation);...if (!TOUCH(aFuture)) SUSPEND;(bFuture,bContinuation) = MAKE_FUTURE(b);MAKE_THREAD(func2(a),bContinuation);Figure 3.8: Continuations and TouchesConsider the code on the left in Figure 3.8. The method func2() depends on the value ofa. The pseudo-code on the right describes the steps taken by the abstraction to implement thisdependence. First, a is made into an empty future and a continuation is created to return avalue to that future. Second, a thread is created to execute func1() and passed the continuation43



for a. Concurrent with the execution of func1() the future a is touched. If the value a is notpresent, the thread suspends. In any case, when a is available its value is passed to the methodfunc2(). Of course, since building futures and threads and suspending is expensive, the mostgeneral forms of these operations are rarely performed. Optimizing these operations is the topicof Chapters 8 and 9.conc {...b = func2(a);} func2(a) {return func3(a);}func3(a) {return a+a;} func2(a,continuation) {func3(a,continuation);}func3(a,continuation) {continuation(a+a);}Figure 3.9: Use of ContinuationsContinuations can be used like normal methods which complete immediately (clearly wecannot use a future to wait until the �rst future received the value) and returns no value.Figure 3.9 shows a method invocation on the left. In the center is the de�nition of the method aswritten by the programmer. On the right is the same de�nition with the \hidden" continuationvariables made explicit. Notice how the right to determine the value of b is forwarded fromfunc2() to func3(). The continuation is eventually used by func3() to return the �nalresult to b.3.2.1.5 Counting Futures and ContinuationsCounting futures are futures which represent a number of outstanding values. Along withcounting continuations, counting futures enable a thread to synchronize once with an arbitrary(determined at runtime) number of threads (much like the future sets of MultiLisp [121]). Onthe left in Figure 3.10 a concurrent loop invokes func1() on a number of objects. The loopcannot complete until all of the invocations have completed. On the right, a future cFuture iscreated with a initial count of zero. Each time an invocation is made, the number of outstandingresults is incremented. The TOUCH() operation, when applied to a counting future, checks thatall the results have returned, suspending the thread if this is not the case. The implementationimplications of counting continuation are considered in more detail in Chapter 9.44



conc for (i=0;i<n;i++)o[i]->func1(); cFuture = ZERO_COUNT;LOOPaContinuation = cFuture.INC();MAKE_THREAD(o[i]->func1(),cContinuation);if (!TOUCH(cFuture)) SUSPEND;Figure 3.10: Counting Futures and Continuations3.2.2 ObjectsObjects are represented by a region of memory laid out with �elds for instance variables,synchronization and scheduling (Section 3.2.2.1. Each instance variable �eld is called a slot(Section 3.2.3). These slots may be tagged with the type of the contents, enabling themto represent polymorphic instance variables (Section 3.2.4). Race conditions resulting fromconcurrent access to these slots are prevented by locks (Section 3.2.5). When a method cannotbe scheduled immediately, for example if it cannot acquire the locks it requires, it is delayed ina queue of threads associated with the object.3.2.2.1 Object LayoutConcurrent objects are, in general, more heavyweight than their sequential counterparts. Inaddition to the class descriptor (virtual function table pointer [166]) required for object-orienteddispatch, they must maintain lock information and a queue of outstanding (blocked) messages.Also, the compiler must be able to generate code to access instance variables and �nd objectpointers for garbage collection purposes. Figure 3.11 shows the layout of an object. Bothinstance variables and array elements are optional, and can be included in any object. Sincethe programming model does not permit the interconversion of pointers and arrays, array arelike other objects and can contain instance variables. The instance variables and array elementsmay or may not be tagged slots (Figure 3.11 below).3.2.3 SlotsA slot is a data location which is tagged so that the type of the contents can be determined at runtime. Slots can contain immediate values (integers, 
oating point numbers, system constants),global names, local object pointers, continuations, and futures (Section 3.2.1.3). Figure 3.12gives a example how a slot might be declared in C. The slot tags are used for dynamic dispatch45
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Class ID/VFTPFigure 3.11: Object Layoutand by the garbage collector (Section 3.4.3) to determine if a slot contains a pointer. Forexample, Concurrent Aggregates is a pure object-oriented language in which a variable canstore an integer one moment and a reference to an object the next. Tag manipulations canbe expensive and slots can occupy more space than unboxed (untagged) values. Section 7.4discusses eliminating these ine�ciencies through unboxing.struct Slot {enum {INT, FLOAT, FUTURE, GLOBAL_PTR, LOCAL_PTR} tag;union {int i;float f;Future fut;Continuation cont;GlobalPtr gptr;LocalPtr lptr;} value;}; Figure 3.12: Slot Abstraction3.2.4 TagsSlots are used to store the value of polymorphic variables and the return values of concurrentinvocations which require futures. Slots contain tags which indicate the type of data which theycontain. These tags di�erentiate fundamental types (int, float, etc.), global and local names,collections, selectors, continuations, and futures, both empty and full. When analysis can showthat a slot can contain only one type of data at any one time, the slot can be converted into46



unboxed data. The tags are removed and space is allocated only for the contents, allowing theremoval of tag manipulation operations and the recovery of the tag space.3.2.5 LocksObject-based access control is the underlying mechanism used to ensure consistency as requiredby the programming model. While the consistency model is described in terms of visible statechanges, the implementation is based on atomicity. That is, the internal state changes of atransaction (method) are hidden by prohibiting other transactions from happening concurrently.While in some cases it is possible to ensure this by analyzing the control 
ow of the program, ingeneral, an object must be locked and con
icting messages delayed. Concurrent methods havethe general form of the code on the left in Figure 3.13.A::foo() {LOCK(self);... operate on self ...UNLOCK(self);} Receiver Object
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Figure 3.13: Object-based Access ControlWhen a method begins executing a thread is created which locks the target object to preventinterference from other threads. Locks can be checked, taken and released, requiring access andmanipulation of the lock �elds stored in the object. In the case of a check, the new threadmay be required to suspend pending availability of the lock. Such messages arriving at a busyobject are delayed in the waiting queue until the currently active thread frees the lock.The region of code over which a thread has access to the object is called the access region.There are two main ways to remove lock operations. First, one locking operation subsumesanother when the second occurs only when the �rst lock operation has succeeded. Such lockoperations are unnecessary and can be removed. Second, consecutive acquisitions and releases ofthe same lock can be grouped, and the intermediate release-take pairs removed. Optimizations47



concerning lock subsumption detection and manipulations of access regions in order to minimizethe number of lock and scheduling operations are discussed in Chapter 8.3.3 MessagesAn invocation (message send) in the �ne-grained concurrent object-oriented model consists ofa number of steps (illustrated in Figure 3.14). These steps are abstract; using the techniquesdescribed in this thesis, many of them can be optimized away or performed in a di�erent order.First (1), the global name is translated, and the target address space determined. Then (2), themessage is constructed from the arguments and the continuation is built. Next (3), the messageis transfered to the target address space. Some time later (4), the message is scheduled. Finally(5), the message is dynamically dispatched, and the appropriate code begins executing.
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5Figure 3.14: Invocation Sequence3.3.1 Global Shared Name SpaceA shared name space means that there is a single name space and that the names are alwaysvalid, nomatter where the data is located. Many concurrent object-oriented systems distinguishthe hardware local and global namespaces (e.g. Split-C, CC++, Charm++, Mentat). In suchsystems only global names can be passed between and used to refer to objects nodes on di�erentnodes of a distributed memory machine (Section 3.1). A shared name space greatly simpli�esprogramming, by enabling the expression of the algorithm to be separated from the location48



of data. Global names can implemented as a node number and a local memory address of thecurrent or initial location of the object or an index into a distributed hash table [109]....a.foo();... if (NODE(a) == THIS_NODE) {o = LOCAL_POINTER(a);INVOKE(o,"foo")} elseSEND_MESSAGE(NODE(a),a,"foo");Figure 3.15: Global Name TranslationFor distributed memory machines both with and without hardware support for a sharedname space, it is desirable to manage the location of threads with respect to the data theyare operating on in order to ensure locality of access. This involves a translation from globalnames to local names, which are valid within a single node and typically represented by anaddress in the local memory. The translation mechanisms are provided by the runtime system(Section 3.5). For example, in Figure 3.15, the code on the left shows program level invocation.On the right, the global name a is �rst checked to see if it corresponds to a local object, andeither a local invocation is made or a remote message send. Chapter 8 discusses automaticmanagement of locality and the optimization of translation operations.3.3.2 SchedulingScheduling is the process of selecting which tasks run when. When a message arrives at theobject the default behavior is execute it immediately, acquiring any required locks. If the lockscannot be acquired, the message is delayed. The scheduler maintains a queue per object inwhich is stored waiting messages in the order in which they arrived. When locks are release onthe object, waiting messages attempt to acquire their locks and execute.The scheduler must support the model of fairness required by the programming model. Inthis thesis, we assume a restricted version of weak fairness. Messages sent to objects will behandled eventually assuming that methods holding locks on the object eventually terminate,threads executing on the processing element eventually block, and the result of the computa-tion depends on the result of the message. These conditions can be violated by the programdeadlocking, looping in�nitely, or not synchronizing on the termination of an operation. Thecompiler must not to induce these conditions so long as the programmer relies only on the con-49



currency guarantees provided by the programmingmodel. This a�ects the locking optimizationsin Chapter 8.3.3.2.1 Dispatch MechanismThe code executed as a result of a method invocation depends on the (dynamic) type of thetarget object(s) (Section 2.1.4). A dispatch mechanism selects the code to be executed using aset of dispatch criteria derived from the calling environment which can include the signature,declared and actual type of one or more arguments, and the name of the method. Severaldispatch mechanisms implementations are possible, including run time searching of the methoddictionary, class-based tables [166], hash tables [178], inline cashes [61] and polymorphic inlinecaches [96]. The caching mechanisms attempt to reduce the amortized cost of dispatch byproviding a fast path for related temporally proximate dispatches.Perhaps the most common implementation (C++ [166]) is a table of methods indexed by theorder in which methods are declared in a class. This method has the disadvantage that methodsto be dispatched on must be de�ned in some shared superclass, a restriction C++ imposes inthe type system. This restriction is isomorphic to the object layout problem (Section 3.4.1).Faster mechanisms can also be used when the values of some of the criteria are known at compiletime, and the fastest mechanism is to avoid the call entirely and inline the code. Chapters 5, 6and 7 are concerned with these optimization.3.4 Implementation IssuesThe facilities provided by the execution model are su�cient, but their generality makes themexpensive. Variables implemented as slots require additional space and time to manipulate thetags. For non-polymorphic variables, the tags and operations can be elided. Likewise, threadcreation, scheduling and synchronization operations should be avoided whenever possible. Threeother issues are memory map conformance (Section 3.4.1), load balance and data distribution(Section 3.4.2) and garbage collection (Section 3.4.3).50



3.4.1 Specialization and Memory Map ConformanceWhen an object of a particular class is created, it can be used in a number of di�erent ways.If it is an array, it may be created to hold some arbitrary number of elements or a compiletime constant number. Its instance variables may be used to hold single types of data or thoseof several types. Access to its internal state may be entirely mediated by some surroundingobject or the object may be capable of receiving messages directly. These di�erence representoptimization opportunities for which the object may be specialized. Sometimes it is possible tostatically determine these properties over an entire class of objects, in which case the class andall code manipulating objects of that class can be specialized. Inheritance, however, introducesadditional complexities.Memorymap conformance is a property of the layout of objects within classes such that codecompiled to manipulate objects of the superclass type can be used on objects of the subclasstype. For example, consider a class A which de�nes a single instance variable a and a classB which inherits from A and de�nes an additional instance variable b the compiler can ensurethat the location of a within objects of type A and B will be the same. This is illustratedin Figure 3.16. This property enables code to be shared between the superclass (A) and thesubclass (B), but it inhibits some optimizations.class A {a;};class B : A {b;}; Locks
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Class ID Class IDFigure 3.16: Class Memory Map ConformanceMemory map conformance can also be an issue for objects in a single class. For example, ifa particular instance variables of an object is known to be a compile time constant, the spacefor that instance variable need not be allocated. However, this can lead to di�culties since thecode generated to manipulate the object may be shared with other objects which require theinstance variable. Consider the two objects in Figure 3.17. The memory map of x could bealtered to remove the instance variable a since this variable is a compile time constant. However,51



the code which manipulates these objects must access b at di�erent locations. Performing suchoptimizations, both those which preserve memory map conformance and those which do not,is one of the the subjects of Chapter 6.class A { a; b; };foo (o) { return o.b+o.b; }conc {A x; x.a = 1; x.b = ..;A y; y.a = g; y.b = ..;.. foo(x) .. foo(y) ..} Locks
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Class ID Class IDFigure 3.17: Object Memory Maps Which do not Conform3.4.2 Load Balance and Data DistributionThe e�ciency of a parallel program depends on its processor e�ciency (the e�ciency of exe-cution on a processor) and its parallel e�ciency (the number of processors that the programcan keep busy consistently). This thesis is concerned primarily with processor e�ciency underthe assumption that the work and data are distributed. There are many ways to distributework and data and balance the work load across the machine. Generally, these techniques in-volve data shipping (caching, object migration etc.), function shipping (remote procedure calls,distributed loops) or both.To abstract the problem of processor e�ciency, we assume a simple model were methodsexecute local to the object on which they are invoked and objects are distributed across themachine. Load balance is assumed to be maintained by some combination of static placement,and data and function shipping mediated by the runtime system. The location where a threadshould be created (that of the target object) is mediated by runtime system through an interface(Section 3.5) used by the compiler generated code.3.4.3 Memory Allocation and Garbage CollectionObject-oriented languages encourage dynamic creation and disposal of objects at run timeinstead of static allocation of them at compile time. It follows that the e�ciency of these oper-ations can greatly e�ect the overall performance of the application. As we will see in Chapter 7,52



the e�ciency of at least one simple benchmark doubles when the memory management mecha-nism is improved. The nature of the object memory map e�ects memory allocation and garbagecollection. For example, if an object does not have an array portion or if the array portion isknown to be of a particular size a custom bin-based memory allocator can be used. Similarly,in order for the garbage collector to �nd all the reachable objects in the system it must beable to determine which data represent object pointers. Therefor, if objects and contexts (seeSection 3.2.5) are tagged by type descriptors, individual tags on the instance variables andtemporary variables can be eliminated in favor of information stored in the type descriptor.3.5 RuntimeThe compiled code interacts with runtime system through an abstract interface which hidesmany of the details of the underlying hardware. It is the runtime system which de�nes thetranslation and message transfer operations. Table 3.1 summarizes the runtime interface.Again, many of these operations may be optimized away. The �rst set (INVOKE,REPLY)is for invoking methods (sending messages) and replying to continuations. The next set(LOCK OBJECT,LOCAL POINTER) exposes the object consistency locks and global to localname translation mechanisms. The next set (OBJ,CONTEXT SLOT) allows translation toand from unboxed values and operations on heap based contexts. Continuation manipulationoperations (MAKE CONTINUATION,TOUCH) make up the next set. Then we have objectcreation (NEW OBJECT) and intra-collection (COL TO REP) addressing, and �nally oper-ations on globals. These operations will be considered in more detail in the chapters whichdiscuss their optimization.3.6 Related WorkAt the hardware level, there have been a number of systems which were constructed especiallyto run object-oriented languages, including the Xerox Dorado [139] and Berkeley SOAR [150].The J-Machine [56] and the MDP [57] were designed to run concurrent object-oriented programsand use the COSMOS [99] operating system as a runtime environment on top of the hardware.Likewise, ABCL has been implemented on the hybrid data 
ow machine EM-4 [183]. However,recently economy of scale and advances in compiler technology have favored commodity micro-53



Operation Variation and Related OperationsINVOKE INVOKE IMMED,INVOKE LOCALREPLY REPLY WITH MSGLOCK OBJECT UNLOCK OBJECT,LOCKED?LOCAL POINTERCONTEXT SLOT INST VAR,CONTINUATION SLOT,ARGUMENT,THE MSG,THE SUPEROBJ INT,FLOAT,GLOBAL NAMEMAKE CONTINUATION MAKE COUNT CONTINUATIONTOUCH MTOUCH,TOUCH BEGIN,SWITCH,TOUCH END,MTOUCH BEGINNEW OBJECT NEW LOCAL OBJECT,NEW LOCAL OBJECT SIZE,NEW ARRAY,NEW LOCAL ARRAY,NEW UNBOXED ARRAY,NEW LOCAL UNBOXED ARRAY,NEW AGGREGATE,NEW LOCAL AGGREGATE,NEW UNIQUE,NULL OBJECTCOL TO REP COL TO PHYSICAL REPREAD GLOBAL READ GLOBAL SEQUENTIAL UNBOXED INT,READ GLOBAL SEQUENTIAL UNBOXED OBJ,READ GLOBAL SEQUENTIALDISTRIBUTE GLOBAL Table 3.1: Runtime Operationsprocessors which proven cost e�ective. For example, ABCL implemented on the AP1000 andthe Concert system on the Thinking Machines CM5 [173] and Cray T3D [52] have all provene�ective, often thanks to e�cient runtime systems [179, 112, 113].There is a host of material on software models for sequential object-oriented languages,most notably Smalltalk [76, 67, 61], and Self [29, 28, 30]. These models di�er from thatdiscussed in this chapter with respect to support for distribution and concurrency. There arealso many concurrent object-oriented systems. Of particular interest are Concurrent Smalltalk[100], ABCL [186], ABCL/R2 [127] and ABCL/f [171]. Many of the concepts in this chapterare found in these systems, but the speci�c mechanisms, especially for synchronization, di�er.3.7 SummaryThe execution model is the compilation target and cost model for the compiler. It is composedof a set of execution abstractions of the hardware, software and runtime system. The hardware54



model is based on commodity microprocessors spanned by an interconnection network. Thismodel indicates several potential sources of ine�ciency, including control 
ow ambiguities re-sulting from dynamic dispatch, memory hierarchy tra�c and communication overhead. Thesoftware model describes model implementations for threads, objects, and messages.. Threadsstore their state in a context which are non-LIFO stack frames. Threads synchronize with otherthreads using futures which promise a value to be provided later by a continuation. Objectsstore their instance variables in slots which may be tagged with the type of the contents. Thesoftware model describes the physical layout of contexts and objects and the implications formemory allocation and garbage collection. It also describes the method invocation sequenceand dynamic dispatch mechanism. The hardware and the software interact through a runtimeinterface.
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Chapter 4The Compilation FrameworkComputers are useless. They can only give you answers. Pablo PicassoThis chapter describes the compilation framework and the Concert System [37] in whichit is implemented. The Concert System is a complete development system for concurrentobject-oriented programs consisting of a compiler, runtime system and various support toolsand libraries. The Concert vision, expressed in Section 4.1, is to combine high-level expres-sion of programs and e�cient implementation. The Concert compiler (Section 4.2) achievesthis through aggressive analysis and transformation, and collaboration with a e�cient run-time system (Section 4.3). Working together, the compiler and runtime can e�ciently mapboth Concurrent Aggregates (Section 2.3.1) and ICC++ (Section 2.3.2) to a variety of targetmachines (Section 4.4).4.1 ConcertThe Illinois Concert System [36] is a project of the Concurrent Systems Architecture Group. Itsgoal is to produce portable, high performance implementations of concurrent object-orientedlanguages on parallel machines. The philosophy of the project is that programs should bewritten at a high level, exposing all the �ne-grained concurrency and that the language im-plementation should tune the execution grain size to that supported e�ciently by the targetplatform. The Concert system consists of a compiler, a runtime specialized to the underlying56



hardware, an emulator for quick turnaround debugging, a debugger and a standard library. TheConcert system has been in development since January, 1993.4.1.1 ObjectiveThe overriding objective of the Concert project is to show that concurrent object-orientede�ciently can be executed e�ciently on stock hardware. We believe that empirical evaluationmust be the ultimate arbiter and that necessity is the most e�ective way to establishes priorities.We established two constraints for our system. First, it should provide high performance. Sincethe techniques required to improve performance change dramatically as we approach that ofconventional languages on uniprocessors, high performance is of both practical and academicvalue. The second constraint is that the system should be general and portable, applicableto a range of concurrent object-oriented languages and target parallel machines. Portabilityis important from both a practical as well as an academic standpoint. As a practical matter,parallel machines have diverse characteristics and short lifetimes; while we were one of the earlyusers, the CM5 went out of production shortly after our port was complete. From an academicstandpoint, portability demonstrates generality of approach.4.1.2 PhilosophyThe philosophy of Concert is that programmers should be concerned with natural expressionof their programs and the system should be concerned with producing an e�cient implemen-tation. From our point of view, natural expression involves high level abstractions and explicitconcurrency. We believe that the compiler should map these dynamic high level abstractions tostatic implementations at the earliest point possible (e.g. partially evaluating expressions withrespect to known parameters). Explicitly concurrent programming languages are strictly moreexpressive than sequential languages since they can model non-deterministic algorithms. Webelieve the programming should express the natural concurrency in the algorithm and that it isthe responsibility of the system to tune the realized concurrency to that which can be e�cientlysupported by the target platform.Our approach to tuning the execution grain size is to specialize the computation relative tothe properties of the program as they become know. Some properties are known statically, inthe program text, at compile time. Others require the program to be transformed. For example,57



replicating code executed under di�erent conditions can be bene�cial because it enables creationof unique versions with �xed known properties. Still other properties must be tested at runtime.We can compile di�erent version of code specialized for these dynamic properties, and theversion executed is selected at runtime. In any case, taking advantage of these properties asearly as possible is desirable, since implementation cost increases as we move closer to thehardware. This induces a hierarchy of mechanisms pictured in Figure 4.1. By �xing propertiesas early as possible, we separate the dynamism of the algorithm from that of the language usedfor expressing the algorithm.
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exibility the runtime system provides a hierarchyof primitives of varying degrees of 
exibility. For example, the compiler can select a primitivewhich statically binds the code to be executed for an invocation (if the code is known atcompile time) or one which dynamically binds the code at run time. In turn the compilerprovides information obtained by static analysis to the runtime system for use in runtimetransformations like caching and load balancing. Thus, the Concert philosophy is that thecompiler and the runtime should work together, each leveraging the strengths of the other.4.1.3 Parts of the SystemThe Concert System [65, 63] is compose of a compiler, runtime system, emulator, symbolicdebugger and a set of libraries. The compiler and runtime are discussed in Sections 4.2 and58



4.3 respectively. The emulator [167] works within the Lisp environment by interpreting thecore language intermediate representation (Section 4.2.2.2). The ParaSight debugger [62, 64]provides source level debugging of concurrent object-oriented programs on workstations. Thestandard library provides reusable code for two and three dimensional grids, barriers, distributedcounters, combining trees, data parallel computations and other standard data structures andalgorithms.4.1.4 TimetableThe Concert System has undergone a staged development, described in Table 4.1. The projectoriginally derived from the thesis work of my advisor, Andrew Chien [39]. That system consistedof a translator and runtime for uniprocessor workstations. Simple programs executed on thatsystem ran approximately six orders of magnitude (one million times) slower than unoptimizedC. In the �rst exploratory stage of work we added inheritance and dynamic dispatch to theConcurrent Aggregates language, developed a runtime interface for the CM5 and prototypedan interprocedural 
ow analysis. This stage is described in the table by the row labeled Pre-Concert. Based on this experience began a new design, Concert, including a new compilerframework and runtime interface.Language Major Compiler Other Major SpeedVersion Date Changes Changes Changes vs. CPre-Concert 6/92-12/92 CA+OO proto-Flow Analysis proto-CM5 runtime 1/10e6Concert 1.0 6-93 +set! CFG+SSA-based, Flow Analysis CM5 runtime 1/10e3Concert 1.1 10-93 Primitive Inlining Emulator, Debugger 1/100Concert 2.0 3-94 +functions Speculative Inlining Parallel GC 1/10Concert 3.0 5-95 +annotations PDG-based, Access Regions T3D runtime 1Hybrid Execution User DistributionsConcert 4.0 5-96 ICC++ Object Inlining 1Table 4.1: Development of the Concert SystemThe �rst version of Concert (1.0) was an internal release capable of executing the test suitedeveloped for the pre-Concert system. The internal representation was a Control Flow Graph(CFG) in Static Single Assignment (SSA) [53] form. This version was considerably faster thanthe pre-Concert system owning to a more e�cient runtime system. The �rst external release59



(1.1) improved on this by inlining primitive operations (e.g. integer add). Version 2.0 addedspeculative inlining (Section 7.5), runtime locality and lock tests conditioning inlined code. Thisbrought performance to within a factor of 10 of C for many codes. The last factor of 10 requiredmore radical changes, including shifting to a new internal form, the ProgramDependence Graph(PDG) [72]. It is the work required for this last factor which occupies Chapters 8 and 9.4.2 CompilerThe Concert compiler employs aggressive static analysis and transformations exploiting infor-mation from the high level COOP semantics and the low level load, operate, store semanticsof the programming model. For example, subsumption of object-level access control opera-tions (Section 3.2.5) requires interprocedural analysis and transformation at the level of thecall graph. Likewise, object-level access regions e�ectively guarantee lack of aliasing which canbe used for instruction scheduling and register allocation at the lowest level. To exploit theselevels, the Concert compiler provides a compilation framework with eight representations ofthe program from source code to target code so that optimizations can be applied at the mostconvenient level. This framework is composed of �ve phases: parsing and semantic processing,program graph construction, analysis, transformation and code generation. Excluding the twoparsers, the compiler is approximately thirty-�ve thousand lines of Common Lisp/CLOS.4.2.1 OverviewThe Concert compiler is structured as a pipeline of phases with several feedback loops. Fig-ure 4.2 gives this structure along with the intermediate representations used in each phase. Theparsing and semantic processing phase consists of reading the program in the source languageinto an Abstract Syntax Tree (AST) and computing various attributes [7]. Its product is theprogram translated into the core language intermediate form. This form is then during theprogram graph construction phase, translated into a Program Dependence Graph (PDG) [72]in Static Single Assignment (SSA) [53] form by way of a Control Flow Graph (CFG). Theprogram graph intermediate form is used by the analysis and transformation phases. Finally,during code generation, the control 
ow graph is rebuilt, the program is translated into RegisterTransfer Language (RTL) and target code is generated.60



Parsing and
Semantic Processing

Program Graph
Construction

Analysis

Transformation

Code Generation

Program Source Code (CA,ICC++)

Abstract Syntax Tree

Core Language

Program Graph: CFG
Program Graph: CFG + SSA

Program Graph: PDG + SSA

RTL

Program Graph: CFG 

Generated Code

Program Graph: PDG + SSA

INTERMEDIATE FORMSFLOW PHASES

Figure 4.2: Concert Overview: Phases and Intermediate Representations4.2.2 Retargetable Front EndOne of the goals of Concert is portability of the system, the ability to compile a wide rangeof concurrent object-oriented languages. In order to meet this goal, we designed a retargetablefront end. Since we wanted to preserve high level information, instead of immediate translationto RTL (e.g. like GCC [161]), the front end target is a simple \core" language. The languagespeci�c front ends (for CA and ICC++) pass a set of methods to the program graph constructionphase. These methods are built from statements in the core languages over symbols (globallyunique identi�ers).4.2.2.1 SymbolsSymbols are passed as a simple list or 
at table of descriptions consisting of a unique identi�erand a number of optional �elds. There are two types of symbols: variables and classes. The61



identi�er is used both within symbol descriptions and within the core code to represent thesymbol. It must be unique; program language level scopes must be 
attened. Internally theidenti�er is represented as a reference to a symbol object. There is one optional �eld applicableto both variable and class symbols:field type descriptionname string The printable name of the symbol (e.g. variablename) used by the debugger etc.several applicable only to variables:field type descriptionvalue string, integeror 
oatingpoint number Indicates that this variable is a constant and gives thevalue.type class symbolidenti�er The type used for dispatching purposes. For the selfargument, this is class in which the method is de�ned.For other values, this is the type which the variableshould be considered to be of for dispatching purposes(i.e. for super in Smalltalk, this is the superclass).self boolean Indicates that this is a \syntactic self send". In bothCA and ICC++, invocations which are made directlyon self or this are considered to be part of the sametransaction (Section 2.2.2.1).global boolean Indicates that this is a global variable. An initializa-tion body will be executed before the program proper.counter boolean Indicates that this variable should use a counting con-tinuation (Section 3.2.1.5).and others only to classes:field type descriptioninstance-variables list of symbolidenti�ers The instance variables for this class. Any inheritedinstance variables should be included here.super-class symbolidenti�er The superclass used by dynamic dispatch for methodlookup.4.2.2.2 Core LanguageA program in the core language is a set of methods in the form of an invocation template andstatement. The invocation template has the form of a send statement where the selector is astring constant and the parameters are the arguments. There are �ve statements in the corelanguage with two variations and one tag. These are presented in Table 4.2.62



statement arguments descriptionsend list of symbols An invocation.move symbol,symbol Assignment of primitive types (including pointers andreferences).if symbol,statement,statement Conditional.while/conc-while symbol,statement A while loop. conc-while indicates that the itera-tions can execute concurrently.seq/conc list ofstatements A block of statements. conc indicates that they canexecute concurrently.future list of symbols Tag which indicates that the actual argument is acontinuation for the future values of the symbols.Table 4.2: Core Language StatementsFigure 4.3 is an example of the translation the polymorphic function dbl(). The classhierarchy is rooted at rootclass (all classes have rootclass as a superclass). There are foursymbols including the argument whose type is used for dispatch, the selector dbl and a tempo-rary value temp. The method de�nes the invocation template including the hidden continuation(Section 3.2.1.3) argument. In the body, the two send statements are nominally concurrent,though they will have to execute sequentially because the second requires the result of the �rst.// polymorphic function to double numbersdbl(x) {x+x}// core language translation(symbol class rootclass)(symbol variable x :type rootclass)(symbol variable dbl :value "dbl")(symbol variable temp)(method (dbl x c)(conc(send + x x (future temp))(send reply c temp)))Figure 4.3: Core Language ExampleThus, the core language is a bare bones concurrent object-oriented language similar toSmalltalk but without even that language's syntactic conveniences. While it is quite power-ful, it has restrictions. Control 
ow is restricted to if and while to simplify program graph63



construction. Functions are restricted to the top level, so local data can not be accessed bymore than one function. This enables later phases to easily preserve the consistence of localdata. Both CA and ICC++ are translated into the core language in their respective parsingand semantic processing phases.4.2.2.3 Parsing and Semantic Processing: CAThe CA front end is build using the PArser GENerator for Common Lisp by Ken Traub, part ofthe Data
ow Compiler Substrate [175] for the MIT Id 88.0 compiler. The parser generates anabstract syntax tree on which inherited and synthetic attributes are de�ned by Lisp functionsand computed on demand. Since CA is quite close to the core language, this front end isconcerned mainly with 
attening scopes, constructing accessor functions and initialization codefor objects and globals. As a result, it is quite small, requiring approximately two thousandlines of Lisp code.4.2.2.4 Parsing and Semantic Processing: ICC++The ICC++ front end was written by Julian Dolby with the help of Hao-Hua Chu and is derivedfrom the CPPP parser from Brown University. It is built using a modi�ed version of the Zebuparser by Joachim H. Laubsch combined with several recursive descent prepasses in the lexer.The parser generates an abstract syntax tree on which substantial computation must be donefor type checking, insertion of coercion operations and overload resolution. ICC++ is not assimilar to the core language as CA (Section 2.3.1). In particular, ICC++ allows more generalcontrol 
ow (break, continue, return and goto) which is translated into conditionals andwhile loops [69]. Nevertheless, the code related to core language translation is a small portion(twenty percent or three thousand lines) of the ICC++ front end which requires some fourteenthousand lines of Lisp code.4.2.3 Program Graph ConstructionThe program graph intermediate form is a variation on the Program Dependence Graph (PDG)in Static Single Assignment form (SSA). Construction of the program graph generally followsstandard algorithms, except for building CFG Data Dependences and Static Single Use (SSU)form (both described below). A program graph node is created for each core language statement,64



presenting two views: one with with �elds for sets of rvals (values read by this statement) andlvals (values written), and one with only args (asynchronous message arguments) including anexplicit continuation. Local and traditional sequential optimizations are implemented in termsof rvals and lvals while interprocedural and concurrency minded optimizations operate on thecontinuation passing view. These nodes are embedded in four graphs. The Control Flow Graph(CFG) is constructed directly from the core language. Forward and backward dominator graphsare computed [124]. The Control Dependence Graph (CDG) is built and the program is thentranslated into SSU form using a variant of [53]. Note that since the core language containsonly while loops, the CDG is a tree.4.2.3.1 CFG Data DependenciesWe record CFGData Dependencies in the program graph for user speci�ed ordering of non-localoperations. They are computed based on the semantics of concurrent and sequential blocks andloops. These, in turn, depend on the read-after-write relationships between local variables.For example, two send statements might otherwise be concurrent save that one is required toprecede a write to a variable which is read in a statement required to precede the second (seeFigure 4.4). When the program is converted into Static Single Use form, the dependencies formove statements are dropped since they are implicit in the def-use relationships....// The two sends must be executed in sequence(conc (seq (send meth1 a (future x))(move 1 b))(seq (move b c)(send meth2 d (future y))))Figure 4.4: Data Dependencies Example4.2.3.2 Static Single Use FormStatic Single Use (SSU) form is a variant on Static Single Assignment (SSA) form [53, 160].SSA form inserts �-Nodes, essentially assignments with multiple right hand sides where control
ow merges. For example, after a conditional a �-Node renames variables assigned in eitherbranch. This ensures that that each variable will appear on the left hand side of only one65



assignment. SSU form adds  -Nodes which, analogous to �-Nodes, rename variables which areread along di�erent control 
ow paths. These  -nodes appear before conditionals. Considerthe code in Figure 4.5. In the code on the left, a is used under two di�erent conditions (whencondition is true and when it is false) and it is assigned twice. SSA form renames variables foreach use and assignment. In addition to simplifying the construction of the 
ow graph, thisrenaming prevents interference between transfer functions during 
ow analysis (Chapter 5).if conditiona = a.meth1;elsea = a.meth2; (a1,a2) =  (a0);if conditiona3 = a1.meth1;elsea4 + a2.meth2;a5 = �(a3,a4);Figure 4.5: Code before (left) and after (right) SSU Conversion4.2.3.3 The Standard PrologueConcurrent Aggregates is a very simple, pure object-oriented language. All program dataare objects, and all operations are message sends.1 Before any user code is compiled, thecompilation environment is augmented by compiling a standard prologue (Appendix D). Thisprologue contains the builtin classes and functions accessible to the user. For example, theinteger and float classes and their operations are de�ned there. Likewise, arrays, strings,globals, the constants true and false, and even the nil object are all de�ned in the standardprologue and their de�nitions can be overridden by any user program. For example, boundschecking on arrays is implemented simply by overriding the at and put at operations on thearray class. At the lowest level, these operations are de�ned in turns of primitives whoseproperties are known to the compiler [76]. Given this 
exibility, the performance numbers inTable 4.1 for the prototype version of Concert are not surprising. Naive implementation ofinteger addition as a fully concurrent dynamically dispatched message send would result inextremely ine�cient programs.1Primitive control 
ow, because of its ubiquitousness, is not handled through messages.However, nothing in the system prevents the programmer from using Smalltalk style True andFalse classes, and ifTrue, ifFalse selectors to do so.66



4.2.4 AnalysisThe goal of the analysis phase is to determine 
ow sensitive information by constructing aninterprocedural data and control 
ow graph. The nodes of this graph are program variablescreated under particular conditions and the arcs describe the 
ow of data. Because the valuesof data (classes or implementation types) a�ect the 
ow of control for object-oriented programs,the analysis determines control and data 
ow simultaneously. Some of the types of informationanalyzed for this phase are: implementation types of data, the call graph, sharing (aliasing)patterns, constants, stateless methods and lock subsumption (Section 8.1). The algorithm,described in detail in Chapter 5, is iterative, constructing successively re�ned approximations.4.2.5 TransformationThe transformation phase consists of three types of transformations, intraprocedural whichoperate within a procedure, interprocedural which operate between procedures and whole pro-gram. Figure 4.6 shows these transformations and the (approximate) order in which they areapplied. The intraprocedural transformations are applied periodically to simplify the programduring interprocedural transformation. Cloning is discussed in (Chapter 6). General optimiza-tions for object-oriented programs are covered in Chapter 7 and those speci�c to concurrentobject-oriented programs in Chapter 8.4.2.6 Code GenerationCode generation is the last phase in which the graph-based intermediate form is convertedinto an executable form. First, the control 
ow graph is reconstituted from the partial orderof execution speci�ed by the CDG and Data Dependences. Next, SSA assignments are movedfrom the conditionals (where they are attached for convenience of transformation) into the CFG.Touches are then inserted to enforce data dependences. The hybrid execution model (Chapter 9)requires separately optimized sequential and parallel versions of methods to be created. This isaccomplished by translating the program nodes in the CFG into RTL. Registers are allocatedover the RTL which is �nally written out as a set of macros. These macros are converted by theruntime interface preprocessor into C++ which we use as a very slow but portable assembler.67
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TransformationsFigure 4.6: Order of Transformations4.3 RuntimeThe runtime manages processor and memory resources at runtime. It provides functions forcommunication, thread management, load balancing, scheduling, and memory managementincluding global garbage collection. The interface (described in Section 3.5) is given as a setof m4 and cpp macros over a linkable library. The runtime is written in C++ and assemblylanguage, and consists of approximately twenty thousand lines of code.4.4 Target MachinesThree di�erent target platforms are available for executing Concert programs and used in theevaluation of the compiler. The �rst is SPARC [159] based uniprocessor workstations fromSun Microsystems Computer Company which is used to evaluate sequential e�ciency. Thesecond is the SPARC based distributed memory Connection Machine 5 from Thinking MachinesCorporation. This machine shares the same instruction set architecture with the workstation,and includes direct, processor to processor, messaging. The last platform is Cray Research's68



T3D which provides hardware support for a shared address space. These last two platforms areused to evaluate parallel overhead and performance.4.4.1 SPARC WorkstationThe SPARC workstation which we will use for evaluate is the SPARCstation 20 with Super-Cache. This machine contains a 75Mhz SuperSPARC-II, 64 Megabytes of RAM, a one megabytesecond level cache, 50Mhz MBus and 25Mhz SBus and has a SPECint 92 rating of 125.8 anda SPECfp 92 rating of 121.2. The SuperSPARC-II is capable of issuing three instructions perclock cycle. It has a 20-Kbyte instruction level 1 cache, a 16-Kbyte level 1 data cache, and a 64entry TLB with hardware page-table walking. It is fully SPARC Version 8 compliant. The Mbusis capable of 400 Megabytes/second peak and 125 Megabytes/second sustained bandwidth. Theworkstation is system is running Solaris 2.4 and the tests were conducted in single-user mode.4.4.2 Thinking Machines Corporation Connection Machine 5The Connection Machine 5 (CM-5) machine used is a 512 node SPARC based machine at theNational Center for Supercomputing Applications (NCSA). It is a distributed memory parallelmachine with a memory mapped network interface residing on the main memory bus (Mbus).Five word packets are injected into the network by storing the data and destination node intodesignated addresses. Likewise, packets are received by polling a designated address. Theprocessors are single issue units operating at 32 Mhz with an external cache. The network isa Fat Tree [71] capable of up to 20 Megabytes per second with cross-section bandwidth of 5Megabytes per second per node. While the CM5 contains vector units capable of 140 Mega
opsper second, Concert does not make use of these units.4.4.3 Cray Research T3DThe T3D machine used is a 512 processor (256 node) DEC 21064 based machine at the Pitts-burgh Supercomputing Center. It is a distributed memory parallel machine with hardwaresupport for a global address space. Individual processors can read or write the address spaceof other processors directly. The runtime system builds an e�cient messaging layer upon hard-ware atomic swap, write and prefetch queues. The processors are dual issue superscalar unitsoperating at 150Mhz with an on-chip direct mapped 8-Kbyte data cache. The network is a69



three dimensional torus with peak and sustainable processor transfer rates of 160 Megabytesper second and 73 Megabytes per second respectively. Cross section bandwidth depends on theexact topology, but each channel is capable of 300 Megabytes per second.4.5 Related WorkInstead of surveying the breadth of compiler research, this section concentrates on those systemswhich either tackle similar problems in terms of programming and execution model, or whichemploy related optimization strategies. In the area of pure dynamically-typed languages, thevarious versions of the Self system are notable for their approach, which consists of capturingand preserving dynamic information. Earlier versions of the system described by Chambers[30], guessed the types of data objects and inserting run time checks to verify the guesses.Inlining was used to increase the dynamic range of these checks, and transformations preservedthe information. This approach proved brittle [95]. In later versions of the Self system, H�olzleused pro�ling information to produced more robust performance [97]. The Cecil [32] systemtackles the same problem by examining the class hierarchy to �nd methods which are notoverridden [59], and using pro�ling information to specialize multiple-dispatch object-orientedprograms [58].In the realm of concurrent object-oriented programming, there have been a number ofsystems targeted speci�cally to �ne-grained concurrency. The CST (Concurrent Smalltalk)compiler [100] is for a language largely similar to CA, but it did not perform global restructing.Similarly, [171] concentrates largely on high performance runtime facilities. The HAL system[102] originally provided only simple translation. Recent versions [115] have provided typeinference, specialization of Actors constructs and an e�cient runtime system. However, directcomparison is di�cult because of di�erences between programming models. Earlier systemsconcentrated on e�cient runtime systems and mappings to the hardware [152, 183, 171], or onlanguage issues [184].4.6 SummaryThe Concert philosophy is that programmers should be concerned with natural expression oftheir programs and the programming system should produce an e�cient implementation. The70



goal of the Concert project is to produce portable, high performance implementations of con-current object-oriented languages on parallel machines. The compiler embodies a compilationframeworkwith �ve phases: parsing and semantic processing, program graph construction, anal-ysis, transformation and code generation. During these phases, the program is translated intoseveral intermediate forms, including and Abstract Syntax Tree (AST), a simple core language,a Control Flow Graph (CFG), a Program Dependence Graph (PDG) and Register TransferLanuage (RTL). In addition, the program undergoes a translation to Static Single Assignmentform (SSA). The analysis and transformation phases include feedback loops, and operate onthe PDG in SSA. A runtime system provides an abstraction of the hardware, and is used as thetarget for the compiler. Tests conducted using the Concert system are conducted on SPARCworkstations, the Thinking Machines CM5 and the Cray T3D.
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Chapter 5Adaptive Flow AnalysisYou can't prove anything about a program written in C or FORTRAN. It's reallyjust Peek and Poke with some syntactic sugar.Bill Joy. The Unix Haters HandbookControl and data 
ow information forms the basis of program transformation. Without thisinformation, it would be impossible to know whether or not a given transformation preservedthe meaning of the program. Object-oriented programs are particularly di�cult to analyzebecause the meaning of a statement depends on context , in particular, the classes of the objectsinvolved. This chapter presents a context sensitive interprocedural analysis which adapts tothe structure of the program to e�ciently derive 
ow information at a cost proportional to theprecision of the information obtained. Moreover, the results are applicable to such optimizationsas static binding, inlining and unboxing.This chapter is organized as follows. Section 5.1 describes basic 
ow analysis and de�nes no-tation. Section 5.2 introduces adaptive analysis. The contour abstraction and basic algorithmare presented in Section 5.3 and extended to the adaptive algorithm in Section 5.4. Recursionand termination are discussed in Section 5.5. Sections 5.6 and 5.7 discuss the implementa-tion and empirical results. Finally, we cover related work in Section 5.8, and summarize inSection 5.9. 72



5.1 BackgroundObject-orientation increases both the importance of 
ow information as well as the di�culty ofacquiring it. Object-orientation introduces an additional level of indirection at an invocationsite: the code executed depends not only on the selector (generic function name), but onthe class of the target1 object as well. Thus, not only do data values depend on the 
ow ofcontrol, but the 
ow of control depends upon the values of data: the class of objects and thevalues of selector (function) variables. To optimize the program we need both good data 
owinformation and good control 
ow information. Likewise, to analyze the program, 
ow analysismust simultaneously derive control and data 
ow information [154].5.1.1 Constraint-based AnalysisContext sensitive 
ow analysis is a simultaneous control and data 
ow analysis which com-bines elements of abstract interpretation [50] and data 
ow analysis [74]. The 
ow graph isconstructed by abstract interpretation and the approximations of data values are updated bypropagation along the edges of the graph. Such techniques have been called constraint-based[136] because the 
ow graph resembles a constraint network, where the edges are constraintsand the nodes are variables. For example, a 
ow analysis to determine the set of classes whoseinstances a variable might take on generates 
ow edges when an object of class C is createdindicating that the result must be in the set containing at least C, fCg. Using [[v]] to denotethe set of classes for variable v and Nv and NC to denote the 
ow graph nodes for v and Crespectively, the constraints and corresponding 
ow edges for object creation and assignmentstatements are: program text constraint 
ow edgex = new C [[x]] � fCg NC �! Nxx = y [[x]] � [[y]] Ny �! NxWhen an invocation site is encountered during construction of the 
ow graph, the data
ow values at the invocation site are used to conservatively approximate the method (function)which may be invoked based on the dispatch semantics of the language. For example, in asingle-dispatch object-oriented language, the methods are determined by the data 
ow values1The object to which the message was sent; in C++ the o in o->method().73



of the selector and target object arguments. The 
ow graph computes an approximation tothese reaching problems.2 For example, given a invocation site with reaching selectors S anda target object with reaching classes C, 
ow edges are constructed for all methods in the crossproduct S � C (allowing for inheritance).Since abstract interpretation of the invocations (construction of the 
ow graph) uses thedata 
ow values (the current solution) to determine the method invoked [135], the data 
owvalues are updated concurrently with 
ow graph construction. The meet function for the data
ow values is union and the data 
ow transfer functions are modeled by constraints on thevalues derived by abstract interpretation. For example, the constraint on the set of class namesClass for the 
ow graph node o representing the target object with incoming data 
ow arcsfrom nodes oi at an invocation site with possible methods M � S � C would be:Class(o) = fc j (x; c) 2Mg \[i Class(oi)Likewise, constants, primitive functions and tests for equivalence with singleton objects (likeNIL) produce constraints which a�ect the data 
ow values at nodes.The context sensitivity of 
ow analysis follows from the contour abstraction [156, 105].In the theory of 
ow analysis, the language to be analyzed is �rst given an exact semanticswhich is essentially an interpreter. The contours in such a semantics represent the call stackand determine variable bindings. For practical analysis, cost and precision are balanced byusing abstract contours which represent some set of exact contours. A contour abstractioncan therefore vary from coarse (one contour per method) to �ne (one contour per call frame).Since 
ow graph nodes are created for each local variable for each contour, a separate (contextsensitive) solution is obtained for each calling context represented by a contour. Thus, contoursdetermine both the complexity (cost) of the analysis as well as the precision.For example, 0th-order Control-Flow Analysis (0CFA) uses one contour per method while1CFA uses one for each call site [155]. With each additional level of caller context sensitivity(Section 5.3.6), the precision of the information obtained increases, but the cost increases aswell. In general, if we take a to be the average number of invocation sites for each method andS to be the number of statements in the program, the cost of NCFA is O(SaN) (i.e. exponential2This approximation is only safe when the analysis is complete, requiring the analysis totrack changes to the approximation. 74



in N). Thus, a �xed contour abstraction is cost e�ective only for very small levels of callersensitivity [106].5.1.2 Program RepresentationThe program is represented in Static Single Use (SSU) form (see Section 4.2.3.2). This formcreates a unique variable for each assignment under each set of local control 
ow conditions.Without these additional variables, constraints could not be safely applied to limit the valuespropagated through a node (variable) since the constraint might apply only to the variableunder one set of control 
ow conditions. For example, on the left side of Figure 5.1 the variablea variously holds instances of class A and integer, to which are applied geta and + respectively.If the transfer function required that the type of a contain only those classes to which bothgeta and + can be applied, analysis would incorrectly report that no type could be found fora. SSA conversion prevents this problem by creating new variables for each assignment of a.a = new A;a.geta;a = 1;a = a + a; if ...... a + 1 ...elsea.geta;... a ...Figure 5.1: Analysis on Static Single Use FormA more common problem is presented by the use (reading) of a variable under di�erentconditions. In order to prevent these con
icts SSU form creates new variables for each usealong di�erent control 
ow paths. For example, in Figure 5.1 on the right, the two methods(geta and +) are applied to a variable in the two branches of a conditional. As with the twoassigned values, a cannot be safely restricted to classes supporting both + and geta. Instead,the a in the left and right branches are restricted separately, and the a following the conditionalhas the meet (union) value of the two restricted a's values. The result is that the �nal valuemay be of a class which supports either + or geta.5.1.3 ContoursThe key to the precision of context sensitive 
ow analysis is the contour [156] abstraction, themapping of contours to the invocation environments of a method. Many di�erent mappingsare possible, and discovery of e�cient contour abstractions speci�c to individual programs is75



the subject of this chapter. Clearly, only those contours which represent \usefully distinct"environments need be created. Assume that the goal of 
ow analysis is to determine the classesof objects contained in variables and the code executed at invocation sites (see Section 5.5.3for discussion of other 
ow problems). Environments are composed of the values of the ar-guments at the time of the invocation. The classes and methods associated with argumentstherefore represent a useful basis of distinction. For example, the Cartesian Product Algorithm[2] di�erentiates contours based on the cross-product of the classes of the arguments. Like-wise, Jagannathan and Weeks [105] di�erentiate contours based on the abstract values of thearguments.The Cartesian Product Algorithm and Jagannathan and Weeks' solutions determine thecontour abstraction immediately. That is, in a single pass of analysis, at the point wherea contour is required, the abstraction is selected and �xed. This has two problems. First,the class of an argument does not capture all of its useful distinctions. The class may bepolymorphic (Section 2.1.2) so that di�erent objects of that class may have instance variablescontaining objects of di�erent classes. For example, a instance of the List class may be alist of integer, a list of 
oating point numbers, or a list of lists. In order to capture thesedistinctions the complexity of the domain of values must be increased; instead of just classes,objects might be represented by their class and the classes of their instance variables. This couldbe extended some number of levels, and even to recursive and conditional types [8], incurringthe concomitant cost.The second problem is that object-oriented languages are imperative; objects are bits ofpotentially aliased albeit encapsulated state. This means that the alias structure for the en-tire store (all data) might a�ect the classes of objects accessed within a method. Thus, theproblem of determining the code executed at invocation sites in object-oriented programs isequivalent to the alias analysis problem [118, 44, 60, 182, 147]. A typical method for �ndingsafe approximations of the may-alias problem is to summarize groups of objects based on theircreation point. This technique is applicable to 
ow analysis of object-oriented programs. Forexample, [135] di�erentiates objects by the statement at which they were created. However,this is simply a �xed 1-level abstraction which can be logically extended to N levels by di�eren-tiating objects based on the callers of the method containing the creation statement increasescost exponentially. 76



Our solution is to use a 
exible abstraction which can be extended to di�erent levels fordi�erent parts of the program being analyzed. This enables e�cient analysis because, whileit does not decrease the exponent, it does break up the cost into components. For example,the cost for N -level caller di�erentiation where each i is a regions of local extension falls fromO(SaN ) to Pi SiaNii . Each Si corresponds to a set of polymorphic methods, and each Ni tothe depth required to analyze Si. The advantage of adaptation is in the precision with whichinvocation sites are mapped to the methods which might be invoked. When the number of suchmethods is close to 1, ai is close to 1, bringing the cost of analysis close to O(S) (linear) andenabling the invocation sites to be statically bound in the implementation (Section 7.3.1).5.2 Adaptive Analysis: OverviewIt's quite possible to have a mixed abstraction, where the features of the programdetermine whether a precise, expensive abstraction will be used for a given contour,or an approximate, cheap one will be used instead. In fact, we could employ a kind of\iterative deepening" strategy, where the results of a very cheap, very approximateanalysis would determine the abstractions used at di�erent points in a second pass,providing precise abstractions only at the places they are required.Olin Shivers. Thesis | ExtensionsAdaptive analysis proceeds stepwise by analysis and extension of the contour abstraction.The high level driver is given in Figure 5.2. The reason that these two steps are performedseparately is that the structure of the 
ow graph is determined both by the contour abstractionand the data 
ow value which, in turn, are determined by the structure of the 
ow graph! Thus,changing the contour abstraction during an analysis step would either not increase precision (ifthe old conservative data 
ow values where preserved), or require invalidating and recomputinga�ected 
ow graph values and structure. By delaying changing the contour abstraction untilthe iteration has �nished, we can use all the information produced to guide the changes.5.3 The Analysis StepAdaptive 
ow analysis consists of iteratively applying two steps: analysis and incrementalprecision extension. The analysis step constructs the 
ow graph while maintaining the updateddata 
ow values at the nodes. SSU form, which induces an explicit local data 
ow graph,77



void analysis_driver() fdo fanalysis step();extension step();g until ( extension successful )g Figure 5.2: Adaptive Analysis Driversimpli�es this construction over other analyses [105, 162]. In order to further simplify thealgorithm, we assume that instance variables are accessed via accessor methods and that novariables are captured from surrounding scopes (Section 2.3.3).5.3.1 De�nitionsThe de�nition of the 
ow graph appears in Figure 5.3. Each constant, expression and de�nitionin the program is associated with a Label. Local variables (which are assigned only once) areassociated with the expression which assigns them. Instance variables, which can be assignedmultiple times, are associated with the label of their de�nition. These labels are used to uniquelyidentify the 
ow graph Node representing the corresponding variable and to represent selectors,and classes in data 
ow values.n 2 Node = Label� Contoure 2 Edge = Node�Nodec 2 Contour = Nv 2 V alue = P(Node)r 2 Restrict = V alue1 � :::� V alueni 2 Invoke = P(Contour) N 2 Nodes = P(Node)E 2 Edges = P(Edge)C 2 Contours = P(Contour)V 2 V alues = Node! V alueR 2 Restricts = Contour ! RestrictI 2 Invokes = Node! InvokeFigure 5.3: The Flow GraphContours are unique identi�ers representing abstract calling environments; we use the nat-ural numbers N where 0 is the top level environment. The V alue of a node is the set of nodesrepresenting the values (constants, selectors, or object contours) which reach that node. Each78



contour Restricts the values its parameters can take on. These restrictions represent qualitiesof the set of abstract calling environments which the contour represents (see Section 5.3.5). TheInvokes function represents the abstract call graph by mapping invocation nodes to invokedcontours.The algorithm uses several functions to move around on the 
ow graph and extract infor-mation. Flow and Back move along the edges of the 
ow graph, taking a node and returningthe set of nodes in the forward and backward data 
ow directions respectively. Selectors takesa node and returns the the set of selectors (labels of generic function names) or primitive func-tions of its value. That is, it �nds the value of the node with respect to the reaching selectorsproblem. Likewise, Class takes a node and returns the set of labels for class names or primitiveclasses, and Object returns the set of contours for the constructor methods of objects refer-enced by the node. Constants are de�ned in all contours, so they are de�ned (arbitrarily) bythe contour for the top level environment (0).Flow(n) = fm j (n;m) 2 EgBack(n) = fm j (m;n) 2 EgSelectors(n) = fl j v0 2 V (n) ^ v0 = (l; c)^ l 2 fprimitive function; selectorggClass(n) = fl j v0 2 V (n) ^ v0 = (l; c)^ l 2 fprimitive class; class nameggObject(n) = fc j v0 2 V (n) ^ v0 = (l; c)^ l 2 fprimitive class; class nameggName(v) = f(l; 0) j v0 2 v ^ v0 = (l; c)gFigure 5.4: Functions on the Flow Graph5.3.2 Analysis Step DriverEach analysis step begins by placing an interprocedural call graph edge (Edge) for the programentry point onto a worklist of Edges. As each Edge is processed, new Edges are found tobe reachable and placed on the worklist. When the worklist is empty, the analysis step has�nished. Figure 5.5 contains the pseudo code for the analysis step driver.79



void analysis step() fwhile ( worklist is not empty) fextract edge from worklistif ( edge has no contour) f�nd contour for edgecreate local 
ow graphgattach edge caller to calleegg Figure 5.5: Analysis Step DriverFor each call edge, if the edge does not have a contour from a previous analysis iteration, acontour is selected and the 
ow graph representing the local data 
ow inside the called methodwith respect to this contour is constructed. The local 
ow graph is attached to the 
ow graph ofthe calling method at the parameters and return values. Then this local 
ow graph is attachedto the global 
ow graph at global variables. Global variables are not unique with respect tomethod contours and are represented by a single 
ow graph node. If the contour is not new,only the connections for the parameter and return value need be created since the existing local
ow graph will be used to summarize both invocations.5.3.3 Local Flow Graph ConstructionThe local 
ow graph consists of nodes representing the local, instance, and global variables andarcs representing data 
ow between them. The nodes of this graph are de�ned in Table 5.1.The node for a local variable is determined by its label and the method contour. The node(s)for an instance variable are determined by the Object contours of self (the target object ofthe accessor containing the instance variable). Global variables are unique, and determined bythe contour representing the top level environment.local (l; c) c is the method contourinstance (l; o) o 2 Object((self; c))global (l; 0) 0 is the top level environmentTable 5.1: Local Flow Graph Nodes80



The 
ow graph edges are those induced by data 
ow including the SSU assignments andreads and writes of instance and global variables. Data 
ow to or from instance variable isconstrued to be 
ow to or from all of the nodes representing that instance variable.Constraints are imposed on the values of local variables based on how the variables areused. There are three types of local constraints: those for constants, those induced by the useof the variable in a dispatch position, and those induced by primitive functions. Constantsare constrained to take on the appropriate abstract value: for example, integers, 
oating pointnumbers and strings are all immutable, so we say that they are created a priori in the toplevel environment and their Class value must include integer, float and string respectively.Objects in the dispatch position are constrained to be of a class supporting the selector(s) towhich is applied, as in Section 5.1.1. Primitive functions can impose arbitrary constraints onthe classes of their parameters. Figure 5.2 provides some examples of local constraints.1 Class((1; 0))� fintegerg1.0 Class((1:0; 0))� ffloatgo.f Class((o; c))� classes supporting finteger add(a,b) Class((a; c))� fintegergClass((b; c))� fintegergTable 5.2: Local Constraint ExamplesClass is a derived quantity, so the constraints are re
ected on the V alue of nodes. Forexample, the value of node (1; 0) must include (integer; 0). Likewise, V (o; c) is constrainednot to include any (n; c0) such that n is a class name in the set of those supporting f , independentof the value of c0.5.3.4 Global Flow GraphThe global 
ow graph is the collection of local 
ow graphs interconnected during the analysisstep (Section 5.3.2). For each call edge, the set of possibly invoked methods is determined. Thencontours are selected to abstract the environments of the invoked methods. These contoursimpose constraints on the values of arguments in dispatch positions (Section 5.3.5). Next,
ow edges are constructed between the nodes in the calling method representing the formal81



parameters and those in the callee method representing the arguments. Finally, any new calledges are added to the worklist.The called methods are drawn from the applicable methods with the selectors which reachingthe invocation. Methods are applicable when an object of the appropriate class can reacheach argument. That is, for arguments ai and parameters pi, the intersection of Class(ai)and fl j (l; c) 2 (R(pi)g is non-empty. Likewise, the selectors reaching the selector argument(Selectors(a0)) must include the name of the selector of the method. Section 5.4.2 discussesselection of contours in more detail.When the values of arguments change, new methods and contours become reachable, re-quiring edges to be added to the worklist. Since the data 
ow graph is maintained up to date,new edges may be created anywhere in the global 
ow graph in response to the addition of asingle local constraint. For example, the addition of an integer constant constraint can causesthe value of all reachable variables to contain (integer; 0) which, in turn, can cause a largenumber of new edges to be created for each invocation site where those variables appear in thedispatch position. Thus, each time the value of a node changes, all a�ected invocations mustbe examined and any new edges added to the worklist.35.3.5 RestrictionsConstraints are imposed on parameter nodes correspond to the feasible call edges under thedispatch semantics (Section 5.1) and the contour abstraction (Restricts). Thus, values of theparameters are subject to the restriction: V (pi) � R(pi). For example, Figure 5.6 on the leftshows a polymorphic method which is applied to two arguments which could be either integersor 
oating point numbers. On the right are several di�erent sets of contour restrictions. The�rst provides a single contour covering all cases, the second is more speci�c, and the last providesfor all four possible classes. Thus, restrictions enables the use of separate contours for di�erentcombinations of values. Since any given variable can only hold one value at one time, separateanalysis for di�erent combinations is safe so long as each element of the cross product of valuesis represented by some contour (Section 5.4.2). This is achieved in the alternative contourrepresentation of [105] by single-value based analysis of curried functions.3Our implementation attaches a list of such invocation sites to each node.82



f(i,j) f ... g...if ... a = 1; else a = 1.0;if ... b = 2; else b = 2.0;c = f(a,b); (fi,fg,fi,fg)(fig,fi,fg) (ffg,fi,fg)(fig,fig) (fig,ffg) (ffg,fig) (ffg,ffg)where i = (integer; 0)and f = (float; 0)Figure 5.6: Restrictions5.3.6 Imprecision and PolymorphismTo simplify the exposition of the algorithm, we di�erentiate method imprecision from objectimprecision. Imprecisions are 
ow graph nodes whose values are not singleton sets. Methodimprecisions are those of nodes de�ned by the surrounding method's contour (local variables).Object imprecisions refer to nodes de�ned by object contours (instance variables). Imprecisionscan result from a number of sources including incomplete input, 
ow insensitivity, and (formutable locations) temporal insensitivity. This analysis focuses on the second sort which oftenresults from the use of polymorphic methods or objects. The level of polymorphism is the depthof the polymorphic method call path or polymorphic reference path (see Figures 5.7 and 5.8).0CFA handles no polymorphism, 1CFA [154] handles one level, and this algorithm adapts tohandle di�erent levels of polymorphism in di�erent areas of the program.power(x,y) {if (y>0)x*power(x,y-1);elseone(x);}power(1,2);power(1.0,2);Figure 5.7: Method Polymorphism
class tuple {l;r;left() { l }};let a = tuple(1,2),b = tuple(1.0,2);a.left;b.left;Figure 5.8: Polymorphic Objects5.4 AdaptationAdaptive 
ow analysis uses the results of the previous iteration (starting with 0CFA) to extendthe contour abstraction for the next iteration. After each iteration, the contour abstraction83



is extended by splitting the set of invocations associated with a contour (see Figure 5.3) todi�erentiate uses of the method or class it represents. A new analysis iteration starts byclearing the values V and the edges E which make up the 
ow graph. However, the abstractcall graph I which captures the local levels of context sensitivity is preserved. In this way, theanalysis adapts to the structure of the program across iterations.5.4.1 SplittingSplitting divides contours, increasing the number of 
ow graph nodes and potentially eliminat-ing imprecisions from the analysis results. Splitting polymorphic methods (method splitting)divides the invocations associated with a method contour over a number of smaller of morespeci�c contours. Splitting polymorphic objects (object splitting) divides the invocations asso-ciated with the creation of objects of a particular class over a number of contours representingsubsets of the instances which are used in di�erent ways.The simplest form of splitting relies on argument values, selecting a contour the values ofwhose formal parameters most closely match those of the invocation arguments. Invocationsare processed in order so the arguments have approximations of their �nal values when thecontours for each invocation are selected. To minimize the number of analysis iterations, thispartial information is used to \eagerly split" method contours; i.e. select more precise contoursto represent the abstract calling environments of new edges. Similarly, we can eagerly splitcontours representing objects. However, since the selection of object contours occurs at thepoint where the objects are created, before the instance variables are used, it generally is lesse�ective. Eager splitting occurs as part of contour selection.5.4.2 Selecting ContoursWhen an invocation is encountered, the set of applicable methods is determined and the con-tours are selected. There are two goals for contour selection. First, the contour should notbe overly general. That is, the contour should not be used to abstract invocations for whichdi�erent information is available, since a conservative approximation of the information of all in-vocations will be used for analysis of the contour. Secondly, contours should be shared wheneverpossible. Clearly we could satisfy the �rst goal by selecting a new contour for every invocation,84



but then the analysis would never terminate. Sharing contours e�ectively is the key to e�cientanalysis.For a given target method, the conditions of dispatch induce constraints which are appliedto the values of the arguments to determine the values which will 
ow into the parametersfor this invocation (Section 5.3.4). While a contour could be created for each element of thecross product of entering values (w = Qi vi), this would be expensive and, in general, preventtermination (see Section 5.5). Instead we select contours based on information from the lastiteration and then eagerly split contours based on the Label component (Selectors or Class) ofthe argument values, leaving splitting based on the contour component (Object) of the valuesto be done non-eagerly. For example, Figure 5.9 shows three invocations (left) with di�erentargument values (right). The argument values of the �rst two invocations di�er only in thecontour component, so they will share the same contour while the value of �rst argument ofthe last invocation has a di�erent label (the class B) and will not share the same contour.func(new A,new A);func(new A,new A);func(new B,new A); f(A; c1)gf(A; c2)gf(A; c3)gf(A; c4)gf(B; c5)gf(A; c6)gFigure 5.9: Selecting ContoursThe contours for an invocation from node n are selected in three steps given in Figure 5.10.First, from the cached contours I(n) we select those whose restriction cross product Qi riintersects w, favoring those which intersect the smallest number of elements, and remove thoseelements from w. For any remaining elements of w we select from all contours associated withthe method those whose restrictions intersect w. Finally, we form subsets out of any remainingelements by applying Name to each parameter value (QiName(vi)) and create contours foreach identical result with the singleton Names as restrictions. Intuitively these contours areinsensitive to particular contours reaching their parameters, but are (eagerly) di�erentiatedwith respect to the names of the methods or classes reaching those parameters.As a special case, a unique contour is always created for accessor methods for each Objectvalue of the node representing the target object. This simpli�es the exposition of the algorithmby eliminating the boundary case where the accessor method contours require method splittingto isolate accessor operations to particular object contours. This enables a cleaner separationbetween method and object contour splitting.85



select contours() ffor an invocation node n with arguments aiw = Qi vi where vi = V (ai)for each c 2 I(n) such that w \QR(c) is not emptyselect cw = w �QR(c)while w is not emptyselect c, a new context with restrictions NAME(w0)w = w � fx j NAME(x) == NAME(w0)gwhereNAME(x) = QiName(xi) gFigure 5.10: Selecting Contours Pseudo Code5.4.3 Method Contour SplittingSplitting method contours enables separate information to be obtained for di�erent uses of themethod. The idea is to examine the data values after an iteration, �nd situations where thecaller argument values of a call edge are more precise than the values of the correspondingcallee parameters, and build new contours for the cases. For example, if the value of one ofarguments for a particular invocation is a strict subset of all other corresponding arguments'values, a new contour is created for that invoke. In the new contour, the corresponding formalparameter will have the (more precise) subset value.Since the domain of values is recursive, splitting for every di�erence produces a nontermi-nating analysis. Moreover, not all di�erences in argument values are meaningful. For example,object contours for a particular class de�nition may distinguish subsets of the class's instanceswhich are important to only a fraction of methods. So, instead of splitting for every di�erencein values, we start from a speci�c imprecision which we wish to eliminate (e.g. where a typecheck, boxing operation or dynamic dispatch would be required) and look for the imprecisionswhich caused it. This goal-driven analysis also has the advantage that resource use scales withthe precision demanded. 86



Using the functions described in Figure 5.4 we traverse the 
ow graph. Starting from thepoint of imprecision we look back for a set of con
uences4 of values; in data 
ow terms, meetsa ^ b where a; b 6= ; and a 6= b. Given a node n with imprecise V al (one of Selectors, Objector Class) we �nd the least set of con
uences Conf(n; V al) which obey:Conf(n; V al) � 8<: fn0g if 9n0 2 Back(n) ^ V al(n) 6= V al(n0); otherwiseConf(n; V al) � Conf(n0; V al) where n0 2 Back(n)The contours of parameter nodes in Conf(n; V al) represent the �rst order contribution tothe imprecision, and splitting them is the �rst way in which the imprecision may be eliminated.Imprecision can also arise from interprocedural control 
ow ambiguity due to secondary impre-cisions in other arguments. For example, since the result value is the meet (union) of the resultsof all the possible methods invoked, if the set of selectors reaching an invocation is imprecise,the result can be imprecise. Similarly, the parameters of the invoked methods might be impre-cise as a result of the extraneous 
ow edges. Lastly, imprecisions in object contours can leadto imprecise results of instance variable accesses. We extend Conf(n; V al) to Conf 0(n; V al) tohandles these cases, where i is an invocation:Conf 0(n; V al) = Conf(n; V al) [f(n00 j n0 2 Conf(n; V al) _ jV al(n)j > 1) ^(n0 is an argument or return variable of i ^(n00 2 Conf 0(DispatchArgument(i); Class) _n00 2 Conf 0(SelfArgument(i); Object) _n00 2 Conf 0(SelectorArgument(i); Selectors)))gThe three occurrences of Conf' on the right hand side account for the e�ects of imprecisedispatch arguments, imprecise object contours, and imprecise reaching selectors respectively.The newly split contours are distinguished in the next analysis step through the changes to4This is not to be confused with the Church-Rosser property, though both draw on thecommon de�nition; from the Oxford English Dictionary (second edition) con
uence: A 
owingtogether; the junction and union of two or more streams or moving 
uids.87



abstract call graph I or additional restrictions R. For con
uences (Conf(n; V al) is non-empty)(l; c), we create new contours C0 with identical restrictions 8c0 2 C0:R(c0) = R(c), but withI mapping callers with identical values to separate contours (i.e. SV (v0 2 Back((l; c0)) =V ((l; c0))). For an imprecision (jV al(n)j > 1) at argument node n at position i, we createnew contours with identical invokes (8l 2 Label:I(l; c0) = I(l; c)) and modify the restrictionsr = R(c0) to di�erentiate the elements of V al(n) (e.g. jV (ri)j = 1). Di�erent contours will thenbe selected in the next iteration.
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Method SplittingFigure 5.11: Method Splitting for Integers and FloatsFigure 5.11 illustrates method splitting involving the power method from Figure 5.7. Notethat this particular situation would have been taken care of by eager splitting, however, ratherthan complicate the example, we will simply imagine that it was not. At the left, the actualarguments for the formal parameters x and y coming from power(1,2) and power(1.0,2) havedi�erent Classes, so there is a con
uence. The imprecision manifests itself in a con
uence atthe �rst argument finteger,floatg, when it is clear that the value for the �rst call is integerand for the second float. Splitting introduces two sets of nodes x1,y1 and x2,y2, eliminatingthe con
uence.5.4.4 Object Contour SplittingObject splitting partitions contours based on the usage of the objects they represent. It ismore complex than method splitting because the point of con
uence (the instance variable) isseparated from the point at which the contour was created in the 
ow graph. In fact, sinceobject contours 
ow through the graph, splitting the object contour alone is not enough; wemust ensure new contours remain distinct as they 
ow through the 
ow graph. Note that88



this requires splitting intermediate methods, like the identity method, which make no use ofthe instance variables of the argument. However, these extra contour are coalesced by cloning(Chapter 6) and do not a�ect optimization.
2l1l

Object Object((l2,0)) = {1} Object((l1,0)) = {1} Object((l2,0)) = {2}

tuple(1,2) tuple(1,2)tuple(1.0,2) tuple(1.0,2)

((l1,0)) = {1}

l1 l2 l1 l2

1l: {integer,float} : {integer} : {float}

Object SplittingFigure 5.12: Object Splitting for Imprecision at lFigure 5.12 is an example of object splitting based on the program example in Figure 5.8.On the left, the two creation points, tuple(1,2) and tuple(1.0,2) produce the same contour.As a result, the value of the instance variable l is finteger,floatg. Splitting the object contourdiscriminates the two cases, producing precise results for both cases.Again, we start with an imprecision we wish to eliminate. Object splitting involves fouroperations.1. Identifying the assignments to the instance variable which give rise to the imprecision.2. Identifying the paths in the 
ow graph which the instance variable's contour took fromits creation point to the assignments.3. Ensuring that these paths are distinct.4. Dividing the object contour into a set of contours.The �rst step is to identify the con
icting assignments to the same instance variable withthe same contour. Next we �nd the 
ow paths from the creation of the contour c which de�nesthe instance variable node n (e.g. n = (l; c)) to the assignments. These paths must be disjointto propagate the distinct contours we introduce by object splitting, or we will fail remove theimprecision. Instead, all variables which after the paths have conjoined will hold both contours,and, for instance, the read accessors will return the union of values of the corresponding instancevariable for both contours. We ensure disjointness by using method and object splitting alongthe 
ow paths where necessary. When the paths are disjoint, the con
icting values are assignedinto di�erent contours by splitting the original object contour.89



class A fa;operator=a (value) a = value;glet x = A()c, ;; I((c; 0) = f1g)y = A()d; ;; I((d; 0) = f1g)x.a = 1e; ;; I((e; 0) = f2g)y.a = 1.0f; ;; I((f; 0) = f3g)Figure 5.13: Object Splitting ExampleTo illustrate the algorithm, we will use the example in Figure 5.13. In this example, twoinstances of class A are created. The write accessor method operator=a() (Section 2.3.3) isthen used to set the a instance variable of each to a di�erent type of number.Identifying the Assignments First, the nodes which are assigned (have a 
ow edge to)the imprecise instance variable are found. These are grouped so that all the nodes in eachgroup have identical values with respect to the type of the imprecision, indicated by the pa-rameterizing function V al (again, one of Selectors, Object or Class). We de�ne the functionAssignSets(n; V al) which takes a node n, an imprecise instance variable, and return a set s ofsets of nodes si, each of which represents a di�erent use of the instance variable.AssignSets(n; V al) = s where [i si = Back(n) ^ 8si 2 s; n0 2 si; n00 2 si:V al(n0) = V al(n00)The nodes in Back(n) are the right hand sides of assignments to the imprecise instancevariable. Figure 5.14 shows the 
ow graph for our example, and the assignment sets derived.Identifying the Paths Next, we compute the 
ow paths which the instance variable's con-tour took from its creation point to the assignments. For each element a of AssignSets(n; V al)we �nd the self nodes Self(a) of the accessor methods which contain the assignments a. TheObject value of these nodes are the contours which de�nes the instance variable node n (i.e. foro 2 Object(s 2 Self(a)), n = (l; c)). Then we compute the paths taken by the contours fromtheir creation point (the node (new:::; c)) to Self(a). These paths must to be distinct in order90



Contour data flow
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V V (self,1) : {1}AssignSets((a; 1);Name) = ff(value; 2); (value; 3)ggFigure 5.14: Data Flow and Assignment Sets Exampleto eliminate the imprecision. Intuitively, if the contours' paths merge they will be applied tothe same methods with the same values.a 2 AssignSets(n; V al)Self(a) = f(self; c) j (l; c) 2 agPath(a) = Closure(Back; Self(a))We compute the paths Path(a) for each assignment a by taking the closure of the functionBack over the set containing the self nodes for the methods containing the assignments. Theself nodes are found with the function Self(a) by extracting the method contour from a.The paths Path(a) are those which would be taken by a new contour created to eliminate theportion of the imprecision V al(a). For example, in Figure 5.15 contour 1 travels to (value,2)through (self,2) and (x,0). Since this path must be distinct from the other paths theappearance of a node on more than one of these paths represents a secondary imprecision. Foreach node we need to know the subset paths in which it is contained.AllPaths(n; V al) = fp j p = Path(a) ^ a = AssignSet(n; V al)gNodePaths(n0; n; V al) = fps j n0 2 ps ^ ps 2 AllPaths(n; V al)g91



We de�ne the function AllPaths(n; V al) to be all the paths for all the assignment sets.Further, we de�ne NodePaths(n; V al) to be the subset of all the paths which a particular noden0 is on.Ensuring Discrimination Using the paths determined above, we now apply the con
uence�nding algorithm recursively to determine the con
uences of the potential contours representedby these paths. However, the paths are de�ned by the assignments and join at the creationpoint whereas the other values are distinct when created but join at merges in the 
ow graph.Thus the path can be thought of as 
owing backward in the data 
ow graph. This requiresmodi�cation of the Conf function:F lowOrBack(V al) = 8<: F low if V al = PathBack otherwiseConf(n; V al) = 8<: fng if 9n0 2 (F lowOrBack(V al))(n) ^ V al(n) 6= V al(n0); otherwiseThe new Conf uses the FlowOrBack(V al) function which is either Back as before or Flowwhen V al refers to the paths. AssignSet requires an analogous change, and the rest of thealgorithm is identical. Path(f(value; 2)g) = f(self; 2); (x; 0); (c; 0)gPath(f(value; 3)g) = f(self; 3); (y; 0); (d; 0)gSplittable(0; (a; 1); Class) = ff(c; 0)g; f(d; 0)ggFigure 5.15: Paths and Splittability ExampleResolving the Imprecision The last step is the actual splitting of the object contours.When two or more paths do not share any nodes, the contour is split and a new contourcreated for each path or set of paths not sharing nodes. Figure 5.15 provides an example of acontour which is determined to be splittable. The new contours will cause the accessor methodsand the node representing the instance variable at the point of the imprecision to split, removingthe imprecision. The function Splittable(c; n; V al) determines the subsets of creation points forcontour c which can be pro�tably split for the imprecision at node n of type V al:92



Splittable(c; n; V al) = ft j t � s ^[NodePaths(n0 2 s; n; V al) 6= AllPaths(n; V al) ^8n0 2 t; n00 2 t; NodePaths(n0; n; V al) \NodePaths(n00; n; V al) 6= ;gwhere s = fn j n 2 p ^ p 2 AllPaths(n; V al) ^Back(n) = f(self; c)ggUsing s the nodes which represent the creation points for the object contour c, we determinethe subsets of creation points whose paths are not disjoint. Since the creation points are theend of the paths, non-disjointness implies equality and that the union of these subsets will be s.Further, since creation points correspond to invocations on the class (object creation) function,Splittable(c; n; V al) computes the sets the invocations for the new contours. Thus, ifSplittable(c; n; V al) = AllPaths(n; V al)the object contour cannot be pro�tably split. When the object contour is split, the newlycreated contours are substituted for the original in the restrictions for argument nodes alongthe corresponding paths. Thus the new contours will follow the distinct paths in the nextiteration, and their instance variables will be assigned a subset of the values of the original,removing the imprecision.5.5 Remaining IssuesIn this section we discuss recursion, termination and complexity issues and the applicability ofthis analysis to other data 
ow problems. Since the contour representation used by adaptive
ow analysis is not static but recursively de�ned, recursion in the program being analyzedrequires special handling.5.5.1 RecursionSince the de�nition of contours is recursive, ensuring termination requires limiting the numberof contours produced by recursive program structures. There are three types of these structures:� Recursive methods 93



� Recursive data structures� Method-data recursionThe �rst two types are normal recursive methods and recursive types. The third typerepresents the case where a recursive method creates objects on which it is later invoked. Thisis the case for such common programming idioms as insertion into a linked list. While contoursare represented by unique identi�ers, their uniqueness is determined by their callers I and theirrestrictions R. The �rst two types of recursive structures induce other contours by invocationI while the third induces them through restrictions R.After each iteration and before splitting, we identify the strongly connected components(SCCs) in the graph whose nodes are the contours and whose edges are:� a contour c and the contours it invokes fc0 j c0 2 I((l; c))g� a contour c and the contours it restricts fc0 j (l; c) 2 R(c0)igThe SCCs in this graph contain the contours which have a part in de�ning each other.To prevent non-termination we do not allow invocations or restrictions between contours inthe same SCC to cause splitting. Furthermore, invocations into recursive cycles can also leadto non-termination as recursive cycles are successively \peeled". These invocations are alsoprohibited from splitting beyond a constant level (in our implementation, two levels). Allowinginvocations on the cycle to split to a constant level enables analysis of recursive structures witha period less than or equal to the constant since contours can form cycles up to that length.5.5.2 Termination and ComplexityTermination is ensured by limiting the number of contours produced by recursion. However,since Nodes and V alues are de�ned by labels (program points) and contours, which in turn canbe distinguished by their values at each argument, the theoretical complexity is exponential.Nevertheless, in practice, we have found the complexity to be related to both the size andlevels of polymorphism of the analyzed program. Furthermore, we have found that the level ofpolymorphism in programs increases relatively slowly with program size, and the complexity ofanalysis along with it (see Section 5.6 for an empirical evaluation).94



5.5.3 Other Data Flow ProblemsAdaptive 
ow analysis can be applied to other data 
ow problems where the precision of deep
ow sensitivity is desired. There are two classes of such problems, those that 
ow forwardthrough only local variables and parameters, and those that 
ow through instance variables.Since each additional problem adds another dimension to the splitting criteria, additional levelsof recursive unfolding (Section 5.5.1) are required to prevent the solution of earlier problemsfrom interfering with any unfolding of recursive methods required for additional problems. Toprevent such interference additional problems should be solved in order (that is, all iterationsrequired for one problem should be completed before any splitting is done for any later problem).For those problems which that 
ow only through local variables and parameters, onlymethod splitting need be considered. If the domain is small, for example the distinction be-tween local and remote objects, the data 
ow problem can be simply added as a new type ofimprecision (i.e. bound to V al in Section 5.4.3). If the domain is larger, for example constants,splitting should be limited to those imprecisions likely to be of importance for optimization.Since adaptation is goal driven, integrating optimization criteria is simply a matter of choosingthe initial imprecisions (Section 5.4.3).The second class of problems are those for which 
ow sensitivity is required for values
owing through instance variables. The resulting information can be used to specialize memorylayout of generic classes. For example, analysis of a list class which shows that, for a subsetof creation points, no destructive updates (i.e. set-cdr!) are performed can be used to \CDRcode"(allocate the contents in consecutive memory locations). Since all imprecisions at instancevariables are resolved or become imprecisions in the paths of potential object contours, no specialmechanism is required to add additional problems. However, large domains may require use ofoptimization criteria.5.6 ImplementationThe full implementation of this analysis involved engineering decisions which are of su�cientinterest to warrant discussion here. As construed, this analysis makes some simplifying as-sumptions about the structure of the program (e.g. the use of accessor methods). Also, certainlanguage features are not speci�cally covered: arrays, closures and �rst class continuations. To95



make impact of these assumptions more tangible, the main data structures of our implementa-tion are presented, and related to the assumptions about program structure. Finally, supportof arrays, �rst class continuations, and closures is discussed.5.6.1 Data StructuresThe four main data structures describe the interprocedural data and control 
ow graphs. Theseare 
ow graph nodes, interprocedural call edges, method contours and object contours. The twotypes of contours are separated in the implementation because they require di�erent handlingfor splitting, recursion, etc. To simplify matters, each method contour is associated with asingle object contour (that is, we automatically split the method contour based on the objectcontours of the target object), see Section 5.4.4.Flow Graph Nodeid The unique identi�er of the node, composed of a program variable (label) and methodcontour and/or object contour.
ow Set of nodes in the forward direction in the 
ow graph.back Set of nodes in the backward direction in the 
ow graph.upper-type Constraints limiting the type of the variable (e.g. the use of the variable asthe target of a message send { Section 5.3.3).lower-type The current estimate of the variable's type. This is used to determine theapplicable methods (Section 5.3.4). (derived from object-contours below).object-contours The current estimate of where objects referenced by the the variablecould have been created.selectors The reaching selectors (generic function names).continued-value The representative return value nodes for continuations.path-sets The paths this variable is on which might carry a needed object contour (seeSection 5.4.4).arg-of-message The invocation nodes which might generate new edges for changes invariable.The id is a tuple containing �elds for program variables, and both method contour andobject contours since some variables are determined by only object contour (instance variables)96



or neither (global variables). New outgoing edges resulting from changes in the data 
ow valuesof arguments in the dynamic dispatch positions are triggered by checking the checking thearg-of-message �eld when a nodes value changes.Interprocedural Call Edgeinvoking-statement The statement from which the edge originated.source-contour The method contour from which the edge originated.object-contour The object contour of the target object which determines contour.contour The contour on which the edge is incident.parameters The nodes representing the invocation parameters.The unique identi�er of an edge is a tuple containing invoking-statement, source-contour,object-contour, selector. That is, it contains the 
ow sensitive invocation site and the in-puts to the dispatch function. This identi�er is used to recover the edge in successive analysisiterations from a hash table; since the recovered edge contains the contour this table representsthe I 2 Invokes from Section 5.3.1 which is preserved from iteration to iteration.Method Contourmethod The method for which this contour represents a set of activations.restrictions The values which can pass in the formal parameters of this contour.edges The edges representing invocations on this contour.invokes-edges The edges representing invocations from this contour.creation-points The nodes representing the nodes at which objects are created withinthis contour.recursive-set The set of recursive cycles containing this contour.Method contours have an identity, which is dictated both by itsmethod and restrictionsas well as its position in the cached interprocedural call graph as dictated by edges. Theinvokes-edges, creation-points and recursive-set �elds are used to cache information usedin handling recursion (see Section 5.5.1). 97



Object Contourcreation-points The nodes representing the context sensitive statements where objectsdescribed by this contour are created.method-contours The method contours determined by this object contour.containing-contours The object contours in whose instance variables objects with thiscontour are stored.recursive-set The set of recursive cycles containing this contour.Object contours are uniquely determined by the creation-points they represent. Themethod-contours �eld is used to quickly determine which nodes may be e�ected by a split ofthe creation set during the clearing of the values between iterations. It is also used along withcontaining-contours and recursive-sets to handle recursion (see Section 5.5.1).5.6.2 AccessorsThe analysis as described requires all instance variables to be accessed through accessor meth-ods. The reasons for this are two fold. First, they allow the functions which walk the data 
owgraph to map from a node back to program statements. Instance variables are not associatedwith a method contour, hence, without an interposing local variable it would be di�cult to�nd the method(s) responsible for a data 
ow arc between two instance variables. Second, ifinstance variable accesses were allowed into arbitrary methods, the object contour determiningthe instance variable node might come from a parameter, a return value or another instancevariable. This would require additional rules both to generate the 
ow arcs and in the Conf 0function (Section 5.4.3) to determine the possible cause of an imprecision. Requiring the useof accessors is somewhat conservative. In fact, the implementation supports direct access toinstance variables within all methods for single dispatch languages so long as an intermediatelocal variable is used for assignments between instance variables.5.6.3 ArraysAnalysis of the contents of arrays is handled analogously to instance variables. Since theanalysis is temporally insensitive for instance variables (all reads and writes are to a singlenode representing the instance variable independent of where they take place in program) and98



since a node summarizes all instances represented by an object contour, having a single nodesummarize all accesses to all elements of an array is a safe, conservative technique. That is,the contents of arrays can be analyzed homogeneously as a single instance variable, using aspecial Label to represent array contents. However, the two dimensions of precision (temporaland element-wise) are amenable to additional techniques. An example of temporal sensitivityis covered in Section 5.6.4.Element-wise, separate variables can be used to represent subsets of elements. For example,the �rst class messages of CA are essentially vectors of arguments which can be manipulatedas arrays and then \sent" as messages. These message values are analyzed by using a separatenode to represent each argument at a known o�set and a node representing all other elements.Accesses to using constant indices are applied to the appropriate element while accesses withunknown indices are applied to all including the node for other elements.5.6.4 First Class ContinuationsFirst class continuations (Section 3.2.1.4) [41, 35] are essentially objects which are used toreturn values to a future. Since they are ubiquitous (used for every return value) in our COOPprogrammingmodel, the implementation uses a special temporally sensitive mechanism insteadof the standard object contour splitting mechanism. The values returned by continuations arerepresented by a secondary nodes attached to the primary node representing the continuationproper. That is, a set of secondary 
ow graphs are created, running parallel to the 
ow of thecontinuation but in the opposite direction. The values in the secondary graph are those5 towhich the continuation is applied, and the standard update mechanism carries them back tothe invocation site where they 
ow into the return value of the invocation expression.5.6.5 ClosuresClosures are methods which scope mutable variables. The current implementation does nothandle closures directly. The primary reason is that COOP languages cannot allow mutablelocal variables to be scoped by other methods. This would violate encapsulation of local stateand allowing race conditions unconstrained by the concurrency control mechanisms. However,5ICC++ supports multiple return values. 99



closures are easily modeled as objects. The method contour of the surrounding scope representsthe object contour for the scoped variables. Thus, closures could be handled by extending thenotion of contours to include a map from the Labels of those variables to Contours as in [105]and by using data splitting to extend the precision of captured variables.5.7 Performance and ResultsIn this section we present an empirical study on a selection of programs.5.7.1 Test SuiteThe test programs are concurrent object-oriented codes written by a variety of authors ofdi�ering levels of experience with object-oriented programming. They range in size from kernelsto small applications. They all make use of polymorphism for code reuse and abstraction.Program ion network circuit pic mandel tsp richards mmult poly testUser Lines 1934 1799 1247 759 642 500 378 139 49 39Total Lines 2384 2249 1697 1209 1092 950 828 589 499 489The �rst three programs simulate the 
ow of ions across a biological membrane (ion), aqueueing network (network) and an analog circuit (circuit). pic performs a particle-in-cellcalculation, and mandel computes the Mandelbrot set using a dynamic algorithm. The tspprogram solves the traveling salesman problem. richards is an operating system simulator usedto benchmark the Self system [30, 97]. The last three programs are kernels representing usesof polymorphic libraries. mmultmultiplies integer and 
oating point matrices, poly evaluatesinteger and 
oating point polynomials and test is a synthetic code which uses multi-levelpolymorphic data structure. All the programs were compiled with the standard CA prologueof 450 lines of code (Appendix D).5.7.2 AnalysisWe implemented three di�erent analysis algorithms: 0CFA with one 
ow graph node perprogram variable, OPS [135] with contours distinguished by their immediate caller (i.e. onelevel of caller-based splitting for methods and objects), and the adaptive 
ow analysis describein this chapter (AFA). We compared these algorithms based on precisions, time complexityand space complexity. 100



Algorithm Progs Progs Type RuntimeTyped Failed Checks (secs)AFA 9 0 0 199OPS 3 6 99 1500CFA 0 9 718 345.7.3 PrecisionWe use two criteria for precision: typing (assignment of types such that run time type checksare not required) and elimination of dynamic dispatch. In this section we cover the former,leaving the latter for Section 6. The table above shows that 0CFA was unable to type evensimple programs. OPS fared little better, typing only three of nine programs. However, AFAwas able to type all the programs. The times are for our implementation in CMU CommonLisp/PCL on a Sparc10/31.5.7.4 Time ComplexityFigure 5.16 shows the time taken by the three algorithms which were implemented in the sameframework using identical data structures. Note that the speed of AFA compares favorably tothat of OPS in two of the three cases where the were both able to type the program. Thisis because AFA focuses its e�ort only on areas of the program where it is required. However,when AFA produces better information, it requires more time.Program Lines OPS Time AFA/Typed? Sec. OPSion 1934 NO 714 1.2circuit 1247 NO 290 2.1pic 759 NO 363 2.5tsp 500 NO 56 1.4mmult 139 NO 78 3.5test 39 NO 15 5.1network 1799 YES 234 .65mandel 642 YES 25 .42poly 41 YES 18 2.2Figure 5.16: E�ciency of Type Inference Algorithms101



5.7.5 Space ComplexityWe compare the space complexity by examining the number of contours used per method (thenumber of nodes used by each algorithm are reported in the Appendix B). Figure 5.17 showthe number of contours required AFA and OPS as a multiple of the methods in the program.AFA requires 1.5 and 2.5 per method while OPS requires 2.5 { 4. While additional contourscan result in greater precision, AFA's goal directed splitting reduces the number required fora given level of precision.
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Figure 5.17: Contours per Method5.8 Related WorkControl and data 
ow information is vital to optimizing compilers of high level languages. It isuseful for constant, copy and lambda propagation [154], static binding, inlining and speculativeinlining [30, 97], type recovery [156], safety analysis [137], customization [30], specialization [58]and cloning [83, 142] and other interprocedural optimizations [47].The use of non-standard abstract semantic interpretation for 
ow analysis in Scheme byOlin Shivers [156] provides a good basis for this and other work on practical type inference.In particular, the ideas of a call context cache to approximate interprocedural data 
ow andthe re
ow semantics to enable incremental improvements in the solution foreshadow this work.Recently, Stefanescu and Zhou [162] as well as Jagannathan and Weeks [105] have provided102



simpli�ed frameworks for 
ow analysis. However, these frameworks are theoretical in nature,with no provisions for managing cost, and not suitable for a practical implementation.Iterative type analysis and message splitting using run time testing are conceptually similartechniques developed in the SELF compiler [26, 27, 28]. However, iterative type analysis doesnot type an entire program, only small regions. Essentially, these techniques simply preservethe information obtained by runtime checks inserted into the code. Later work by H�olzle [97] onthe SELF-93 compiler uses the results of polymorphic inline caches (i.e. pro�ling) to determinelikely run time types, inserting type tests to ensure that the expected actually occurs.Type inference in object-oriented languages in particular has been studied for many years[169, 78]. Constraint-based type inference is described by Palsberg, Schwartzbach and Oxh�jin [136, 135]. Their approach was limited to a single level of discrimination and motivated oure�orts to develop an extendible approach. Agesen [1, 3] extended the basic one level approachto handle the features of SELF [176]. His technique is limited to eager splitting, and is incapableof handling polymorphic data structures which are destructively updated as a result of his singlepass approach.The soft typing system of Cartwright and Fagan [24] extends a Hindley-Milner style typeinference to support union and recursive types as well as insert type checks. To this Aiken,Wimmers, and Lakshman [8] add conditional and intersection types enabling the incorporationof 
ow sensitive information. However, these systems are for languages which are purely func-tional where the question of assignment does not arise and extensions to imperative languagesare not fully developed. Lastly, our algorithm shares some features of the closure analysis andbinding time analysis phases used in self-applicative partial evaluators [148], again for purelyfunctional languages.5.9 SummaryFlow analysis of object-oriented programs is complicated by the interaction of data values andcontrol 
ow information through dynamic dispatch and imperative update of instance variables.This chapter presents a 
ow analysis technique which combines simultaneous data and control
ow analysis with iterative adaptation to the structure of the program. Essentially, a simple,less 
ow and data sensitive analysis is used to determine where more precise analysis is needed.103



The contour representation, a summarization of stack frames or groups of objects, is extendedlocally, to provide more precision and the program is reanalyzed. Using a number of COOPprograms, this adaptive analysis is shown to be both e�ective and e�cient.
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Chapter 6CloningProperty was thus appalled,That the self was not the same;Single nature's double nameNeither two nor one was called. Shakespeare, The Phoenix and the Turtle, 1601Cloning is the process of building specialized versions of classes and methods from genericspeci�cations in order to improve e�ciency. These versions are specialized with respect to themanner in which they are used by the programmer and/or implemented (their context). Inparticular, polymorphic classes and methods are specialized into a set of monomorphic classesand methods, whose storage maps, dispatch tables, and call bindings are optimized for thecorresponding classes.This chapter presents a cloning algorithm which attempts to maximizes optimization op-portunities while minimizing code replication. The number of clones is minimized by creatingonly those dictated by a given set of optimization criteria. Example criteria are minimizationof dynamic dispatch and maximization of unboxing within performance critical portions of thecode. These clones are shared across the program to limit overall code expansion. The algo-rithm is both e�cient and e�ective. In our study it produces modest code size increases inthe range of -20% to +70% while statically binding approximately 99% of all invocations and,through inlining, eliminating 45% to 99% of invocations overall.The structure of this chapter is as follows: Section 6.1 introduces a matrix multiply examplewhich will be used in this and later chapters. Section 6.2 describes how the contours producedby context sensitive 
ow analysis (Chapter 5) are used to guide cloning. Section 6.3 presents105



a modi�ed dispatch mechanism required to make it possible for the call graph containing thespecialized clones to be realized at run time. Selection of clones is covered in Section 6.4.Optimization of the clones, including data layout and call bindings is discussed in Section 6.5.Finally, a study of performance of the algorithm and its e�ectiveness for optimization appearsin Section 6.6.6.1 Example: Matrix MultiplyIn order to illustrate the cumulative e�ects of cloning and later OOP and COOP speci�coptimizations, Figure 6.1 contains an example which is threaded through this thesis. The mul-tiplication of encapsulated two dimensional matrix objects was selected because it is simpleand illustrates many sources of ine�ciency. While not a conventional object-oriented example,this code illustrates both polymorphism and several levels of encapsulation. Moreover, thisprogram could be written cleanly in FORTRAN (or assembly language for that matter) withgood performance. However, our goal is to have both high level abstraction and low level per-formance. This thesis demonstrates how to build an implementation with the performance andloop structure of the e�cient procedural algorithm, while retaining the abstraction expressionof object-oriented programming.The code in Figure 6.1 declares the two-dimensional polymorphic array class Array2D andthe innerproduct and matrix multiply mm methods. The Array2D class encapsulates a contigu-ously allocated two dimensional array object. The method at() accesses an element of thatarray by the standard technique of linearizing the indices [66]. These methods are then usedto multiply two arrays containing integers ai and bi into an integer array result ri, and twoarrays containing 
oats af and bf into a 
oat array result rf.6.2 Clones and ContoursThe result of 
ow analysis (Chapter 5) is context sensitive information where a context is givenin terms of call paths for methods and creation points for objects. More precisely a context c isa method m, invoked from a statement s in context c0 on an object created at statement s0 in106



class Array2D : Array {rows;cols;at(i,j);at_put(i,j,value);innerproduct(a,b,i,j);mm(a,b);};Array2D::at(i, j) {return self[(cols * i) + j];}Array2D::at_put(i, j, value) {self[(cols * i) + j] = value;}
Array2D::innerproduct(a,b,i,j) {let result = a.at(i,0) + b.at(0,j);for (let k=1;i<a.cols;k++)result += a.at(i,k) + b.at(k,j);at_put(i,j,result);}Array2D::mm(a,b) {for (let i=0;i<b.rows;i++)for (let j=0;j<a.cols;j++)innerproduct(a,b,i,j)}main() {Array2D aI,bI; // L1Array2D aF,bF; // L2ri.mm(aI,bI);rf.mm(aF,bF);}Figure 6.1: Matrix Multiplication Examplecontext c00.1 For each context the analysis provides the classes which each variable might pointto, and likewise for the object creation points, the classes of instance variables of objects createdthere. Furthermore, the analysis provides an interprocedural call graph over the contexts. Thecloning phase uses this information to decide which contexts should be instantiated as uniquemethods and which sets of objects should be instantiated as unique classes. Essentially, theanalysis phase treats the user's methods and classes as a set of uninstantiated templates (seeSection 6.7) and determines how they might be instantiated automatically by cloning for bothe�cient and compact code.For the matrix multiply example, the analysis determines that the objects aI,bI are of classArray2D and contain integers (call them Array2Dint), and aF,bF contain 
oats (Array2Dfloat).Furthermore, it shows that there are two versions of mm(), one called on aI,bI which operatesentirely on Array2Dint and another called on aF,bF which operates on Array2Dfloat. Withinthese two versions of mm() the corresponding versions of innerproduct()were called and within1The recursion in the de�nition is headed o� by having main invoked from a distinguishedcontext (Section 5.3.1). 107



them the corresponding versions of at() and at put. Thus, the at() within innerproduct()on Array2Dint is known to return an integer.This information is su�cient to build specialized optimized versions of classes and methods.For example, in Figure 6.2 the generic class Array2D is used to hold 100 integers. The methodforeach is used to invoke the method for a given selector on each element of the array. Bycloning a special versions of Array2D and foreach, the code on the right can be generated.The integer elements of the array are unboxed (the class identi�cation tag removed). The loopshave been merged, and the double operation converted to a shift. Instead of requiring hundredsof dynamically dispatched method invocations, multiplications, and indirections, the operationto double every element require only one statically bound function call.foreach(a) {for (let i=0;i<a.rows;i++)for (let j=0;j<a.cols;j++)a.at_put(i,j,f(a.at(i,j)));}dbl(i) { i+i }...Array2D a(10,10);foreach(a,dbl); foreach_dbl(a) {for (let i=0;i<100;i++)a[i] = a[i]<<1;}...Array2Dint a;foreach_dbl(a);Figure 6.2: Cloning Optimization ExampleWhile all the information required to make these transformations is supplied by the analysis,the analysis results cannot be used directly for cloning. First, the natural candidates for replica-tion, contours [156], are too numerous.2 Second, contours can be distinguished during analysisby elements of the calling context which are not covered by the standard dispatch mechanism(Section 2.1.4). Thus, cloning requires a modi�cation to the dynamic dispatch mechanism,and the power of this mechanism must be balanced with any additional cost. A good cloningalgorithm enables e�ciency to be balanced with code size.2This is a result both of manner in which the analysis discovers the program structure andof the relative complexity of the data and control 
ow information required by analysis ascompared to that needed for speci�c optimizations. That is, what the analysis discovers in onepart of the program, may not be relevant locally, but enable optimization of another part ofthe program. 108



6.2.1 Overview of the AlgorithmThe cloning algorithm proceeds by applying optimization criteria (e.g. maximize static binding(Section 7.3.1)) to the contours provided by analysis. These criteria induce partitions over thecontours based on the information available for optimization. These partitions are candidateclones. These partitions are then iteratively re�ned (broken into smaller partitions) subjectto the requirement that the call graph of the program represented by the partitions (clones)is realizable. That is, the modi�ed dispatch mechanism is capable of selecting the appropriateclone for each invocation site. Section 6.3 presents an e�cient modi�ed dispatch mechanismwhich requires at most one additional instruction and Section 6.4 covers constructing the initialpartitions and their re�nement. First we introduce the data structures used by the algorithm.6.2.2 Information from AnalysisThe information produced by analysis and described in Figure 5.3 is imported by the cloningalgorithm as a set of functions. Figure 6.3 provides a terse description of these functions whichare used by the cloning algorithm. Contours are the basic element of context sensitivity. Eachof the method contours represent some abstract set of method activations summarized bythe analysis. Similarly each element of the set of class contours summarizes some abstractset of objects analyzed as a unit. Each contour is associated with its particular method orclass. Each method contains a set of statements representing invocations (invsites) and thecreation of new objects (creation points). Finally, each method contains a set of variablesand each class contains a set of instance variables).method contours the set of method contours produced by analysisclass contours the set of class contours produced by analysismethod(m) the method associated with method contour mclass(c) the class associated with class contour cinvsites(m) the invocation statements in method mvariables(m) the variables in method mcreation points(m) the object creation statements in method minstance varaibles(c) the instance variables of class cFigure 6.3: Primary Cloning Information109



Each contour corresponds to a unique set of context sensitive information. For example,each contour determines the types of variables and binding of invocation sites. Figure 6.4describes the functions used by the cloning algorithm to access this information. A creationstatement and a method contour uniquely determines the class contour of objects created atthat statement in that context (created contour). Likewise, an invocation site and a methodcontour determine the call binding, whether or not the site can be statically bound. Forinstance and local variables, the class or method contour, repectively determine the boxing,whether or not the variable can be unboxed (Section 3.2.3). Finally, the interprocedural callgraph (call graph edges) is represented as a set of edges for each invocation statement. Eachedge represents a invoke on a method contour, the callee. Each edge is further associated witha particlar selector (generic function name) and class contour of the target object (object),created contour(s,m) the class contour of objects created at statement s in the context ofmethod contour mbinding(s,m) the set of methods which might be invoked at statement s in method contour mboxing(v,m) the data layout (e.g. raw integer, raw 
oating point number, boxed integer orpointer) required for variable v in method contour mcall graph edges(s) the set of call edges for statement scallee(e) the callee method contour for edge eselector(e) the selector (generic function name) whose availability at the call site, in part, in-duced the edge eobject(e) the class contour whose availability at the invocation site, in part, induced the edge eFigure 6.4: Cloning Optimization InformationThe information in Figure 6.4 represents only a small subset of that which can be determinedby our adaptive context sensitive analysis. In general, the optimization criteria can depend onany analyzed property. Also, analysis may distinguish method contours by arbitrary aspects ofthe calling environment including: the contours from which they were invoked [135], the typesof all the arguments [1] and other criteria [105]. As a result, a call graph on contours cannot,in general, be realized by the standard dispatch mechanism.110



6.3 Modi�ed Dynamic Dispatch MechanismCloning modi�es the call graph by replicating subgraphs which are then called by only a sub-set of the previous callers. The information within the cloned subgraphs is then specializedfor the subset. If an invocation site within a specialized subgraph can only invoke a singletarget method, that site can be statically bound, connected directly to the appropriate clone.However, if the invocation site requires a dynamic dispatch, the standard single-dispatch mech-anism (i.e. the one used by C++ or Smalltalk) is, in general, insu�cient to distinguish thecorrect callee clone. The problem is that this dispatch mechanism determines the method tobe executed based on the selector (generic function name) and runtime class of the target ob-ject < selector; class >, and these are identical for all clones of a given method. Figure 6.5illustrates one limitation.class Stream;class StringStream : Stream;class Shape;class Square : Shape;class Circle : Shape;Stream::print(Shape * o) { ... }CLONE Stream:print(Square * o) { ... }CLONE Stream:print(Circle * o) { ... }CLONE StringStream:print(Square * o) { ... }CLONE StringStream:print(Circle * o) { ... }
main() {Object * o = new Circle;Stream * s;if (...) s = new StringStream;else s = new Stream;s->print(o);o = new Square;s->print(o);...}Figure 6.5: Limitation of Standard Dispatch MechanismIn Figure 6.5 the print() method in the Stream class takes a single argument o which iseither a Circle or a Square. Since the variable s can be either a Stream or a StringStream,the invocation requires dynamic dispatch. However, the standard dispatch mechanism onlydispatches on the selector and the class of the target, and hence cannot select between theversions of Stream::print() cloned based on the class of parameter o (one for Square and onefor Circle). A more powerful dispatch mechanism is required to handle this case.To address this problem an invocation site speci�c dispatch mechanism is used. Each siteis given an identi�er which is used during dynamic dispatch to distinguish the appropriatecallee clone for each selector and target object type pair. In our example, the invocation siteinformation would allow us to select the version of print for Circle at the �rst site and that111



for Square at the second. It should be noted that even multiple-dispatch [32] is not su�cient,since the distinguishing factor could be anything related to the calling environment, includinghow the return value will be used in the future!A second problem is that cloning partitions the objects in user de�ned classes into concretetypes for which more specialized information is available. Concrete types are essentially imple-mentation classes describing, for example, a special the memory layout speci�c to some subsetof objects of a particular user class. The new dispatch mechanism may need to distinguishthese concrete types. For the example, this case would occur if we had constructed specializedversions of Circle such as BigCircle and SmallCircle with their own memory layouts.The modi�ed dispatch mechanismuses < site; selector; concrete type > to select the methodto be executed. Since only a single dimension is added, this mechanism is the smallest extensionsu�cient to select the correct clone, and, unlike multiple-dispatch, is independent of the numberof arguments. This mechanism can be implemented to induce no overhead when the selectoris known (i.e. when the selector does not come from a variable), and only one instructionotherwise, since the site can be added into the selector to form a single index into a virtualfunction table.6.4 Selecting ClonesClones are selected by partitioning method contours and concrete types by partitioning classcontours. The initial set of partitions is determined by optimization criteria such as mini-mization of dynamic dispatch and maximizing unboxing. These partitions represent potentialconcrete types and clones (versions of methods) amenable to special optimization which arethen iteratively re�ned until the cloned call graph is realizable by the new dispatch mechanism.The overall algorithm is presented in Figure 6.6. It is based on two functions, one whichdetermines if two method contours can share a clone (are equivalent) and an analogous functionfor class contours. These functions (shown in Figure 6.7) induce partitions over their respectivecontours. Then repartition computes these partitions by grouping the contours such thatall the contours in a partition are equivalent. Initially, this equivalence corresponds to thatinduced by the optimization criteria. Since �ner partition of class contours can induce a �nerpartition of method contours and vice versa, we repeat the process until a �xed point is reached.112



clone_selection() {// establish initial partitionsmethod_partition = new List;forall m in method_contours dopartition(m) = method_partition;class_partition = new List;forall c in class_contours dopartition(c) = class_partition;// refine for equivalence and realizabilitywhile (!fixed_point) {repartition(method_contours,method_contours_equivalent);check_class_contours_used_for_dispatch();repartition(class_contours,class_contours_equivalent);}}
repartition(part,equivalent){result = new List;result.add( new List(part.first()));forall e in part.rest() doforall s in result doif (forall r in s doequivalent(e,r))s.add(e);else result.add( new List(e));}Figure 6.6: Cloning Selection Drivers (pseudocode)Termination is ensured because the number of contours is �nite and the partitioning proceedsmonotonically (see Figure 6.7 under the comment monotonicity).The initial partitions are built based on optimization criteria by the contour equivalencefunctions. To maximize static binding we examine each invocation site in the method for the twocontours, and if they would bind to di�erent clones (method contour partitions) or di�erent setsof clones we declare the two contours not equivalent. Similarly for representation optimizations(unboxing), if a variable within two method contours or an instance variable within two classcontours has di�erent e�cient representations (unboxed or inlined objects) we declare them notequivalent. This is because grouping the contours would prevent optimization. The code tocheck these optimization criteria appears in Figure 6.7 and is indicated by the optimizationcriteria comment. Standard techniques for pro�ling or frequency estimation [181] can beapplied to maximize the bene�ts of optimization while limiting code expansion by ignoringoptimization of non-performance critical code.To ensure that the call graph is realizable by the modi�ed dispatch mechanism, furtherre�nement of the partitions may be required, a�ecting both method and class partitions. Thisoccurs when the dispatch mechanism is not able to resolve a unique method at an invocation site.Figure 6.8 shows graphically for the matrix multiply example, how the decision to specializeinnerproduct() by partitioning the contours for Array2Dint and Array2Dfloat induces arepartitioning of contours of (and ultimately the specialization of) mm().113



boolean method_contours_equivalent(a,b) {return((partition(a) == partition(b)) /* monotonicity */&& (foreach s in invsites(method(a)) do /* optimization criteria */binding(s,a)==binding(s,b))&& (foreach v in variables(method(b)) doboxing(v,a)==boxing(v,b))&& (foreach c in creation_points(method(a)) do /* realizability */class_contour(c,a)==class_contour(c,b));}boolean class_contours_equivalent(a,b) {return((partition(a) == partition(b)) /* monotonicity */&& (foreach v in instance_variables(class(b)) do /* optimization criteria */boxing(v,a)==boxing(v,b))&& (! b in not_equivalent(a))); /* realizability */}check_class_contours_used_for_dispatch() {foreach s in invsites doforeach e1,e2 in call_graph_edges(s) doif ((partition(callee(e1)) != (partition(callee(e2))))&& (selector(e1) == selector(e2))&& (partition(object(e1)) == (partition(object(e2)))))make_not_equivalent(object(e1),object(e2));}make_not_equivalent(a,b) {not_equivalent(a).add(b);not_equivalent(b).add(a);} Figure 6.7: Contour Equivalence Functions (pseudocode)Since the dispatch mechanism uses concrete type (class contour partition) to select thetarget method, if the invocation site and selector are the same, the two class contours mustbe to be in di�erent partitions in order be able to resolve the appropriate method. Considerthe case in Figure 6.9 of optimizing the binding of print() in the method print contents()to Circle::print() for circle containers and Square::print() for square containers at site3. Since the invocation site and selector are identical, the concrete type of c must be used todistinguish the correct version. Thus, the method contour partition of print contents() hasinduced a class contour partition of Container to distinguish those instances for which o is a114



Array2D::mm()

Array2D::innerproduct() Array2D::innerproduct()

ri.mm(aI,bI); rf.mm(aF,bF);

Array2Dint Array2Dfloat

Array2Dint Array2DfloatFigure 6.8: Partitioning of innerproduct() contours induces repartitioning of mm() contours.Circle from those for which o is a Square. The function which checks this condition and ensuresthat two class contours will be non-equivalent is check class contours used for dispatchin Figure 6.7.class Container { Object * o; ... };void Container::print_contents(){ this->o->print(); }Container * create() { return new Container; }main() {Container *a = create(); /* site 1 */Container *b = create(); /* site 2 */a->o = new Circle;b->o = new Square;Container *c = a;if (...) c = b;c->print_contents(); /* site 3 */} Figure 6.9: Example Requiring Repartitioning of ContoursSimilarly, class contour partitions can induce method contour partitions. Class contours arede�ned by their creation point (creating statement and surrounding method contour). Since thepartitions of class contours will be the concrete types which are used by the dispatch mechanism,objects must be tagged at their creation points with their concrete type. This means that twomethod contours cannot be in the same partition if they de�ne di�erent class contour partitions.For example, in Figure 6.9, we have partitioned the class contour for Container based on thetype of o (Circle or Square). In order to tag Circle containers and Square containers asdi�erent concrete types, enabling the dispatch mechanism to select between them, we must115



repartition the method contours for create(), separating those called from site 2 from thoseinvoked from site 3. Thus, the class contour partition of Container has induced a methodcontour partition of create(). This is checked by the function method contours equivalentunder the comment realizability in Figure 6.7.6.5 Creating ClonesA method clone is created for each method contour partition and a concrete types for eachclass contour partition. For each method clone, the code of the original method is duplicatedand the data 
ow information updated to re
ect only that for the contours in its partition.The invocation sites and variables have the more precise information dictated by the opti-mization criteria enabling a wide variety of optimizations (see Chapters 7 and 8 for a detaileddiscussion and experimental results). In particular, the statically bound invocation sites areconnected to the appropriate clone and are amenable to inlining. Methods which contain cre-ation points are modi�ed so that the created objects are tagged with the appropriate concretetype (instead of the original class). Finally, the modi�ed dispatch tables are constructed.Invocations which require dynamic dispatch are assigned identi�ers. For each edge in the in-terprocedural call graph from these sites, an entry is made into the dispatch table mapping the< site; selector; concrete type > to the appropriate clone.
main()

ri.mm(aIi,bI);

Array2Dint::mm()

Array2Dint::innerproduct()

Array2Dint::at()

Array2Dint::at_put()

Array2Dfloat::mm()

rf.mm(aF,bF);

Array2Dfloat::innerproduct()

Array2Dfloat::at()

Array2Dfloat::at_put()Figure 6.10: Specialization of Matrix Multiply ExampleFor our example, the specialized classes Array2Dint and Array2Dfloat are created withthe knowledge of the types of inner, outer and the array elements. The constructors for aI,bIand aF,bF are specialized to create objects of these new classes. The access methods inner()116



and outer() are specialized to extract unboxed integers. Likewise, the specialized versions ofat(), at put(), innerproduct() and mm() are created. Finally, the call graph is updated sothat, for instance, innerproduct on Array2Dfloat invokes at put() on Array2Dfloat as inFigure 6.10.6.6 Performance and ResultsIn this section we describe the results of applying the cloning algorithm to the test suite ofSection 5.7.1. The programs were analyzed with the 
ow-sensitive interprocedural analysisdescribed in Chapter 5. The number of clones produced and the e�ects of cloning on dynamicdispatch, procedure calls and code size are reported.6.6.1 Clone SelectionTo evaluate clone selection, initial contour partitions were generated using aggressive optimiza-tion criteria. One criteria is to remove as many dynamic dispatches as possible regardless ofthe number of times the statement is executed. The second criteria was to optimize the rep-resentation of as many arrays and local integer and 
oating point variables by unboxing. Weapplied these criteria and evaluated the number of concrete types and method clones produced.To demonstrate that clone selection was able to combine contours not required for optimizationwe also report the number of contours produced by the analysis.It should be noted that the number of contours produced by an analysis is only super�ciallyrelated to the quality of information it produces and the di�culty of selecting clones based onthat information. In theory, 
ow analyses produce O(N), O(N2), O(N6) or more contours fora program of size N [136, 135, 1, 105] and can require large amounts of space [3]. The adap-tive analysis in Chapter 5 creates contours in response to imprecisions discovered in previousiterations. As a result, it is relatively conservative with respect to the number of contours itcreates.6.6.1.1 Selection of Concrete Types (Class Clones)The number of user classes, analyzed class contours, and the number of concrete types producedby the selection algorithm are reported below:117



Program ion network circuit pic mandel tsp richards mmult poly testProgram Classes 11 30 15 11 11 12 12 7 6 10Class Contours 64 43 30 27 26 17 27 13 17 18Concrete Types 11 32 15 11 11 12 13 7 6 10Figure 6.11: Selection of Concrete Types (Class Clones)The data in Figure 6.11 show that the number of class contours is much greater than thenumber of user-de�ned classes. However, the number of concrete types selected by our cloningalgorithm is closer to the number of user classes. This is because not all those distinguishedby the analysis are required for optimization. In particular, when all invocations on objectscorresponding to some class contour are statically bound, the dispatch mechanism does notneed a concrete type for dispatch and no distinct concrete type is created. Methods for suchobjects are simply specialized for the class contour and statically bound.6.6.1.2 Selection of Method ClonesThe number of reachable user methods used (as opposed to simply de�ned) in the program,analyzed method contours, clones selected by our algorithm, and the �nal number of methodsafter inlining appear in Figure 6.12. The inlining criteria (Section 7.3.3) are based on the size ofthe source and target methods as well as a static estimation of the invocation frequency. Whenall invocations on a method are inlined, that method is eliminated from the program.Program ion network circuit pic mandel tsp richards mmult poly testMethods 348 330 143 157 108 103 129 48 42 40Contours 720 555 511 271 168 153 280 139 189 87Clones 445 342 173 195 115 108 138 64 54 40After Inlining 347 181 101 148 63 71 65 42 26 22Figure 6.12: Selection of Method ClonesAgain, the analysis creates many more method contours than user de�ned methods. How-ever, the selection algorithm chooses only those required for optimization; in most cases endingwith only somewhat more than the number of user de�ned methods. Moreover, since manyinvocation sites can be statically bound after cloning, many of the smaller methods can be in-118



lined at all their callers. Thus, the number of methods which remain after cloning and inliningis actually smaller than the number of methods in the original programs.6.6.2 Dynamic DispatchDynamic dispatch (virtual function calls) is described in Section 2.1.4. Static binding is theprocess of transforming dynamic dispatches into regular function calls. Cloning enables staticbinding by creating versions of code specialized for the classes of data they operate on. Wecompare three optimizations levels, unoptimized, optimized and cloning. The unoptimizedcode represents the lower bound on e�ciency, indicating the number of methods and messagesrequired by a naive implementation were only accessors (Section 2.3.3) are inlined. The opti-mized 0CFA version uses customization [26] to create specialized versions of methods for eachtarget object class and statically binds all methods for which there is only one possible targetmethod.6.6.3 Site CountsIn Figure 6.13 we report the number of dynamic dispatch sites in the �nal code. Overall, thenumber of dynamic dispatch sites in the optimized codes is almost identical to that in theunoptimized code. The di�erences result from inlining and dead code elimination. On theother hand, very few dynamic dispatch sites remain in the cloning codes. As we will see inChapters 7 and 8, elimination of these sites enables many optimizations.Without cloning all the programs but two contain a number of dynamic dispatch sites.mandel is primarily numerical and does not use polymorphism and in test the selectors areunique, enabling invocations to be statically bound even without sophisticated analysis. Withcloning, only one program has more than two dynamic dispatch sites. Those dispatches whichremain correspond to the true polymorphism in the programs, and cannot be statically boundto single methods. For instance, in richards (the OS simulator) the single remaining dispatchis in the task dispatcher, where the simulated tasks are executed. Since the tasks are datadependent, this dynamic dispatch cannot be eliminated.119
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Figure 6.13: Dynamic Dispatch Sites6.6.3.1 Event CountsThe runtime counts in Figure 6.14 demonstrate the e�ectiveness of cloning for elimination ofdynamic dispatch during program execution. The test suite was optimized and then executedon a sample input and the number of invocations (both dynamically dispatched and staticallybound) were collected. The number of dynamic dispatches is reported as a percentage ofthose occurring in the unoptimized code. While global analysis and optimization alone isable to statically bind many invocations, reducing the counts by approximately 8x, cloning isable to statically bind many more. Moreover, once the number of invocations is reduced byinlining, those remaining in the optimized case are frequently dynamic dispatches. Figure 6.15shows the number of dynamic dispatches as a percentage of the remaining invocations. Thisshows that optimization of the optimized code is limited by dynamic dispatches which inhibitinlining. In contrast, cloning keeps dynamic dispatches to a small fraction of the total numberof invocations. Note that this graph should not be used to compare the absolute number ofdynamic dispatches since the total number of invocations in the cloned version is less than thatin the optimized version. 120



 Optimized
 Cloning

||0

|5

|10

|15

|20

 P
er

ce
nt

 o
f D

yn
am

ic
 D

is
pa

tc
he

s

io
n

ne
tw

or
k

ci
rc

ui
t

pi
c

m
an

de
l

ts
p

ric
ha

rd
s

m
m

ul
t

po
ly

te
stFigure 6.14: Percent of Total Dynamic6.6.4 Number of InvocationsIn Figure 6.16 we report the total number of invocations (static and dynamic) after optimization.For the baseline (100%) we use the number of invocations in the baseline version. Globalanalysis and inlining eliminate between 35% and 99% of the invocations, and in some casescloning eliminates 20% more. The use of better use of frequency information combined withthe greater number of statically bound methods in the cloning version might reduce the numberof calls even further.6.6.5 Code SizeOne important measure of the e�ectiveness of clone selection is the �nal code size. Figure 6.17compares the resulting code size before and after cloning. The cloned programs usually increasein size by a modest amount, and always by less than 70%. The relatively large increase in ion isthe result of extensive use of �rst class selectors (virtual function pointers in C++) for programoutput. Code size expansion can be reduced by using pro�ling or frequency estimation torestrict cloning to the parts of the program which execute the most. Since the output phase isonly executed once, such restrictions would have helped for ion.121
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stFigure 6.15: Percent of Remaining Dynamic6.7 DiscussionPure object-oriented languages rely on polymorphism and dynamic binding to express genericabstractions. In C++, templates [165] give the programmer explicit control over how and whencode is replicated and/or shared. In order to avoid code bloat, C++ programmers must usederivation (inheritance) to ensure code sharing among di�erent types; as Bjarne Stroustrup said:\People who do not use a technique like this (in C++ or in other languages with similar facilitiesfor type parameterization) have found that replicated code can cost megabytes of code spaceeven in moderate size programs." [166]. Cloning uses optimization criteria, interproceduralanalysis and transformation to automatically generate e�cient specialized data structures andcode which re
ect the actual application structure. However, the generic versions can be used toshare code for non-performance critical parts of the application. Moreover, these performancetuning considerations are decoupled from the higher level expression of the program, simplifyingcoding and increasing the potential for reuse.122
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stFigure 6.16: Total Number of Invocations6.8 Related WorkCooper [47] presents general interprocedural analysis and optimization techniques. Whole pro-gram (global) analysis is used to construct the call graph and solve a number of data 
owproblems. Transformation techniques are described to increase the availability of this informa-tion through linkage optimization including cloning. However, this work does not address cloneminimization. Cooper and Hall [83, 85, 48, 49, 84, 86] present comprehensive interproceduralcompilation techniques and cloning for FORTRAN. This work is general over forward data 
owproblems, and presents mechanisms for preserving information across clones and minimizingtheir number. However, concrete types are not a forward data 
ow problem. Hall determinesinitial clones by propagation of clone vectors containing potentially interesting informationwhich are merged using state vectors of important information into the �nal clones. We handleforward 
ow problems in a similar manner, but rely on global propagation to determine the�nal clones for recursive methods.Several di�erent approaches have been used to reduce the overhead of object-orientation.Customization [26] is a simple form of cloning whereby a method is cloned for each subclass123
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stFigure 6.17: E�ect of Cloning on Code Sizewhich inherits it. This enables invocations on self (or this in C++ terminology) to bestatically bound. Another simple approach is to statically bind invocations when there is onlyone possible method [13]. This idea was extended by Calder and Grunwald [21] through \ifconversion," essentially a static version of polymorphic inline caches [96]. This work also sharessome similarities with that done for the Self [176] and Cecil [31] languages. Chambers andUngar [27], used splitting, essentially an intraprocedural cloning of basic blocks, to preserve typeinformation within a function. Early work on Smalltalk used inline caches [61] to exploit typelocality. H�olzle and Ungar [97] have shown the information obtained by polymorphic inlinecaches can be used to speculatively inline methods. While run time tests are still required,various techniques are presented to preserve the resulting type information. None of theseapproaches uses globally analyzes and transformation to eliminate the run time checks nor topreserve general global data 
ow information. More recently, Dean, Chambers, and Grove [58]have used information collected at run time to specialize methods with respect to argumenttypes. While this can remove dynamic dispatches across method invocations, it does not handlepolymorphic instance variables. Finally, Agesen and H�olzle have recently used the results of124



global analysis in the Self compiler [3]. However, the information for all the contours for eachcustomized method is combined before being used by the optimizer.The cloning algorithm we have presented is general enough to enable optimization basedon any data 
ow information provided by global 
ow analysis. All that is required is thatthe contour equivalence functions be modi�ed to re
ect the new optimization criteria. We haveused optimization criteria for increasing the availability of interprocedural constants, integratingsubobjects and separating algorithm phases successfully with this cloning algorithm. However,e�cient cloning for such information requires estimating its potential use for optimization.Interested readers are referred to [83] for a discussion of such issues.6.9 SummaryCloning builds specialized versions of classes and methods for optimization purposes. It beginswith the results of 
ow analysis (Chapter 5), the call graph and a set of contours. These contoursare partitioned into prototypical clones based on optimization critieria. Object contours arepartitioned into concrete types, and method contours are partitioned into method clones. Next,an iterative algorithm is applied which repartitions the contours until the call graph is realizable;until the objects can be created of correct concrete types, and the correct clones can be invokedfor each invocation site. The standard dynamic dispatch mechanism which selects the desiredmethod based on the selector and class of the target must be modi�ed to be context sensitive.The new dispatch mechanism uses an invocation site identi�er during dynamic dispatch. Thisidenti�er can typically be folded into the selector. A study of nine object-oriented programsdemonstrates that 99% of all invocations can be statically bound to a single method throughcloning with modest code size expansion.
125



Chapter 7Optimization of Object-OrientedProgramsOne does not know | cannot know | the best that is in one.Nietzsche, Beyond Good and EvilThis chapter describes a range of general and object-orientation speci�c optimizations anddemonstrates, for a set of standard benchmarks, that they are su�cient to enable a puredynamically-typed object-oriented language to match the performance of C (GCC) and beatthat of C++ (G++). The optimizations in this chapter occur after 
ow analysis (Chapter 5)and cloning (Chapter 6). Section 7.1 maps the potential ine�ciencies of the programming andexecution models (Section 2.2.4 and Section 3.4) to particular optimization problems. Sec-tion 7.2 provides an overview of the solutions to these problems, which are then covered indetail in the remaining sections.Section 7.3 discusses optimization of invocations; including static binding, if-conversion,inlining and speculative inlining. Section 7.4 is concerned with optimization of low level dataaccess through unboxing, the removal of type tags and the operations which manipulate them.Section 7.5 covers the promotion of instance variables to local variables using interproceduralaliasing information. Finally, in Section 7.7 a suite of general optimizations necessary to extractthe �nal modicum of performance are discussed.126



7.1 E�ciency ProblemsIn Section 2.2.4, we pointed out that abstraction boundaries and polymorphism are potentialsources of ine�ciency in the programming model. Crossing abstraction boundaries triviallymaps to method invocations (virtual function calls as in C++ [166]), which are more expensivethan inline operations. Likewise, polymorphic objects must be handled indirectly (i.e. usingpointers), increasing potential aliasing. Finally, Section 3.4 points out the impact of control 
owambiguities resulting from dynamic dispatch. Thus, OOP programs have more smaller methods,more data dependent control 
ow, and more potential aliases than procedural programs [95, 22].These features decrease performance, and, moreover, their e�ects compound. For example, thelarge number of data dependent invocations increases aliasing ambiguity which in turn increasesregister spill at the large number of invocation sites.7.1.1 Method SizeSmall method size in object-oriented programs is a result of encapsulation and programmingby di�erence which are supported by methods and inheritance respectively. Methods describethe interface to the object, physically embodying the abstraction boundary. Using inheritance,the programmer partitions the program into methods representing a general solution and a setof variation points which are delimited by method boundaries.The e�ects of object-orientation on program characteristics have been con�rmed empiricallyby comparision of of C++ and C. Calder et al. [22] found that the instructions to invocationratio for C++ was less than half that of C. Moreover, the basic block sizes for C++ wasslightly smaller than that of C. In addition to the overhead of the method invocation itself,small methods and basic block size make it harder for modern microprocessors to extract theinstruction level parallelism they depend on for high performance (see Section 3.1). In CA andother pure object-oriented languages like Self and Smalltalk the invocation density is evenhigher [177].In addition to the direct cost of the method invocations themselves, small method sizedecreases the e�ectiveness of register allocation and instruction scheduling, both critical toperformance on modern microprocessors (Section 3.1.1). To increase the size of size of methods127



the bodies of small method need to be inlined (Section 7.3.3), spliced, into their caller wherethe can be optimized in context.7.1.2 Data Dependent Control FlowSince, polymorphic variables may at di�erent times refer to objects several classes, methodsinvoked on them are dependent on the concrete type of the object. In general, the methodexecuted is determined by a combination of the selector (generic function name) and the actualclass of the object, both of which may vary at run time. This data dependence of control 
owcomplicates inlining and increases the cost of method invocations. Much data dependence canbe eliminated through a combination of global analysis (Chapter 5) and cloning (Chapter 6).However, transforming the program to take advantage of the additional information, and toeliminate the remaining data dependence requires special optimization. Invocation sites arestatically bound (Section 7.3.1) or inlined speculatively (Section 7.3.2), based on the selectorand class of the target object.7.1.3 AliasingSince objects are referenced indirectly, they and, consequently, their instance (member) vari-ables, are potentially aliased. As a result, these variables generally cannot be cached in registersacross method invocations or assignments through pointers. Since instance variables are im-plicitly scoped in C++ (they need not be accessed through the this pointer), this performanceconsequence may not be readily apparent to the programmer constructing or using the ab-straction. Moreover, the potential alias problem is exacerbated by high method invocationfrequency.class Array2D {rows;cols;at(i,j);}Array2D::at(i,j) {return self[(i * cols) + j];} ...for (j = 0; j < a.rows ; j++ )for (i = 0; i < a.cols ; i++ )b.compute( a.at(j,i) );...Figure 7.1: Aliasing Example128



An example of this e�ect appears in Figure 7.1, which derived from the matrix multiplyexample of Figure 6.1. In isolation, the method cols requires a memory access to retrievethe value of the cols instance variable. Inlined into the for loop, the load of cols cannot behoisted above the loop as an invariant unless the compiler can prove that a.cols cannot bechanged by compute. The interprocedural call graph which is discussed in Section 7.5 is neededto make this determination. Similarly, approximations of alias information for arrays can alsobe used for optimization (Section 7.6).7.2 Optimization OverviewAnalysis provides the information, and cloning makes it available so that the compiler canconvert method invocations into lower level operations which are amenable to conventionaloptimizations. The specialized clones and concrete types produced by cloning (Chapter 6) aresimilar to C++ template instantiations in that the information they contain has been mademore precise by code replication. However, high method invocation density and the largenumber of pointer-based data accesses result in ine�cient code.The problem of invocation density is addressed through a set of invocation optimizations,including static binding, speculation, and inlining. Data access overhead is addressed by un-boxing, and the eliminating pointer-based accesses through conversion of instance variables toStatic Single Assignment form and array alias analysis. Finally, a suite of standard low leveloptimizations are performed to eliminate the residue of high level abstractions.7.2.1 BenchmarksIn order to illustrate and evaluate the optimizations in this chapter, a set of benchmarks areused. The Stanford Integer Benchmarks consist of bubble sort (bubble), integer matrix mul-tiply (intmm), a permutation generator (perm), a 15-puzzle solver (puzzle), the N-queensproblem (queens), the sieve of Erastothenes (sieve), the towers of Hanoi (towers), and aprogram to construct a random binary tree (tree). The Stanford OOP benchmarks includeRichards, an operating system simulator which creates a number of di�erent tasks which arestored in a queue and periodically executed and Delta Blue [151], a constraint solver which buildsa network, solves it a number of times and removes the constraints. Two di�erent test cases129



are provided for Delta Blue, Chain which builds a chain of Equal constraints, and Projectionwhich builds two sets of variables related by ScaleOffset constraints. These benchmarks andthe testing methodology are discussed further in Section 7.8.7.3 Invocation OptimizationSince object-oriented programming produces code with a large number of invocations and usesa relatively expensive calling mechanism, invocation optimization is of particular importance.First, the call mechanism can be optimized by static binding, or the conversion of a dynamicdispatched invocation site to a static call (a normal C style call). This is possible only whenit can be proven that only one method may be called from that invocation site. When thatis not the case, we can speculate as to which method will be called, insert code to verify thespeculation, and use a static call if we are correct. Last, for statically bound sites, the body ofthe called method can be inserted inline, eliminating the invocation overhead and allowing thecode to be specialized for the speci�c calling context.7.3.1 Static BindingGeneral method invocations (dynamically dispatched) can be converted to direct function callswhen it can be determined that only one method could possibly be called. In C++ this istrivially the case when a method is not declared virtual, is static or is never overridden ina subclass. As we will see in Section 7.8, this information in C++ is insu�cient, in general, toenable an e�cient implementation. In a dynamically typed language (e.g. Smalltalk [76], CA[43], or the language used in this thesis) a dynamic dispatch can only be transformed withoutanalysis when the selector is constant, and there is only one method with that name.Global analysis and cloning (see Chapters 5 and 6) are capable of resolving many dynamicdispatch sites to a method; the e�ectiveness of which on a set of general object-oriented pro-grams is discussed in Section 6.6.2. For programs in which all the polymorphism is parametric(determined by static parameterization of classes and methods with respect to their creation orcalling environment), these techniques allow static binding of all invocations. Figure 7.2, showsthe number of static and dynamic dispatch sites in the Stanford Integer Benchmarks (described130



in Section 7.2.1) after analysis and cloning. Since these are procedural codes translated into anobject-oriented style, it is not surprising that all invocations can be statically bound.
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7.3.3 InliningInlining is the process of replacing a statically method invocation with the body of the calledmethod. This can improve the performance of code both by removing the method invocationoverhead and by enabling the body of the method to be optimized in context. In order to preventexcessive code expansion, inlining is performed based on heuristics which attempt to balanceperformance and code size. The Concert compiler uses a combination of static estimation[181] and size constraints to decide when to inline, eliminating the cost of crossing a procedureboundary.Since many small method bodies contain only a few instructions, inlining is of particularimportance for object-oriented programs. Figure 7.8, compares the speed of the fully optimizedprograms to those for which only accessors (methods which access instance variables) andprimitive operations (e.g. integer add) have been inlined. This latter case corresponds roughlyto the level of optimization available from simple C++ implementations.
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When speculation is combined with inlining, the inlined code is placed under a conditionalwhich can prevent some optimizations. Chapter 8 describes optimizations which expand theseconditionals to encompass larger portions of code, removing overhead and enabling additionaloptimization. These transformations, along with dead code elimination (Section 7.7), performthe same function as splitting [27] by preserving information obtained by runtime type or selectorchecks within methods.7.4 UnboxingUnboxing converts a tagged slot (Section 3.2.3) into an untagged data location. This decreasesmemory requirements and eliminates the overhead of tag manipulations. To unbox a piece ofdata, it is not necessary to know the exact type (e.g. pointer to a Point object or pointerto a Circle object), only primitive type (e.g. integer, pointer, 
oating point number). Thisinformation is provided by analysis and cloning. There are four types of variables which can beunboxed: local variables, instance variables, array elements and arguments.Local VariablesUnboxing local variables requires building a new memory map for the context containing thelocal state (see Section 3.2.1.1). This memory map describes which locations the runtimeand garbage collection system can expect will contain pointers, and which will be tagged.Unboxed local variables can be allocated to registers. Chapter 9, considers the trade-o� betweenincreasing the active state and decreasing context switch time in a concurrent object-orientedsystem.Instance Variables and ArraysLikewise, unboxing of instance variables requires building a new memory memorymap. Cloningcan produce several concrete types corresponding to a single class. However, specializing thememory maps, or failing to update tag �elds appropriately can result in the inability to sharea single version of method code across these concrete types. The same is true for superclassmethods, which objects of a subclass may not be able to share if they modify their memorymap in an unconformant way (Section 3.4). 136



Arrays can be unboxed just as instance variables, and entail the same conformance problems.Both CA and ICC++ provide arrays as objects with the array part stored after the instancevariables. The array part can then be considered as a �nal instance variable. Conformance isbased on the start location of the array part and whether or not the elements are tagged orpacked.ArgumentsUnboxing of arguments requires changing the calling convention. In the presence of dynamicdispatch, it is possible for the caller to not have the precise type information which is implied bythe dispatch criteria. For example, in Figure 7.9, the increment inc methods can take unboxedarguments, but at the invoking site, the variable x is polymorphic. If the compiler decides tounbox the self argument for inc, either speculation or a trampoline must be used to map theboxed caller. Calling convention conversion are discussed in Chapter 9.int::inc() { 1 + self }float::inc() { 1.0 + self }let x = ... ? 2 : 2.0,y = x.inc; Figure 7.9: Calling Convention Conversion7.5 Instance Variable to Static Single Assignment ConversionSince instance variables are ubiquitous, accessed by reference and potentially aliased (see Sec-tion 7.1.3) in object-oriented programs they must be loaded from and stored into memoryfrequently, increasing memory hierarchy tra�c and representing a large potential overhead.Using the interprocedural call graph and the object creation context information provided bythe analysis, we estimate whether a method invocation or instance variable access might aliasa given instance variable. Since good encapsulation disallows pointers into objects, only otheraccesses to the same instance variable of objects created at the same point as the instancevariable in question can alias it. The interprocedural call graph enables us to approximate137



the statements reached by a method invocation. Instance variables unaliased over a range ofstatements are transformed into locals and can be allocated to registers.Likewise, global variables can be transformed into local variables. Since global variables areuniquely named and cannot be aliased, their sharing patterns can be easily determined fromthe interprocedural call graph. Section 8.4.3 describes related optimizations of global variablesfor concurrent object-oriented languages.Array2D::mm(a,b) {for (i=0;i<b.rows;i++)for (j=0;j<a.cols;j++)innerproduct(a,b,i,j)} Array2D::mm(a,b) {tmp_rows = b.rows;tmp_cols = a.cols;for (i=0;i<tmp_rows;i++)for (j=0;j<tmp_cols;j++)innerproduct(a,b,i,j)}Figure 7.10: Instance Variable Transformation ExampleIn our example, the cols and rows instance variables are part of the Array2D object whichis potentially aliased. However, using the call graph we can determine that for the objectscreated at L1 and L2 (Figure 6.1) these instance variables are not changed within any methodinvoked from mm(). Thus, as in Figure 7.10 we can transform the instance variables to localtemporaries tmp cols and tmp rows and hoist them out of the loop.7.6 Array AliasingIn the same way that alias information enables transformation of instance variables into locals,it enables optimization of arrays accesses. Since good encapsulation prevents pointers intothe middle of arrays, absolute and/or symbolic analysis can be used to determine that arrayaccesses do not con
ict. We use a simple creation point test to estimate interprocedural arrayaliasing and combine it with simple symbolic analysis to enable array references to be liftedand common subexpression eliminated.For example, in Figure 7.11 from the bubble sort benchmark (see Section 7.8), the innerloop contains two array reads in the conditional and two in the body (left). We can determineby simple analysis over the call tree that the array could not be written between the �rstinvocation to a.at(i) and the second. Thus, we can lift and common subexpression eliminatethe a.at(i) in the loop (right). 138



if (a.at(i) > a.at(i+1)) {tmp = a.at(i);a.at_put(i,a.at(i+1));a.at_put(i+1,tmp);} tmp_i = a.at(i);tmp_i1 = a.at(i+1);if (tmp_i > tmp_i1) {a.at_put(i,tmp_i1);a.at_put(i+1,tmp_i);}Figure 7.11: Example of Common Subexpression Elimination of Array Operations7.7 General OptimizationsSince the abstractions of object-oriented programming are often used to hide the representa-tion of data, ostensibly simple operations may require many instructions. For example, theCA language does not support native multi-dimensional arrays. These are constructed out ofsingle dimension arrays with instance variables containing the dimension sizes and linearizationmethods (as in Figure 6.1). When multi-dimension arrays are used in loops, the instance vari-ables can be transformed to local variables and the linearization operations strength reducedand moved outside the loop. With these optimizations, matrix multiply of multi-dimensionalarrays in CA is as fast as C (see Section 7.8), even though the array operations are abstractedand ostensibly require much more work.Since these general optimizations are a standard part of most optimizing compilers, theyare only summarized in Table 7.1. More information can be found in the large body of compilerdesign literature (i.e. [7]).7.8 Overall Performance and ResultsWe use a standard benchmark suite (Section 7.2.1) to evaluate and compare the performanceof CA, C and C++. The Stanford Integer Benchmarks, Richards and Delta Blue were used toevaluate the Self language by Chambers [30] and later by H�olzle [95]. The Stanford IntegerBenchmarks are small procedural codes. The CA versions use encapsulated objects for theprimary data structures, but otherwise follow the C code structure. Richards and Delta Blueboth use polymorphism, some of which can be removed at compile time by templates or cloning(i.e. parametric polymorphism) and some which cannot (the task queue and constraint networkrespectively). The C++ codes are annotated by declaring functions virtual only when nec-139



Constant Propagation The realization that when a variable is assignedonly a single value, it must be that value; appliedtransitively.Constant Folding Executing an operation whose inputs are compile timeconstants at compile time to produce a new constant.Algebraic properties are normally used to enable moreconstant folding in languages (like CA and ICC++)which allow it.Dead Code Elimination Removal of code which cannot be executed, normallybecause the conditions predicating its execution havebeen determined not to hold. This is often the resultof inlining and specialization.Calling ConventionOptimization Unboxing of arguments and removal of unused argu-ments from the method interface.Common SubexpressionElimination The recognition that two computations compute thesame value, and substitution of the result of one forthat of the other, enabling dead code elimination ofthe other.Global Value Numbering The extension of common subexpression eliminationacross basic blocks.Invariant Lifting The removal of a computation from a loop which doesnot depend on any values computed in the loop, en-abling the value to be reused for each iteration.Strength Reduction The transformation of a scaling operation in a loopinto a set of successive additions.Table 7.1: Standard Optimizationsessary [95], including inline accessors, and, in Delta Blue, by the use of a List template. TheCA versions of these codes follow the C++ encapsulation and code structures.7.8.1 MethodologyWe compare the performance of CA codes translated from the Stanford sources.1 Our compileruses the GNU compiler [161] as a back end, enabling us to control for instruction selection andscheduling di�erences by using the same version (2.7.1) for both the back end of the Concertcompiler and the C and C++ benchmarks. All tests were conducted on an unloaded 75MhzSPARCStation-20 with SuperCache running Solaris 2.4. We present both individual results1Our thanks to Craig Chambers and Urs H�olzle for making the codes available.140



and summarized results for the procedural and object-oriented benchmarks. The individualresults are the average execution time of 10 repetitions of each benchmark at each optimizationsetting normalized to the execution time of C/C++ at -O2. The summarized results are thegeometric means of the normalized times over all the benchmarks at each optimization setting.This e�ectively constructs a synthetic workload in which each benchmark runs for the sameamount of time for C/C++ at -O2.
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Each optimization contributes to the overall performance which would otherwise be an orderof magnitude (9.2 times) less than C. Context sensitive 
ow analysis alone provides a factor oftwo by allowing more primitive operations to be inlined, and method invocations to be staticallybound. Cloning contributes another factor of two for essentially the same reasons, by makingmonomorphic versions of polymorphic code. Inlining operates on statically bound invocations,more than doubling performance by eliminating invocation overhead. Transforming instancevariables to locals enables many of the standard optimizations which, together with array aliasanalysis provide the last twenty percent of overall performance.These results demonstrate that for such procedural kernels, the cost of the unused 
exibilityof object-oriented features can be eliminated. The remaining di�erences in performance re
ectthe low level optimizations favored by the GCC compiler and the code structure more thanany inherent language advantage. For example, GCC strength reduces array accesses based onsizeof(int) using a simple heuristic which is easily confused by the RTL-like output of theConcert compiler. Likewise, computing booleans into intermediates can inhibit direct use ofcondition codes. On the other hand, GCC only inlines functions which appear previously inthe same �le, and the standard malloc routine is relatively ine�cient.
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in two. C inline increases that number by one, adding towers (a highly recursive code) tothe list for which C is faster. Since these codes are largely monomorphic they can be analyzedeasily, and they di�er only in their control structures and method boundaries. The CA codesare faster because of relatively more aggressive inlining except trees which allocates manyobjects. Even though the CA code garbage collects eleven times during each run, it is still moree�cient than malloc(). On the other hand, CA does not support break, and the resultingadditional condition in while loops drops CA performance on puzzle by almost a factor oftwo. Discounting these special cases, individual benchmark performance is nearly identical.Di�erent optimizations had larger e�ect on di�erent benchmarks, indicating their individualimportance. The bubble sort and permutation (perm) programs are heavily dependent oninlining (for the swap) which provides most of the performance. The trees and puzzle programsbene�t directly from instance variable promotion, in trees case because of the heavy use ofthe left and right child instance variables. Matrix multiply (intmm) and puzzle are loopbased, and depend on the standard optimizations, and in particular strength reduction whichis enabled by instance variable promotion (for the inner loop dimension). Finally, towers andpuzzle bene�t from array alias analysis because the code repeatedly accesses the elements atthe same array o�sets.
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compiler produces much better performance, a factor of four improvement, than the C++compiler even with user provided annotations and automatic inlining enabled (-O3). Again,the individual optimizations made their contributions starting from a initial performance pointan approximately order of magnitude (13.8 times) worse than C++. Context sensitive 
owanalysis provided a factor of 2.4. This is more than the factor of two for the procedural codes,indicating its relative importance for object-oriented codes. Likewise, cloning was responsiblefor approximately a factor of 2.5. Inlining contributed a factor of four, again showing its relativeimportance for OO codes. Finally, standard low level optimizations enabled by instance variablepromotion contributed a factor of two.We evaluated the performance of the benchmarks with the C++ compiler at �ve optimiza-tion settings, including the base (-O2), automatic inlining (-O3), without any inlining, with allvirtual functions, and without any inlining and all virtual functions. Automatic inlining im-proved performance by approximately two percent, indicating that most of the automaticallyinlinable functions had been annotated. Disabling either inlining or static binding annotationsreduced performance by 50 percent, and with both were disabled, performance decreased by70 percent. Performance of the CA code without inlining was comparable to that of the C++compiler without inlining. However, as we will see in the next section, the individual resultsvary, indicating this is probably just coincidental.
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7.8.5 Object-Oriented Codes: Individual ResultsFigure 7.15 reports the results for the Richards, Delta Blue Chain and Projection individualbenchmarks under various optimization settings of both the Concert compiler and the C++compiler. The CA versions vary from almost six times faster (Chain) to twenty-�ve percentfaster (Richards) than C++ -O2. In the case of Delta Blue, this di�erence is attributable tomany invocations to small methods. For example, in object-oriented fashion, Delta Blue uses ageneral List container object with a method which applies a selector (function pointer) acrossits elements (e.g. do: in Smalltalk or map in Scheme). The Concert compiler clones and inlinesboth invocation sites, turning this into a simple C style loop containing operations directly onthe elements, while the C++ compiler does not. For Richards, the performance di�erence isprimarily a result of optimizations enabled by instance variable promotion. Richards uses anobject to encapsulate its current state including the head of the task queue, and manipulationof this state makes up the largest part of the execution time.The di�erent C++ optimization settings produced di�erent results for the di�erent bench-marks, much as they did for CA. For Richards, disabling inlining decreased performance by65 percent. However, making all methods virtual has no e�ect on performance at all. Thisis because Richards is largely a procedural code where the central switch statement has beenreplaced with a dyanamic dispatch (the run method on Task objects). On the other hand,Delta Blue uses accessor methods and other small methods for encapsulation of object state.For Chain, disabling inlining decreases performance by 40 percent and for Projection the im-pact is a 50 percent decrease. Furthermore, since Delta Blue does most computation throughmethods, making all methods virtual (which e�ectively prevents inlining of methods as well)reduces performance by 85 percent, and the performance is unchanged when inlining is disabledas well.These results show that for these benchmarks, the overhead from object-orientation can beremoved automatically. Furthermore, it they show that the annotations provided by the C++programmer are not su�cient to optimize the programs.145



7.9 Related WorkSpeculative inlining, and specialization with respect to runtime checks is discussed in detail byCraig Chambers [30] and Urs Ho�olzle [95] in their respective theses on the Self system. Thiswork was based either on guesses as to the type of particular object or on runtime feedback(pro�ling) instead of interprocedural analysis. The focus of Chambers' work was preserving theinformation acquired through runtime checks over larger bodies of code, similar in purpose tothe access region manipulations described in Chapter 8. Earlier information on these optimiza-tion in the Self system include [27, 28]. Simple speculative optimization by \if-conversion"was discussed by Brad Calder and Dirk Grunwald in [21] as a replacement for table indirecteddynamic dispatch in cases only a small set of methods of the same name existed based on exam-ining the class hierarchy. Recently, interest has turned to dynamic compilation using compilersupplied templates [123, 14]. This work uses a combination of static, dynamic information andruntime checks to select optimized versions of code. Again, the empasis is on simple analysiscombined with pro�ling information. Optimization of object-oriented calling mechanisms hasbeen discussed extensively. Two relevant sources include: for the pure object-oriented languageSelf, H�olzle [96] and for C++, Stroustrup [166]. The advantage of the system described in thischapter is that 
ow analysis and cloning can often determine arity of a method invocation siteto be a small number (often one). This results in a shift in the focus of optimization towardstatic binding and inlining, since the general dispatch mechanism is rarely used. Unboxinghas also been a popular for many years in the Lisp community. Most recently, researchers inML have discovered it [153, 90, 125] in the context of polymorphic types. Because these MLsystems are type-based and support separate compilation, they have neither complete knowl-edge nor access to the whole program, preventing them from the sort of global transformationsdescribed in this chapter. Finally, the Standard Template Libraray [163] has been proposed asa solution to the problem of optimization of polymorphic code in C++. In this system, thenotions of type parameterization and code replication are combined. The result is a systemwhich provides specialized versions of code by massive code replication, largely out the handsof the compiler. Given that modern computers are memory bandwidth limited, this approachis of dubious value. 146



7.10 SummaryAbstraction boundaries and polymorphism in object-oriented programs are potential sources ofine�ciency. Moreover, small method size, high invocation density, data dependent invocations,data access overhead and aliasing problems compound these ine�ciencies. Invocation densityis addressed through invocation optimizations: static binding, speculation and inlining. Dataaccess overhead is addressed by unboxing and the elimination of pointer-based accesses throughconversion of instance variables to Static Single Assignment (SSA) form. Array alias analysisand a suite of standard low level optimizations are also performed. Results for the StanfordInteger Benchmarks demonstrate that a pure dynamically-typed object-oriented language im-plemented by Concert can be as e�cient as C. Moreover, the Concert system implementationsof the Stanford object-oriented benchmarks were much more e�cient than the C++ implemen-tation G++ at the highest optimization level.
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Chapter 8Optimization of ConcurrentObject-Oriented ProgramsThis chapter describes optimizations which are speci�c to distributed and concurrent object-oriented programs. Many of these are targeted to aspects of the execution model presented inChapter 3, and include object access control operations (Section 8.1). Section 8.2 revisits thetopic of speculative inlining in the context of locality and lock optimizations. Sections 8.3 and8.4 are concerned with extending the dynamic range of speculation, and with optimization ofthe use of the memory hierarchy respectively. Sections 8.5 discusses touch placement. Finally,Section 8.6 demonstrates the e�ectiveness of many of these transformations on the LivermoreLoops.8.1 Simple Lock OptimizationOur execution model requires locks for every method which accesses instance variables of thetarget object (Section 3.2.5). While these semantics support data abstractions in a concur-rent environment, given the frequency of method invocations in object-oriented programs (Sec-tion 7.1.1), a direct implementation of this model implies a frequency of locking operationswhich is a serious source of ine�ciency. Two optimizations which can eliminate unnecessarylock operations in many cases are access subsumption and exploitation of stateless methods.The latter are also useful since no object is not actually required for the method to execute,allowing such methods to executed anywhere on the target machine.148



8.1.1 Access SubsumptionAccess subsumption avoids redundant acquisition of locks that must have been previously ac-quired above in the call graph. So long as the calling method does not complete before thecallee (i.e. tree-structured concurrency, Section 2.2), the calling method's access rights will sub-sume the callee's, making it unnecessary for the callee to acquire locks. Access subsumptionoptimization uses the call graph provided by analysis and cloning to recognize cases where amethod is called from another method which has already acquired the locks required by the�rst. Alternatively, if not all callers acquire the needed locks, two versions of the method, a 
agor alternate entry points can be used to separate the cases or pass along contextual information.8.1.2 Stateless MethodsStateless methods do not (on their own) access any state of the target object and therefore needneither execute local to the object nor acquire any locks to ensure correct semantics. In manycases, stateless methods merely validate arguments or add default parameters. Often they werenot stateless initially, but after cloning and interprocedural constant propagation they becomestateless. For example, consider the at() method in Figure 6.1. If this method is clonedfor arrays of a particular dimensionality, the cols instance variable becomes constant, andthe two dimensional at() becomes stateless, simply passing a computed value to its inheritedat() method. Likewise, aggregates within CA [43] and collections within ICC++ [81] areobjects which provide message vectoring and indexing capabilities based on invariant distributedinformation. While not technically stateless, these methods can be executed anywhere, anddo not require locks. Similarly, methods which only read temporally constant globals are\stateless." Stateless methods do not require locks and can be inlined without concern forlocality.8.2 Speculative Inlining RevisitedSpeculative inlining uses runtime checks to condition the execution of inlined code. In Sec-tion 7.3.2, speculation was used to inline code when the selector or concrete type of the targetobject was not known at compile time. In this chapter we are concerned with run time proper-ties resulting from distributed and concurrent execution, locality and locking. A method may149



only be inlined if any required data is available (the target object is local and any required lockis available). if (selector == SELECTOR AT) runtime checks&& LOCAL POINTER(X)&& CONCRETE TYPE(X)==CLASS ARRAY&& LOCK OBJECT(X))inlined method body of at access region of XUNLOCK OBJECT(X) release resourceselseINVOKE(selector, X, i) fallback codeFigure 8.1: General Form of Speculative Inlined InvocationIn general, a speculative inlined method will have the form in Figure 8.1. The �rst con-dition checks to see that the selector is that of the method to be inlined (at). The second,LOCAL POINTER, checks to see that the target object is local. Since the state of the object, in-cluding its concrete type and the values of its lock �elds, will not be available unless the objectis local, this check must be conducted �rst. If the object is local, the concrete type is veri�edto be that of the method to be inlined (CLASS ARRAY). The last check attempts to acquire thenecessary locks. In ICC++, an additional parameter is required giving the lock mask, since thecurrent ICC++ implementation provides individual locks for each instance variable.1 If thesechecks succeed, the body of the method is inlined. For a given speculative inline it may bepossible to omit some or all of these checks. In this chapter we will assume that methods havebeen statically bound and omit the selector and concrete type checks. This region of code inwhich access to the object has been obtained is called an access region.8.3 Access RegionsAccess regions are created for each inlined operation on objects which require them. Figure 8.2shows the twelfth kernel of the Livermore Loops [129] as an example. The C code for the kernelon the left contains a doubly nested loop surrounding three accesses to two objects. On the1In fact, a separate lock need only be provided for sets of instance variables accessed as aunit. 150



right is a graphical representation of the access regions induced by speculative inlining of theaccess operations. The form of the graph is the Program Dependence Graph (PDG) [72]. Thesquares represent basic blocks (sets of statements which are all guaranteed to execute if anyone executes), the ovals conditionals, and the circles access regions. The lines represent controldecisions which are followed when the condition is true T or false F. Multiple lines with thesame condition value are all followed for that value.for ( l=1 ; l<=loop ; l++ )for ( k=0 ; k<n ; k++ )x[k] = y[k+1] - y[k]; test: y
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access regions (Section 8.3.3), merging of adjacent access regions (Section 8.3.4.1) and liftingaccess regions over loops and conditionals (Section 8.3.4.2).8.3.2 SafetyOptimizations which expand access regions must not change the meaning of the program; theymust be safe. In particular, they must preserve the original exclusivity properties and may notintroduce deadlock. For example, transformations may not make it possible for the operationsgiven by two separate methods to interfere, reading and writing the same variables over thesame period of time. Likewise, transformations cannot hold a resource and then try to acquirethat resource again with a blocking operation, inducing deadlock. These properties will bediscussed for the individual optimizations.Only the safety of those transformations which are peculiar to access regions are discussedhere. In particular, the safety of moving a statement into both branches of a conditional,breaking a two-sided condition into two one-sided conditionals and eliminating code are notconsidered as they are covered in standard compiler texts.8.3.3 Adding Statements to a RegionEntrance criteria for a region condition the enclosed storage accesses by tests for locality andaccess control conditions. Furthermore, the resources (represented by the locks held on theobjects within the region) are held over the region. Hence, there are three types of statements:functional statements, those which do not access storage or hold resource; statements whichaccess storage; and statements which hold resources, additional regions and blocking primitivesoperations.Statements which are functional cannot interfere, nor can they capture shared resources(the registers and execution units they require are managed by the compiler). Hence, they canbe moved safely into any region. For a storage access to be moved into the region, the tests forthe destination region must subsume the tests for the storage access. Furthermore, if storageaccesses for the same object from two distinct regions are moved into the region, they must berelatively exclusive [88]. One way to achieve this is to serialize the operations within the region.Finally, statements which hold resources cannot be moved into a region if doing so will induce152



a cycle in the resource graph and deadlock. Lock cycles are prevented by merging the accessregions (Section 8.3.4.1).Primitives which hold resources (e.g. input/output) can also give rise to deadlock [94].However, they are not common in performance critical sections, and can be conservativelyexcluded from the region. Furthermore, standard deadlock prevention techniques, like orderingresources, can be applied using the conservative call graph and alias information provided by
ow analysis (Chapter 5).Beyond these basic constraints, access-region expanding optimizationsmust also ensure thatwe do not move operations into an object's access region which could a�ect or be a�ected bythe locality or locked status of the object. For example, we cannot move in any operation whichmight migrate the object, nor any operation which might directly or indirectly require its ownlock on the object. if (LOCAL POINTER(X)&& LOCK OBJECT(X))inlined method body of at access regionj = i + 1UNLOCK OBJECT(X) release resourceselseINVOKE(at, X, i) fallback codej = i + 1Figure 8.3: Adding j = i + 1 to an Access RegionFigure 8.3 shows a simple function statement j = i + 1 added to the access region fromFigure 8.1. Since the statement is functional, no additional conditions are required for entranceinto the region. The statement is added both to the access region and to the fallback code,preserving the meaning of the program under di�erent dynamic conditions.8.3.4 Making a New RegionAn empty access region consists solely of a test of access conditions and a temporary acquisitionof resources. Such regions do not change the meaning of the program unless they introducenew deadlocks. Such deadlocks would arise from new dependences between locks, and can beprevented by testing and obtaining all required locks atomically. The runtime (Section 3.5)153



provides multi-locking atomic primitives. Thus, if a set of resources is available, they areacquired. Since the empty region contains no statements, whether they are acquired or not,the resources are immediately released. Thus, new regions can be created without introducingdeadlocks and statements can be moved into the region as above.
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can take out a single set of locks and ensure mutual exclusion through relative atomicity bysequencing the operations from the two regions so that they do not interleave. This requires amust-alias determination which need only be conservative since the fallback code is completelygeneral. The statements from the access and fallback blocks for two such regions are given anorder which is consistent with the partial order of execution when they are placed into theirrespective branches of the new region.
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to the region. Using a bottom up traversal of the PDG, at each level we attempt to mergeadjacent access regions until only one remains within the control dependence region. We thenattempt to move any remaining statements into the single access region. If there is one accessregion and no other statements in a control dependence region, that region can be lifted overthe conditional or while loop.
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if( LOCAL_POINTER(x) && LOCAL_POINTER(y)&& LOCK_OBJECT(x,y) )for ( l=1 ; l<=loop ; l++ )for ( k=0 ; k<n ; k++ )x[k] = y[k+1] - y[k];UNLOCK_OBJECT(x,y);else {for ( l=1 ; l<=loop ; l++ )for ( k=0 ; k<n ; k++ ) {t1 = INVOKE(at, y, k+1);t2 = INVOKE(at, y, k);INVOKE(putat, x, t1 - t2);}} Figure 8.7: Kernel 12 After Liftingregion has been lifted over the two-armed conditional. In practice, these operations can becombined and the entire transformation done at once.8.3.4.3 Access Region OptimizationDetermining which regions can be most pro�tably merged requires information about the prob-ability that access conditions will hold. For example, a block of code which operates on threeobjects, two of which are usually local and one of which is usually remote should be imple-mented with two access regions; one for the two usually local objects and one for the usuallyremote. This is because the optimized path is only executed when all the conditions are satis-�ed at once. Since the cost of the general case (blocking for a lock or remote message) is large,the optimization extracts high e�ciency from the optimized path at a relatively small increasein cost along the unoptimized path. However, including a condition which is often unsatis�edprevents the optimization of all a�ected code. Of course, additional levels of speculation canbe used in the fallback block at the cost of additional code expansion.Once the access regions have been expanded, the code consists of larger regions of optimiz-able sequential code. If the program spends the majority of its time in these regions it will bevery nearly as e�cient as a sequential implementation. Applying these transformations to thecode on the left of Figure 8.2 results in the code structure in Figure 8.6. The �nal result is an157



optimized loop body under two loops conditioned by a single combined access condition, andthe fallback code under a copy of the same two loops. When both x and y are local, the loopnest in the access region is identical to a sequential program. An example of the resulting codeappears in Figure 8.7.8.4 CachingCaching is the storage of a piece of data higher in the memory hierarchy (Section 3.1.1) whereit can be accessed with greater e�ciency. There are three classes of data which can be cachedunder di�erent conditions: globals (Section 8.4.3), local variables and instance variables.Our programmingmodel disallows pointers to local variables since this breaks encapsulationof the local state (Chapter 2). If this were not the case, aliasing problems combined withconcurrency might require a local variable to be reloaded from memory for each operation.Instead, the programmingmodel allows for multiple return arguments which satis�es most usesof such pointers. In the remaining cases, the data element can be represented by an object. Sinceobjects are potentially aliased, by extension, an aliasing problem exists for instance variables.Fortunately locks and the information provided by 
ow analysis can be used to e�ectively testand conservatively approximate object aliasing.8.4.1 Local VariablesLocal variables are part of the state of a thread. Because threads can block for indeterminatetime, in general, local variable data must be stored in a persistent store like the heap. Sinceaccessing such data can be expensive, local variables are cached into registers where possible.2Two pieces of information are required to cache local variables: the type of the data, whichdetermines the sort of register to use; and the lifetime of the value. This lifetime di�ers fromnormal lifetime computations because it is dependent on possible context switch points wherethe data must be stored to the persistent store.Exploiting lifetimes across basic blocks is discussed in detail in [145]. Essentially the ideais to partition the control 
ow graph into contiguous sets of instructions delimited by possible2Chapter 9 considers the tradeo� between caching data and saving data back in the heapcontext. 158



// retrieve a and b from the storefunc0(a);b = a + b;func1(a);func2(a);// store b to the store// POSSIBLE CONTEXT SWITCH// if switched, retrieve a from the storefunc1(a);func2(a); Figure 8.8: Example of Caching and Partitionscontext switch points (touches). For each partition, the set of variables active in that partitionare cached in registers. At partition boundaries, the compiler generates code mapping the activeset of one partition to the other by storing or loading variables between registers and the heapas appropriate. Figure 8.8 shows and example with two partitions and the code to load andstore the local variables. If the context switch does occur, all variables will have been stored tothe heap, and all required variables will be loaded on resumption.8.4.2 Instance VariablesIn Section 7.5, aliasing information derived from 
ow analysis is used to convert instance vari-ables into Static Single Assignment form. This enables them to be allocated to registers overparts of their lifetime. Access regions provide aliasing information which can be used for thesame purpose. Within an access region, all accesses to the data of locked objects must bethrough known pointers. Hence, by exploiting access regions, object state can be cached inregisters safely eliminating memory accesses and requiring only a single update at the end ofthe access region or subsequent method invocation on the object in question.3On the left in Figure 8.9 a two-dimensional array is accessed by linearization (Section 6.1).The code on the right uses the properties of access regions to cache cols in a local temporary3Specialized versions of methods can also be created which would take the instance variablesin registers. Such data structure transformations are made possible through cloning (Chapter 6)which allows specialized versions of methods to be created based on characteristics of the callingenvironment. 159



if (LOCAL_POINTER(a)&&LOCK_OBJECT(a))for (let i = 0; i < a.rows; i++)for (let j = 0; j < a.cols; j++)... = a[a.cols * i + j];UNLOCK_OBJECT(a);else// fallback if (LOCAL_POINTER(a)&&LOCK_OBJECT(a))temp = a.cols;for (let i = 0; i < a.rows; i++)for (let j = 0; j < temp; j++)... = a[temp * i + j];UNLOCK_OBJECT(a);else// fallbackFigure 8.9: Caching of Instance Variablestemp. This optimization saves a memory reference in the innermost loop and enabling otheroptimizations such as strength reduction. Even if there was an assignment to cols within theloop, so long as it did not involve the object a this transformation would be safe. The accessconditions act as a dynamic alias check, ensuring that no other accesses to the object will occurexcept through the designated reference.8.4.3 GlobalsIn order to reduce the volume of communication in a distributed memory machine, variableswhich are used frequently but do not change their value over some period of time should bereplicated in memory closer to each processing element. This is done by detecting a set ofreads delimited by synchronizations from surrounding write operations, inserting a distributionoperation and redirecting the reads to local copies.In a programming model with tree-structured concurrency, time can be de�ned in terms ofthe synchronizations at the start and end of a subtree of tasks. Thus, globals which are constantin all concurrent subtrees, are constant over some period of time. For example, in Figure 8.10the task on the left writes x, but is synchronized with the two concurrent task subtrees on theright, both of which read x. Thus, x is does not change after the synchronizations.
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This situation, of temporally constant globals, can be detected by a specialized interproce-dural analysis using the interprocedural call graph produced by 
ow analysis (Chapter 5). Theobjective is to detect when some group of reads is delimited by synchronization points from thewrites. The initial synchronization is the point where the value becomes �xed and it can bereplicated in each local memory. The �nal synchronization prevents causal inconsistencies.To see the causal inconsistency more clearly it is necessary to 
atten the call tree into a taskgraph. In Figure 8.11, the write at A is separated by a synchronization (shown as an arrow)from the reads at B and C, however, the write at D is unsynchronized. In theory, both B andC could both use the value produced by A. If D and B are assigned to the hardware so thatthey share the same local memory,D could update the value of y which B reads while C wouldread the replicated value from A. Because B is synchronized with C, this forms a temporalinconsistency (B sees the world afterD while, C, which should occur after sees the world beforeD). We might try to eliminate this problem by separating the replicated and updatable data,but that leads to a second type of inconsistency.
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... = yFigure 8.11: Global Temporal InconsistencyThe second sort of inconsistency comes from indirect communication through shared data.Consider the variable y in Figure 8.11. Here we have an analogous situation. The values ofy and x are synchronized through D, hence B cannot use the replicated value of x and theunreplicated y. Clearly there are situations where the requirement of the �nal synchronizationcan be avoided. However, this optimization has proven useful even with that restriction. Aswe will see in Sections 8.3 and 8.4, scheduling and atomicity can be exploited to further reducecommunication costs for temporally constant data.161



Thus, when a set of delimited read operations is found, a distribution operation is insertedand the reads are redirected to the local copies of data. Figure 8.12 shows a group of readoperations optimized in this manner.
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locallocalFigure 8.12: Temporally Constant Globals8.5 Touch Optimization (Futures)Touches are the points at which a thread synchronizes with the results of asynchronous messagesends. Their placement a�ects the number of context switches and the amount of state whichmust be saved at each context switch point. In order to minimize the number of context switchesand maximize the e�ectiveness of latency hiding, touches are pushed forward in the programand grouped.8.5.1 PushingThe ability of a concurrent program to withstand remote operation latency is dependent on thenumber of outstanding concurrent asynchronous operations, and the distance in time betweenwhen the operations are initiated and when the results are required. Touches are the pointswhere the results are demanded and must occur before the results are used. Placing touchesas far from the point where the future was created as possible increases both the number andduration of asynchronous operations.Figure 8.13 shows two alternative touch placements. On the left, each operation is initiatedand the results required in turn (i.e. sequentially). On the right, both operations are initiated�rst, allowing them to overlap in time, before any result is required. In this way, the programpays the maximum of the two operation latencies instead of the sum.Touches are inserted along the data frontier. The data frontier is the last set of points in thecontrol 
ow graph which possibly redundantly dominates all of the uses of the data. Consider162



(xFuture,xCont) = MAKE_FUTURE(x);INVOKE(meth1, a, xCont);TOUCH(x);(yFuture,yCont) = MAKE_FUTURE(y);INVOKE(meth2, b, yCont);TOUCH(y);z = x + y; (xFuture,xCont) = MAKE_FUTURE(x);(yFuture,yCont) = MAKE_FUTURE(y);INVOKE(meth1, a, xCont);INVOKE(meth2, b, yCont);TOUCH(x);TOUCH(y);z = x + y;Figure 8.13: Touch Placement for Latency Hiding
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(xFuture,xCont) = MAKE_FUTURE(x);(yFuture,yCont) = MAKE_FUTURE(y);(zFuture,zCont) = MAKE_FUTURE(z);INVOKE(meth1, a, xCont);INVOKE(meth2, b, yCont);INVOKE(meth3, c, zCont);TOUCH(x);TOUCH(y);TOUCH(z);q = x + y;r = z + q;Figure 8.16: Touches and Active State8.5.2 GroupingTo minimize the number of times a thread is restarted as a result of the value of a futurebecoming available, touches are grouped so that the thread restarts once for a set of values.Figure 8.17 illustrates how multiple outstanding messages and a single multi-touch operationare used. In a �ne-grained concurrent language, the order of the invocations of meth() on a,b and c is not strictly speci�ed. This enables the compiler to pull the messages sends up andpush the touches down. 164



v1 = a.meth;v2 = b.meth;v3 = c.meth;...func(v1,v2,v3); (v1Fut,v1Continuation) = MAKE_FUTURE(v1); ...(v2Fut,v2Continuation) = MAKE_FUTURE(v2); ...(v3Fut,v3Continuation) = MAKE_FUTURE(v3); ......if(!MUTIPLE_TOUCH(v1Fut,v2Fut,v3Fut)) SUSPEND;Figure 8.17: Latency Hiding and Multiple Touches8.6 Experimental ResultsTo test the e�ectiveness of these transformation, we compare the performance of our concurrentobject-oriented system to C [114]. For comparison, the Livermore Loops, a set of numericalkernels [129] are used to measure e�ciency through computation rate. The Livermore Loopsare used for three reasons. First, they are a traditional benchmark for sequential compilers.Second, they are extremely sensitive to any ine�ciency. Any extra operations in the innerloop can dramatically reduce performance. Third, the granularity of each method (amount ofwork per method invocation) is very small. Many methods simply compute the array index,or load or store a single element. This makes the elimination of overhead especially important.All reported numbers are for Workload 3 of the Livermore kernels at single precision run on aSparcstation II. The COOP execution times were collected with the UNIX time facility usinghigh iteration counts, and are accurate to within a few percent.The COOP programs are written in a natural object-oriented style. Multi-dimensionalarrays were created by subclassing a single dimensional array and using methods to linearizethe indexing operations (see Section 6.1). Since our COOP programming model does not allowpointers, the programmer cannot bypass the encapsulation of the arrays as is typically done inC++ programs to obtain e�ciency. We compare our COOP system's performance against thenative C version of the Livermore kernels compiled by the same GNU C/C++ compiler as weused for the Concert backend, minimizing di�erences in low-level optimizations like instructionselection and scheduling.To illustrate the e�ect of the di�erent optimizations, we applied each in turn to Kernel 12. Aswith the results presented in Chapter 7, a full suite of conventional low level optimizations werealso applied. These have been separated out. These numbers are presented in Figure 8.18. Eachtransformation produces signi�cant performance improvement. Traditional optimizations alone(none) achieve only several kiloFLOPS (thousands of 
oating point operations per second).165
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Kerne lFigure 8.20: Performance Di�erence ((COOP-C)/C)8.7 Related WorkThere are few high performance �ne-grained COOP language implementations: many COOPsystem use COOP simply as a coordination language for algorithmic cores written in moreconventional languages like C or FORTRAN. Nevertheless, there are systems which transformCOOP programs for greater e�ciency. The HAL system [6, 101, 115] supports Actors styleprogramming, which di�ers somewhat in synchronization and concurrency introduction fromthe Concert COOP style, with a high degree of 
exibility and e�ciency. The family of ABCLimplementations use a variety of di�erent techniques and strategies to obtain performance[185, 186, 183, 187, 170, 171], with an emphasis on the e�cient implementation of variouslanguage features. Exclusivity and deadlock issues appear in the concurrent systems frameworkof critical regions [88], monitors [20] and deadlock prevention [94]. Our inlining and access regionlifting techniques draw on the e�orts at Rice on Fortran D [93], and in particular the ideas in[84] and the importance of interprocedural optimizations within loops. Also, combining andlifting access regions resemble invarient lifting and the lifting and blocking of communicationin parallel Fortran. However, access region optimizations have special safety requirements, andrequire managing fallback code and manipulating entrance criteria.168



8.8 SummaryThis chapter discusses a number of optimizations speci�c to concurrent object-oriented pro-gramming. Lock operations can be optimized by taking advantage of access subsumption, whenthe structure of the call graph necessitates that the access rights required by a method willhave already been acquired when the method is called, and by recognizing stateless methodswhich do not required access at all. Speculative inlining introduces access regions, regions ofcode over which access to an object has been granted. These regions can be transformed soto amortize the cost of speculation and to increase the size of access regions for conventionaloptimizations. Optimization of memory hierarchy tra�c is of particular importance for COOPcodes where much of the data is access by indirection. Flow analysis and the information pro-vided by obtaining access to objects can be used to cache data at higher levels of the memoryhierarchy for e�ciency. Distributed global variables can likewise be optimized by using the callgraph to detect temporally constant globals, and by caching their value on each node. Synchro-nization of threads is another potential source of ine�ciency which can optimized by carefulplacement of touches. The programmer can also provide locality and locking information whichmust be propagated to the points of use in the intermediate representation. It is shown thatthe Livermore Loops, written in a natural COOP style, can be made as as e�cient as C whenthe data is available (local and the required locks are available).8.9 AcknowledgmentsCaching of local variables (summarized in Section 8.4.1) is the work of Xingbin Zhang whocontributed greatly to this work in general, and it is included here only for completeness.
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Chapter 9Hybrid Sequential-ParallelExecutionThe hybrid parallel-sequential execution model [144] presented in this chapter adapts for paral-lel or sequential execution and provides a hierarchy of calling schemas of increasingly power andcost. Together, these enable hybrid execution to achieve both high sequential e�ciency whenthe required data is available, and latency hiding and parallelism generation where required.Section 9.1 describes how irregular programs can bene�t from the adaptive nature of hybrid ex-ecution. Section 9.2 describes hybrid execution, the parallel and sequential versions of methods,four sequential schema and wrapper functions used to match di�erent calling conventions. Fi-nally, Section 9.3 evaluates the e�ectiveness of hybrid execution for invocation intensive codes,regular and irregular applications.9.1 AdaptationIrregular and dynamic programs (such as molecular dynamics, particle simulations and adaptivemesh re�nement) have a data distribution which cannot, in general, be predicted statically.In addition, modern algorithms for such problems depend increasingly on sophisticated datastructures to achieve high e�ciency [15, 79, 25]. Moreover, runtime techniques like dynamicdata shipping, for increased data locality, and dynamic function shipping, for load distribution,disrupt the static data locality relationships. As a result, a program implementation must170



adapt to the irregular and dynamic structure of the data, exploiting locality where available,to achieve high performance.Adaptation is a 
exible technique which enables the program to take advantage of gooddata distributions provided by the programmer or the runtime system. The data distributioncan even be modi�ed at runtime, based on evolving program information. The execution of theprogram { including thread creation, messaging, and synchronization { adapts to the new datadistribution, providing immediate improvement. Figures 9.1 shows an example of data (thecircles) distributed around a parallel machine (the squares). Relationships between the piecesof data are described by lines between them. This is a good data layout since groups of tightlycoupled objects are on the same node.
Figure 9.1: Data (Object) Layout GraphAn e�cient computation over the data minimizes the communication between nodes. Forexample, in Figure 9.2 the tree of threads is distributed over the machine with portions at theleaves executing on co-located objects. This structure enables specialized sequential code tobe executed for sets of threads near the leaves, and specialized parallel code for those near theroot. Such specialized code can be optimized to its task, so that the algorithm core will be asfast as conventional sequential code, whereas the parallel code will e�ciently spawn parallelismand hide latency.The sequential code is optimized by assuming that threads will complete immediately. Thisenables temporary storage to be reused immediately, expensive scheduling operations to beavoided, and cheap linkage mechanisms to be used. The normal program stack, call and returnmechanisms can be used, enabling e�ciency matching conventional sequential code. If thethread does not complete, the running program adapts by spinning o� a parallel thread lazily.171



Figure 9.2: Distributed Computation StructureSince the overhead of creating a thread is high compared to that of a conventional call, thisstrategy produces low overhead even when fall back to the parallel version is common.Hybrid execution is the complement of hardware shared memory, which adapts the locationof data to suit the location of computation. Hybrid execution can adapt the location of thecomputation to the location of the data. Moreover, the units of communication and computationare controlled by the compiler and runtime system. Where the shared memory system mustmigrate a cache line to the requesting processor, hybrid execution can adapt to the movement ofdata and functions of arbitrary size. Also, while the shared memory hardware allows a limitednumber of outstanding data requests based on a non-blocking cache, the number of outstandingoperations and their latency has no �xed limit with hybrid execution.While a static execution models might provide good performance for a particular computa-tional structures, the hybrid execution model with its adaptation and hierarchy of invocationschemas can provide good performance for many structures. Using the results of 
ow analysis(Chapter 5), the compiler specializes the calling conventions based on the synchronization fea-tures required by the called method. Furthermore, the runtime provides a hierarchy of runtimeprimitives of increasing cost and complexity, enabling the compiler to select the most e�cientmechanism for a given circumstance.9.2 Hybrid ExecutionHybrid execution adapts to the computational structure of a running program by providingseparately optimized sequential and parallel code. The sequential code executes method in-vocations representing potentially independent threads in LIFO (last in �rst out) order and172



schedules them immediately. This eliminates the overhead normally associated with threadcreation, scheduling and synchronization. The parallel code spins o� independent threads,generating parallel work and hiding the latency of concurrent operations.The goals of the hybrid sequential-parallel execution are e�ciency, 
exibility, portability,and support for range of data layouts through runtime adaptation. This execution scheme ismeant to supplement static compile time techniques such as static data placement and codespecialization (Chapter 6). In order to support these goals, hybrid execution uses sequentialand parallel versions of methods and four distinct invocation schema. These schemas rangefrom cheap, simple and limited to general, complex and more expensive. To avoid confusion,invocations in the concurrent object-oriented programmingmodel are called method invocationsand implementation level C calls, function calls.9.2.1 OverviewFor each method, there are two versions: a parallel version optimized for latency hiding andparallelism generation using a heap context and a sequential version optimized for e�cientsequential execution using the stack.1 The parallel version is completely general, capable ofhandling remote invocations and suspension, but can be ine�cient when the generality is notrequired. The sequential version comes in three 
avors of increasing generality. These di�erentversions and 
avors use di�erent calling conventions to handle synchronization, return valuesand reclaim activation records. Table 9.1 describes these cases.Case Basic OperationParallel Most general schema, all arguments/linkage through the heap;frame reclamation based on function terminationSequential Non-blocking Regular C call/returnMay-Block Regular call; check return code to either continuecomputation or peel stack frames to heapContinuation Extension of May-Block which enablesPassing forwarding on the stackTable 9.1: Invocation Schemas1In practice, one of the versions may not actually be generated if it is deemed unnecessaryfor either correctness or e�ciency. 173



In the remainder of this section, the mapping from method invocations to C function callsis described. Since the Concert compiler backend generates C++, this description roughlyparallels the output of the compiler. First the parallel invocation mechanism is described (Sec-tion 9.2.2, followed by the 
avors of sequential invocation (Section 9.2.3). Finally, Section 9.2.4discusses the proxy contexts and wrapper functions which are used to handle certain boundarycases.method(...args...) fSlot a, b, c;INVOKE(methodA,&a,...);INVOKE(methodB,&b,...);INVOKE(methodC,&c,...);... continue heap execution ...if (!touch(&a,&b,&c,...)) f... store_state ...... suspend ...g... use values in a, b, c ...REPLY(continuation, return value);g Figure 9.3: Generated Code Structure for a Parallel Method Version9.2.2 Parallel InvocationsThe parallel invocation schema is a conservative implementation of the general case, allocatingthe activation record on the heap and passing the arguments through the heap as well. Parallelinvocations create threads which preserve their state between context switches in the heapactivation record. This is the execution model described in Section 3.2.1. By storing inactivetemporary values in the heap-based record (context), the cost of suspension is minimized. Suchsuspensions occur while waiting for the result of:� A remote invocation,� An invocation on a locked object,� A blocking primitive (e.g. I/O), or� A local invocation which itself has suspended174



Suspension and fall back from the stack invocation schemas are described below.Figure 9.3 shows an example of a parallel version of a method which several parallel methodinvocations and synchronizes on their return with a single touch. A pointer is provided to theslot corresponding to the return value. If the runtime system decides to create a new thread forthe invocation it will create a continuation and convert the slot into a future (Section 3.2.1.3).If the task is scheduled immediately, the continuation/future pair need not be created and thevalue can be written directly into the return location with minimal overhead.
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All cases: need to create linkage between caller and callee:
    1. create context and continuation for B, future for A; write arguments
    2. return value passed through continuation to futureFigure 9.4: Parallel Invocation Schema GraphicFigure 9.4 gives a graphical representation of the parallel calling schema. On a call to B, athread is created for B and a heap-based context. A future/continuation pair are created forthe return value. The future is created in A and the continuation is stored in B. Both threadsare now free to execute in parallel. When B completes, it uses the continuation to pass thereturn value to the future in A.Since the invocations execute in parallel the return values can arrive in any order. Touchinga set of futures are at one time to avoid unnecessary restarts of the activation when not all ofthe needed values are available (Section 8.5.2). Concurrency is generated both across parallelcalls and between caller and callee and latency is masked by enabling several invocations fromthe same method to proceed concurrently. Thus, parallel method versions are optimized forconcurrency generation and latency hiding. 175



9.2.3 Sequential InvocationsThere are three di�erent schema for sequential method versions, each requiring a di�erent callingconvention (see Figure 9.5). Since determining the correct schema can depend on non-local(transitive) properties, the interprocedural call graph provided by 
ow analysis (Chapter 5) isused to conservatively determines the blocking and continuation requirements of methods andto select the appropriate schema. Since only one sequential version of each method is generated,this classi�cation determines the calling convention used when the method is invoked.Non-blocking return val = non blocking method( ... );May-block callee context = may block method(&return val,...);Continuation caller context = cont passing method(&return val,caller info,...)Passing Figure 9.5: Invocation Schema Calling InterfacesThe criteria for selection of the sequential method versions is as follows. If the method andall of its callees cannot block, then the Non-blocking version is used. In this case, the functionreturn value can be used to convey the future value. When it cannot be shown that blockingwill not occur but the callee does not require a continuation, the May-block is used. In thiscase we optimistically assume the method will not block, and allocate any required contextlazily as described in Section 9.2.3.2. Finally, the Continuation Passing version is used ifthe callee may require the continuation of a future in the caller's as yet uncreated context. Inthis case both context and continuation are created lazily. Lazy creation of continuations isdescribed in Section 9.2.3.3.9.2.3.1 Non-blocking: Standard CallWhen the compiler determines that a method will not block, a standard C procedure invocationis used. Since this situation is determined over the call graph, entire non-blocking subgraphsare executed with no overhead. Thus, those portions of the program which do not require the
exibility of the full concurrent object-oriented programming model are not penalized.176



int method15(...args...) fvariable1 = method23(...);variable2 = method1(...);variable3 = method7(...);... use values in variable1, variable2, variable3 ...return return value;g Figure 9.6: Code Structure for a Non-blocking Sequential MethodFigure 9.6 shows the structure of a non-blocking sequential method. Return values areassigned directly to variables which are then used normally. And the result of the method itselfis returned directly. Logically the thread representing the invoked methods have been staticallyscheduled immediately. Since they cannot block, fairness (Section 3.3.2) is not a problem.9.2.3.2 May-block: Lazy Context AllocationIn the may-block case, the calling schema assumes that the method will complete immediately,and if it blocks, that it will create its context lazily. Linkage is provided by having the callercreate future and continuation for the result value and place the continuation in the newlycreated context.callee_context = may_block_method(&return_val,...);if (callee_context != NULL) { // fallback codecontext = create_context();callee_context->continuation = make_continuation(context[13]);... {\it save_state_to_heap} context ...return context; // propagate blocking} Figure 9.7: May-block Calling SchemaFigure 9.7 shows an example of the may-block calling schema. This schema distinguishes twooutcomes for the callee: successful completion and blocking. If the callee runs to completion,a NULL value is returned. If the callee blocks, it allocates a heap context, stores its state andreturn a pointer to that context. Since the C return value is used to indicate completion, the177



result of the method is returned through a pointer passed in as an additional argument. Anative code implementation would likely use an additional register for the result instead.2In the example, on successful completion the caller extracts the actual return value fromreturn val. If the method blocks, the callee context is returned. This context is used to setup the linkage between caller and callee. The caller creates a continuation for the future valueof the result, and places that continuation in the callee context. This process can cascade. Thecaller may, if necessary, create its own context, revert to its parallel method version, and returnits context to its caller.
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Callee blocks: need to create linkage b/w caller and callee:
    1. create callee context (B) and return
    2. create caller context (A)
    3. store continuation in callee contextFigure 9.8: May-block Schema GraphicFigure 9.8 shows an example of the calling schema for the may-block case in action. The�gure on the left shows successful completion. In it the local state for thread B is stored ina stack frame. Since the thread completes before A is rescheduled, the stack frame can bedeallocated in normal FIFO order. The �gure on the right shows the stack unwinding whenthe call cannot be completed. In it B was allocated on the stack but then blocked. In order topreserve FIFO scheduling order, the stack frame must be 
ushed to the heap. In this example,A also 
ushes itself to the heap and writes a continuation into the heap context of B. If A didnot require the result of B (if the result was to be ignored or forwarded back to A's caller) Acould �ll in the continuation and continue executing o� the stack.Thus, a sequence of may-block method invocations can run to completion on the stack, orunwind o� the stack and complete their execution in the heap. The fallback code creates the2Attempting to use long long for this purpose in GCC 2.6.3 resulted in unnecessarilyine�cient code. 178



callee's context, saves local state into it, and propagates the fall back by returning this contextto its caller which then sets up the linkage.9.2.3.3 Continuation Passing: Lazy Continuation CreationExplicit continuation passing (Section 3.2.1.4) can improve the composability of concurrentprograms [186, 41]. However, creating continuations and using continuations to return resultsis expensive. Moreover, continuation passing requires more information to make the linkage.Normally, if an invocation is being executed on the stack, the callee's continuation is implicit.In the may-block case, the callee returns a pointer to its context into which the caller writesthe continuation. In the continuation passing case, the callee may require the continuationimmediately so that it can pass it on. Furthermore, since one of our goals is to execute forwardedinvocations [98] on the stack, lazy allocation of the continuation is essential.The continuation passing schema (see Figure 9.9) uses an additional parameter, caller info,which, along with the return ptr, encodes the information necessary to determine what to doshould the continuation be needed. The caller info �eld is not used if the callee does notneed to manipulate the continuation directly (e.g. store it or pass it o� node). In the caseof local forwarding the caller info information is simply passed along. If a method needsthe continuation the information is used to create it. The caller info indicates whether thecontext containing the continuation's future has already been created, the context's size if ithas not, the location of the return value within the context, and whether the continuation wasforwarded. Table 9.2 describes the caller info information in detail.As with the may-block schema, the result the method invocation is passed back in one oftwo ways. If the continuation is not needed (i.e. the continuation is not explicitly manipulated),the method invocation result is passed back using the return val ptr. The method simplywrites the result through return val ptr, and passes NULL return values back to its caller.The caller of the �rst continuation-passing method (root of the forwarding chain), receivesthis NULL value and looks in return val for the result. Thus, local continuation passing isexecuted completely on the stack.If, on the other hand, the continuation is required, caller info is consulted. There arefour cases which are handled by the fallback code. First, if the continuation was initiallyforwarded, the context must already exist as must the continuation (which is always stored179



Context* root_method(...,return_val_ptr,...) {...caller_context = cont_passing_intermed(&return_val,make_caller_info(root_func),...);if (caller_context != NULL) {save_state_to_heap(caller_context);return caller_context; // propagate blocking}}Context* cont_passing_intermed(...,return_val_ptr,caller_info,...) {...caller_context = cont_passing_method(return_val_ptr,caller_info,...);return caller_context;}Context* cont_passing_method(...,return_val_ptr,caller_info,...) {...if ( can_return_value ) {*return_val_ptr = value;return NULL;} else { // need continuationcaller_context = create_context_from_caller_info(return_val_ptr,caller_info);my_context = create_context();my_context->continuation = make_continuation(caller_context, caller_info);save_state_to_heap(my_context);return caller_context;}} Figure 9.9: Continuation Passing Calling Schemaat a �xed location in heap contexts). The continuation is extracted by subtracting the returnlocation o�set in caller info from the return val ptr, adding on the �xed location o�setand dereferencing. Second, if the context already exists but the continuation does not, thecontinuation is created for a new future at return val ptr. The future needs to have a referenceto the context (in order restart the thread). It computes this reference using the return val ptrand the the return location o�set in caller info. Finally, if the context does not exist, it iscreated based on the size information from caller info, and the continuation is created fora future at the return value o�set. The callee now has the continuation with which it may dowhat it needs. Figure 9.10 contains pseudo code describing these cases.180



context 
ag indicates whether or not the heap context to which the resultof this method invocation should go has already been created.forward 
ag indicates whether or not the continuation was forwarded frominitial context pointed to by return val ptr. context 
agis always true when forward 
ag is true.future 
ag indicates that the future has already been created. Thismakes the continuation creation operation to be idempotent,increasing placement 
exibility.count 
ag indicates that the continuation is a counting continuation.This allows many continuations to be forwarded on the stackthen o�-node from a parallel loop.null 
ag indicates that the continuation is null (simply consumes theresult).return location o�set the o�set within the heap context where the future for themethod invocation result should be created. Along with thereturn val ptr can be used to calculate the pointer to thecontext when context 
ag is true.method a descriptor which is used to create the context to which theresult will be sent.Table 9.2: Continuation Passing Caller InformationWhen the callee completes, it indicates that it required the continuation by passing thecontinuation's future's context back to its caller. Note that in the case of forwarding, this isnot the caller's context. When a forwarding invocation returns a non-NULL value, the callermay continue to execute, but must ultimately return the context pointer to its caller regardlessof whether or not it completes. This is because the context may be that of its caller which willthen fall back to its parallel version.Figure 9.11 shows a graphical example of the continuation passing schema. The threadA (root method from Figure 9.9) is the root of a continuation forwarding chain in whichwe can imagine that cont passing intermed is an intermediate function through which thecontinuation is forwarded to thread B (cont passing method). On the left, normal completionhas the caller info and return val ptr passed as a pair from A through to B where thereturn val ptr is used to return the result directly from B to A. On the right, B requiresthe continuation, and it must create the context for A in order to build it. When A's contextpointer is eventually returned to A, it stores its state and reverts to its parallel version.181



make_continuation_passing_continuation( return val ptr, caller info) fif (caller info.forward flag)return extract continuation(extract context(return val ptr,caller info));else fcontext = NULL;if (caller info.context flag)context = extract context(return val ptr,caller info));elsecontext = create context(caller info.method);return make continuation(caller info.count flag,context,caller info.return location offset);gg Figure 9.10: Pseudo Code for Continuation Creation9.2.4 Wrapper Functions and Proxy ContextsCalling the sequential versions of methods from the runtime or a di�erent schema methodcan require impedance matching, interfacing the available information to the desired interface.For example, when a message arrives at a node it contains a continuation for the result. Ifthe appropriate stack-based schema is non-blocking, a wrapper function is used which callsthe sequential version, obtains the result and passes it to the calling method through thecontinuation. This example is illustrated in Figure 9.12. The result is check to verify that avalue was returned (which will not be the case in a purely reactive computation) which is thenpassed to the waiting future by way of the continuation.The wrapper function takes either a vector of arguments or a communication bu�er andinvokes the stack-based version of a method with the appropriate calling convention. In thismanner, a remote message can be processed entirely on the stack, and if the continuation isforwarded, it may pass through several nodes, �nally respond to the initial caller, all withoutallocating a heap context.Figure 9.13 illustrates the case for may-block methods. The result value is checked as inthe non-blocking case, and passed through the continuation if available. Furthermore, if thecallee blocks, the continuation is placed in the callee's context. Note, both the result valueand callee context pointer are checked in any case since the result may or may not be returnedindependent of whether or not the method blocks.182
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void may_blocking_msg_wrapper(Slot * buff) { // May-blockSlot result_val = EMPTY_SLOT;Context * callee_context = may_block_method(&result_val,buff[0],...)if (!EMPTY(result_val)) reply(buff[CONTINUATION],result_val);if (callee_context != NULL) {callee_context->continuation = buff[CONTINUATION];}} Figure 9.13: May-block Wrappervoid cont_passing_msg_wrapper(Slot * buff) { // Continuation PassingProxy proxy_context;proxy_context.return_val = EMPTY;proxy_context.continuation = buff[CONTINUATION];Caller_Info caller_info = PROXY_CALLER_INFO;Context * caller_context = cont_passing_method(&proxy_context.result_val,...)if (!EMPTY(proxy_context.result_val)) reply(buff[CONTINUATION],result_val);} Figure 9.14: Continuation Passing Wrapperto di�erent data locality characteristics for both regular and irregular parallel programs. Thesequential experiments were conducted on SPARC workstations and the parallel experimentson the CM5 and the T3D (Section 4.3).9.3.1 Sequential PerformanceSequential performance is evaluated for a set of invocation intensive benchmark programs.Table 9.3 presents the results. The sequential execution times (in seconds) using the hybridmechanisms are compared with times for a parallel-only version and the original C versions ofthe programs. The hybrid versions are evaluated under varying degrees of 
exibility: 1 interfaceuses only the Continuation-passing interface, while 3 interfaces uses all three interfaces. Finally,Seq-opt is a version which eliminates parallelization overheads.Using the most 
exible hybrid version (3 interfaces), all programs run signi�cantly fasterthan than the heap-only versions and achieve close to the performance of a comparable C184



Program Parallel Hybrid Parallel-Sequential Versions CDescription Version 1 interface 2 interfaces 3 interfaces Seq-opt Program�b(29) 13.12 1.01 0.95 0.70 0.69 1.10tak(18,12,6) 152.87 11.37 12.08 6.75 6.71 7.00qsort(10000) 2.90 0.25 0.28 0.23 0.23 0.16nqueens(8x8) 3.37 0.77 0.80 0.60 0.56 0.38list-traversal 1.34 1.05 0.81 0.81 0.81 0.78(128 elements) 1.17a 1.00a 0.87a 0.87aawithout forwarding optimization supported by Continuation-passing interface.Table 9.3: Sequential Performanceprogram despite concurrent semantics.3 Several programs required all three interfaces to achievecomparable performance. The remaining overhead is due to parallelization. Seq-opt shows theperformance when this overhead is eliminated.The parallel and hybrid versions can be run directly on parallel machines. They includeparallelization overhead in the form of name translation, locality and concurrency checks (Chap-ter 8). Since speculative inlining (Section 8.2) is required to obtain good performance from a�ne-grained model, it was used as one of the optimizations contributing to these results. Sincespeculative inlining lowers the overall invocation frequency, it decreases the impact of our hybridexecution model. However, this impact is mitigated by only inlining one level of recursion.The three hybrid versions provide bene�ts in di�erent cases. Each level of 
exibility en-ables additional operations to be executed on the stack at some increase on cost. Allowingall three stack interface versions (i.e., the non-blocking, may-block and continuation-passingcall schemas) improves performance by up to 30% as compared to when only the most general(continuation passing) interface is always used. The cases where the performance using twointerfaces is worse than that using only one interface are an anomaly arises from an improperalignment of invocation arguments causing them to be spilled to stack instead of being passed inregisters. In summary, the hybrid mechanism enables C-like performance when data is locallyaccessible.3The relative performance of fib and tak is a result of the comparatively aggressive inliningof our compiler. 185



9.3.2 Parallel PerformanceThis section considers three application kernels which characterize the parallel performanceof the hybrid mechanisms as compared to straight heap-based execution. The performanceis characterized with respect to the e�ect of data locality. First, a regular code, SuccessiveOver Relaxation (SOR), is considered, and the performance improvement resulting from theuse of the hybrid is shown to increases with the amount of data locality, reaching close to thetheoretical maximum for the given locality. Then two irregular codes, MD-Force and EM3D,are considered, and the ability of the hybrid mechanisms to adapt to available data locality inthe presence of irregular computation and communication structures is demonstrated.9.3.2.1 Regular Parallel Code: SORSuccessive Over Relaxation (SOR) is an indirect method for numerically solving partial di�er-ential equations on a grid. The algorithm evaluates the new value of a grid point accordingto a 5-point stencil and consists of two half-iterations: in the �rst half-iteration a new valueis computed for each grid point, and in the second half-iteration, the grid point is updatedwith the computed value. To characterize the impact of data locality, the grid size is �xed(1024� 1024) and various block sizes are considered for a block-cyclic distribution of the gridon an 8� 8 grid of processors. These di�erent data layouts result in di�erent ratios of local toremote method invocations and correspond to di�ering amounts of data locality.Data Locality CM5 Performance T3D PerformanceBlock Local vs Parallel Hybrid Parallel/ Parallel Hybrid) Parallel/Size Remote (secs) (secs) Hybrid (secs) (secs) Hybrid8� 8 0.083:1 135.58 136.85 0.991 48.99 43.50 1.12616� 16 1.167:1 97.16 88.15 1.102 46.77 28.66 1.63232� 32 3.333:1 83.47 52.15 1.601 43.46 20.70 2.09964� 64 7.667:1 60.33 32.43 1.860 34.94 14.97 2.334128� 128 16.333:1 45.80 19.89 2.303 28.46 12.00 2.372Table 9.4: Execution Results: SORTable 9.4 shows the performance of the hybrid mechanisms on 64-node con�gurations ofthe CM5 and T3D for �ve choices of the block size. The parallel execution times are for SORon a 1024� 1024 grid at 100 iterations. The CM5 and T3D both used 64-node con�gurations.186



The performance of hybrid mechanisms is compared with a parallel-only version for varyingamounts of data locality (indicated by Block Size) for a block-cyclic distribution of the grid.Local vs Remote gives the ratio of local to remote method invocations for the given block size.The results in Table 9.4 show that improvement from hybrid execution is proportional todata locality. The speedup of hybrid mechanisms over the parallel version increases from �1:0when the fraction of local invocations is 0.077 to �2:4 when the fraction of local invocationsis 0.942. These numbers are in the neighborhood of the theoretical peak values which aredetermined by the relative costs of useful work, invocation overhead and remote communication.For example, factoring out the useful work in the 128 � 128 SOR block layout on the CM5,the maximum possible speedup is 2.63 given that, on average, a remote invocation incurs 10times the cost of a local heap invocation. The measured value of 2.3 approaches this maximum,indicating that hybrid execution e�ciently adapts to available locality.9.3.2.2 Irregular Parallel Code: MD-ForceMD-Force is the kernel of the nonbonded force computation phase of a molecular dynamicssimulation of proteins [91]. The computation iterates over a set of atom pairs that are withina spatial cuto� radius. Each iteration updates the force �elds of neighboring atoms using theircurrent coordinates, resulting in irregular data access patterns because of the spatial natureof data sharing. The implementation reduces the communication demands of the kernel bycaching the coordinates of remote atoms and combining force increments.Data Locality CM5 Performance T3D PerformanceData Local vs Parallel Hybrid Parallel/ Parallel Hybrid Parallel/Layout Remote (secs) (secs) Hybrid (secs) (secs) HybridRandom 0.38:1 10.71 10.41 1.03 3.94 3.82 1.03Block 6.05:1 1.46 1.02 1.43 1.32 0.87 1.52Table 9.5: Execution Results: MD-ForceTable 9.5 shows the performance of the MD-Force kernel Parallel execution times for MD-Force kernel (10503 atoms for 1 iteration) on 64-node con�gurations of the CM5 and T3D. Theperformance of the hybrid mechanisms is compared with a parallel-only version for low-localityrandom and high-locality data layouts. The random layout uniformly distributes atoms on the187



nodes, ignoring the spatial distribution of atoms. The spatial layout uses orthogonal recursivebisection to group together spatially proximate atoms.Because of poor locality the execution time for the random distribution is communicationoverhead dominated. Since communication costs remain unchanged by the choice of the in-vocation mechanisms the speedup is 1.03 in this case. For the spatially blocked distribution,the hybrid mechanisms enable the computation to adapt dynamically to data locality, yieldingspeedups of 1.43 and 1.52 on the CM5 and T3D respectively.As with SOR, when run time checks determine that both atoms of an atom pair are localand the computation is small it is speculatively inlined. When an atom is found to be remotebut its coordinates are in the cache, the computation completes on the stack without incurringparallel invocation overhead. When communication is required, and the stack invocation fallsback to the parallel version to enable multithreading for latency tolerance. Furthermore, hybridexecution provide a performance improvement for communication because the invoked methodcan execute directly from the message handler. Thus, hybrid execution adapts to the datalayout and synchronization structures of the program.9.3.2.3 Irregular Parallel Code: EM3DEM3D is an application kernel which models propagation of electromagnetic waves [70]. Thedata structure is a graph containing nodes for the electric �eld and for the magnetic �eld withedges between nodes of di�erent types. A simple linear function is computed at each node basedon the values carried along the edges. Three versions of the EM3D code are used to evaluate theability of the hybrid model to adapt to di�erent communication and synchronization structures.Since they are intended to examine invocation mechanisms, elaborate communication blockingmechanisms are not used. The �rst version, pull, reads values directly from remote nodes. Thesecond version, push, writes values to the computing node, updating from the remote nodeseach timestep. Finally, in the forward version, the updates were done by forwarding a singlemessage through the nodes requiring the update.Table 9.6 describes the performance of the three versions of EM3D on a 64-node CM5 anda 16-node T3D. The parallel execution times are reported for 8192 nodes of degree 16 for 100iterations. The performance for three versions of the algorithm using the hybrid mechanisms is188



Data Locality CM5 Performance T3D PerformanceLocal vs Parallel Hybrid Parallel/ Parallel Hybrid Parallel/Algorithm Remote (secs) (secs) Hybrid (secs) (secs) HybridEM3D 0.0156:1 93.93 68.94 1.362 349.04 336.32 1.037pull 99:1 7.42 3.34 2.222 29.681 25.96 1.148EM3D 0.0156:1 543.73 145.36 3.741 494.85 473.59 1.045push 99:1 11.76 10.96 1.073 41.27 29.47 1.400EM3D 0.0156:1 180.40 181.6 0.993 602.41 433.65 1.389forward 99:1 18.86 15.53 1.214 112.79 39.41 2.262Table 9.6: Execution Results: EM3Dcompared with parallel-only versions for random node placement with low locality (0.0156:1)and placement with high locality (99:1).The results show that the hybrid scheme is capable of improving performance for di�erentcommunication and synchronization structures for both cases of high and low data locality.For low locality, e�ciency is increased because o�-node requests are handled directly from themessage bu�er, without requiring the allocation of a heap context. When locality is high, hybridexecution executes local portions of the computation entirely on the stack. Hybrid executionyields speedups ranging from unity to nearly four times, achieving superior performance in allbut one case where the continuation passing schema is used with extremely low locality on theCM5. In addition to the cost of fallback, this combination produces the worst case for ourscheduler on the CM5.Overall, the pull version provides the best absolute performance since it computes directlyfrom the values it retrieves rather than using intermediate storage. The forward version requireslonger update messages than push but fewer replies. On the CM5 replies are inexpensive (asingle packet), so the cost of forward's longer messages overwhelms the cost of the larger numberof replies required by push. However, on the T3D the decrease in overall message count enablesforward to perform better than push for low locality. Also, the CM5 compiler performs betteron the unstructured output of our compiler than the T3D compiler. As a result, the cost ofthe additional operations required by push and forward has less of an impact on the T3D thanmessaging overhead. Thus, for high locality, the hybrid mechanism is most bene�cial for pullon the CM5 and for forward on the T3D where local computation and messaging dominaterespectively. 189



9.4 Related WorkSeveral languages supporting explicit futures on shared-memory machines have focused onrestricting concurrency for e�ciency [87, 117]. However, unlike our programming model wherealmost all values de�ne futures, futures occur less frequently in these systems, decreasing theimportance of their optimization. More recently, lazy task creation [132], leapfrogging [180] andother schemes [104, 18] have addressed load balancing problems resulting from serialization bystealing work from previously deferred stack frames. However, none of these approaches dealswith locality constraints arising from data placements and local address spaces on distributedmemory machines.Several recent thread management systems have been targeted to distributed memory ma-chines. Two of them, Olden [146] and Stacklets [77] use the same mechanism for work generationand communication. Furthermore, they require specialized calling conventions limiting theirportability. StackThreads [172] used by ABCL/f has a portable implementation. However, thissystem also uses a single calling convention, and allocates futures separate from the context.Thus, an additional memory reference is required to touch futures. Also, its single versionof each method cannot be fully optimized for both parallel and sequential execution. TheHAL system provides specialized calling conventions for di�erent synchronization idioms [115].However, it is not adaptive and does not provide seperate sequential and parallel versions,concentrating instead on the e�ciency of individual operations.9.5 SummaryIrregular and dynamic programs require an execution model which can adapt to the run timecomputation and communication structure. Also, adaptation is critical for supporting runtimetechniques such as data and function shipping. Hybrid execution uses separately optimizedsequential and parallel versions of various levels of 
exibility and e�ciency to adapt at run timeto data layout and computational structure. Sequential e�ciency can be achieved for COOPcodes by dynamically aggregating the many small threads into larger threads executed in LIFOfashion using a convention stack. Parallel e�ciency is achieved by generating parallelism andhiding latency by creating threads using heap-based contexts. Hybrid execution uses specializedparallel and sequential versions of each method and four distinct invocation schemas of varying190



complexity and cost to e�ciently. For call intensive kernels, it is demonstrated that hybridexecution is very nearly as e�cient as straight sequential C code. Furthermore, the di�erentcalling schemas contribute to this e�ciency. Hybrid execution approaches optimal e�ciencyfor regular problems and e�ectively adapt to irregular problems with complex communicationand synchronization structures. It is demonstrated on the CM5 and T3D that hybrid executionprovides performance bene�ts proportional to the amount of data locality. Hybrid executionprovides both sequential e�ciency when data is available and parallel e�ciency for work gen-eration and latency hiding.9.6 AcknowledgmentsThe SOR and MD-Force source code, numbers and results analysis in this chapter are thework of Vijay Karamcheti and Xingbin Zhang respectively. They appear here to illustrate thee�ectiveness of hybrid execution on a wider range of programs.
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Chapter 10ConclusionsOOP and COOP can be made e�cient through interprocedural analysis and trans-formation. ThesisThe proof of this thesis has been a long process, spread over many years and involvingmany parts, the utility of which are not necessarily obvious in a vacuum. The goal of theConcert project is ambitious: to start with a a highly abstract programming model and builda programming system to rival, in absolute e�ciency, state of the art systems for conventionallanguages with decades of high performance tradition. My part of that goal was sequentiale�ciency; that is, computational e�ciency discounting load balance and the availability of data,two enormous areas of research in themselves. This part alone required developing new analysisand transformation techniques which proved useful for tackling the other problems as well.Furthermore, because we chose absolute e�ciency as our goal, many small optimizations forcommon boundary cases were required, as well as a host of standard transformations, availablein any optimizing compiler.Building a complete system was extremely satisfying in the sense that I am con�dent thatwe have explored a good part of the problem space and developed an understanding far beyondthe sterile and often deceptive lines of theory. But it has been disturbing as well. Much ofwhat we have learned is that there is no panacea, no quick �x; that a workable solution requiresmany pieces which depend strongly on the capabilities of the others. Very simple programmingsystems of immense power and e�ciency can be constructed, but no short cuts are possible, andthe solution is not incremental. It requires rethinking of the interaction between language and192



implementation and reformulation of the compilation process. This translation of viewpointdoes not �t easily with either the academic nor commercial mindsets. It does not divulge itssecrets to simpli�ed problems or yield to incremental solutions. The work presented here onlybegins to describe what will ultimately be required to fully realize simple, powerful, parallelprogramming systems. It will be years, and probably decades before such systems becomecommon.10.1 Thesis SummaryObject-oriented programming (OOP) is the byword of software engineering; promising to in-crease productivity through abstraction and software reuse. Concurrent object-oriented pro-gramming (COOP) applies those tools to parallelism and distribution, with applications fromsupercomputers to web browsers. These technologies produce programs with very di�erentstructures than standard procedural codes, but with the same high demands for e�ciency.However, localized compilation techniques are poorly suited to the dynamic nature of OOP andCOOP codes. The abstractions which free programmers from implementation details, hide in-formation from the compiler, resulting in conservative implementations and poor performance.Through interprocedural analysis and transformation, specialized implementations of theseabstractions can be constructed so that OOP and COOP can be as e�cient as conventionalprocedural programming. I have developed a compilation framework using novel optimizationtechniques for context-sensitive analysis and specialization of abstractions. This frameworkmaps 
exible dynamic programs to e�cient static implementations. For standard benchmarks,including the Stanford Integer, Richards, and Delta-Blue benchmarks and the Livermore Loops,these techniques produce implementations as e�cient as those written in C and more e�cientthan those written in C++ and compiled with standard compilers.The framework starts with a new interprocedural context-sensitive 
ow analysis whichbreaks through abstraction barriers. Classes and functions are then cloned for the contextsin which they are used. An iterative cloning algorithm rebuilds the cloned call graph usinga modi�ed dispatch mechanism. Using the information made static by cloning, classes andfunctions are specialized: member (instance) and local variables are unboxed, virtual functions(methods) are statically bound and inlining is performed speculatively based on the class of193



objects or function pointers for OOP and location or lock availability for COOP. Other opti-mizations include promotion of member and global variables to locals, lifting and merging ofaccess regions, removal of redundant lock and locality check operations, and redundant arrayoperation removal. Finally, the program is mapped to a new hybrid stack and heap-basedexecution model suitable for distributed memory multicomputers.The general contribution of this thesis is an optimization framework for object-orientedand �ne-grained concurrent languages. Individual contributions are: 1) a new iterative 
owanalysis for the analysis of object-oriented programs which is both practical and more precisethan previous analyses, 2) a new cloning algorithm which extends the state of the art in cloningto general 
ow problems and object-oriented programs, 3) a set of novel optimizations forremoving object-oriented and �ne-grained concurrency overhead, and 4) a new hybrid stack-heap execution model which provides two separately optimized versions of code enabling it toadapt to the location of data.10.2 Final ThoughtsWhile the work described in this thesis forms a cohesive whole, it is by no means the �nal closedsolution. There is a great deal left to be done; foremost perhaps in the area of interproceduralanalysis and transformation. Adaptive analysis techniques with time bounds for particularprogram structures need to be developed. These must be able to handle the problem of structureanalysis, the determination of the structure of imperatively manipulated pointer-based datastructures directly from the program text [143]. The structure analysis problem subsumes aliasanalysis, an outstanding problem of great complexity and importance [120, 118, 44, 60, 182, 147].Transformation must go farther to break the boundaries between compilation, calculation,communication and data. Translation between these di�erent modes of computation shouldbe in the providence of the programming system. For example, data can be migrated, cached,recomputed, and encoded in control 
ow. Communication can be similarly be transformed,mapped into control 
ow, cached, replaced with one of the possible results indicated by non-determism. Calculations can be replaced by partially computed, inferred and speculated values.Finally, run time compilation can blur the boundary between static and dynamic, data and code.194



Non-determinism needs to be recognized as an essential and desirable property of algorith-mic description; a tool for describing a range acceptable behavior. In contrast, deterministicsolutions are overspeci�ed, and have no physical analogue in the real world where simultaneityis a reality. Non-determinism is an enormously powerful transformational tool, enabling theimplementation to select a path to the answer based on e�ciency. Such tradeo�s are organicand natural for the vast majority of computer users. As computing emerges from the cold andbrittle world of mechanical logics, into the warmth of art and information age, the nature ofcomputation will change.On a similar note, consistency models, which have heretofore been relegated to the mechanicsof hardware cache consistency, need to be expanded to the level of the programmingmodel. Welive in a world where performance is limited by the ability of the system to deliver and maintainthe consistency of data; where distribution and simultaneity have obliterated the notions ofabsolute time and absolute location; and where facts are relative. Internal consistency fora given system, encapsulation of assumptions, predicated answers and answers as of a giventime are all common in the natural systems with which the computing fabric is ever moreintertwined. The science of computation must embrace these concepts because they are thefuture of computing.With the recent explosion of interest in network computing, the world wide web and Java,is clear that at its core, computing is parallel and distributed. It is also clear that the old fork-join-semaphore model has become hopelessly dated. The rise of portable executable formats,just-in-time and whole-program compilation has upset the traditional view of compilers. Thisarea, which had stagnated under endless discussions of \yet another parsing algorithm" andan obsession with speeding translation through clever coding schemes, has been given newlife. Unfortuntely, the current climate of compulsive paper chase discourages revolutionarydevelopments and deep thought in general. For this we su�er as the same old tired ideas,cast in new terms and super�cially evaluated, clog the literature, numbing minds and wearyingspirits. In this age where time-to-market is king, industry, ever with all its shortsightedness,has surpassed academia for innovation and progressiveness. The ivory towers, like the castlesof provincial lords at the close of feudal times, are threatened by progress and the rising powerof the merchant class. It is my hope that academia can rise to the challange and, using the195



towers' height and relative peace for far sight and contemplation, to re�ne, perfect and lay thegroundwork for the next revolution. I hope this thesis makes a contribution to that end.And what is writ is writ,{Would it were worthier! Lord Byron
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Appendix AAnnotationsIn order to instruct the compiler and runtime with information about the placement and acces-sibility of objects, the Concert system supports, among others, locality and locking annotations[43]. These annotations are not meant to change the meaning of the program, but rather toenable the programmer supply information which might not be easily accessible to the compilerand/or runtime, and to enable the compiler writer to test the usefulness of particular pieces ofinformation.a = new(LOCAL) A;b = new(LOCAL) B;c = new C;a.x = b;d = flag ? a : b;e = flag ? a : c;if (cond) (e $local $nolock)->foo;Figure A.1: Annotations ExampleFigure A.1 shows a block of code which uses annotations and allocation directives. Here,a and b are both allocated local to the current object (self). As a result, both a and b arerelatively local to each other and to self. Conservatively, we can then infer that d will berelatively local to self as well. We may not infer that e is relatively local to self since c maybe allocated on any node. However, we can infer that a.x will be relatively local to a (so longas this is the only assignment to x. Finally, in the last line, the conditional cond is evaluate,197



and the compiler is directed that e is local and no lock is required to access it (a situationimplied by cond).b = a $local;if (...)d = c $local;elsee = c $local; Figure A.2: Annotations Propagation ExampleAnnotations propagation is a data 
ow problem. Annotations are propagated along thelocal data 
ow arcs using a conservative merge. When a reference to a local object mergeswith a reference to a remote object, the resulting reference is to a remote object. Since theannotation specify a property of a value, they 
ow backward as well. If an annotation hasbeen placed on every value into which another value may 
ow, the original value must havethat property as well. For example, in Figure A.2 a and b are subject to the same conditionsof execution. Therefore, b must be local in the block containing a. Likewise, d and e areannotated to be local. Since one or the other branch must be executed, it must be true that cis local in the surrounding block. Care must be taken when using data or function migration.For example, if the unspeci�ed condition in Figure A.2 moved the object c so that it was local,c need not be local before the conditional. In such cases, annotation should not be propagatedacross operations which can change the properties being annotated.
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Appendix BRaw Flow Analysis DataThe results of analysis for the three algorithms on a variety of complete, kernel and syntheticprograms appear in Table B.1. IFA refers to our incremental inference algorithm, OPS refersto the inference algorithm in [135], and 0CFA refers to a standard 
ow insensitive algorithmwhich allocates exactly one type variable per static program variable.The number of Passes is determined by the algorithms automatically when it determinesthat no run time type errors are possible. Nodes is the number of 
ow graph nodes used bythe algorithm. Invokes is the number of invocations (abstract calls) analyzed. Contours isthe number of contours. In 0CFA this corresponds to the number of methods. A program canbe Typed? by an algorithm if it can prove an absence of run time type errors. Checks isthe number of type checks which must be made to ensure such an absence. The number ofimprecisions Im indicates number of nodes which were not resolved to a singleon value. Theimplementation is approximately 2600 lines of largely unoptimized Common Lisp/CLOS andTime in seconds is reported for CMU Common Lisp/PCL on a Sparc10/31.
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Program Lines Passes Nodes Invokes Contours Typed? Checks Im TimeIFAion 1934 5 50779 3470 760 YES 0 0 713.70network 1799 3 29090 2228 730 YES 0 31 234.15circuit 1247 6 34505 1801 430 YES 0 7 289.52pic 759 6 40284 2128 357 YES 0 0 363.18mandel 642 1 17257 1011 442 YES 0 0 25.48tsp 500 3 10290 627 207 YES 0 0 56.24mmult 139 7 11518 543 147 YES 0 0 78.35poly 41 4 3819 234 90 YES 0 0 18.12test 39 7 1581 130 76 YES 0 0 15.11OPSion 1934 1 115800 7098 2817 NO 19 264 577.51network 1799 1 73864 6018 2296 YES 0 87 357.47circuit 1247 1 49849 2646 1097 NO 44 679 136.03pic 759 1 48420 2783 1068 NO 28 196 144.16mandel 642 1 26280 1442 562 YES 0 0 60.78tsp 500 1 18203 1150 472 NO 2 31 40.78mmult 139 1 10928 595 216 NO 4 104 22.36poly 41 1 4233 250 137 YES 0 0 8.25test 39 1 1353 123 100 NO 2 0 2.940CFAion 1934 1 34729 3380 396 NO 260 1096 131.16network 1799 1 18874 1804 407 NO 132 926 58.77circuit 1247 1 15491 976 190 NO 111 405 28.93pic 759 1 16065 1300 180 NO 119 390 37.68mandel 642 1 8755 760 116 NO 59 524 16.52tsp 500 1 7006 571 130 NO 27 225 15.79mmult 139 1 3842 231 61 NO 4 89 7.60poly 41 1 1848 138 48 NO 4 55 3.84test 39 1 1001 108 44 NO 2 19 2.92Table B.1: Results of Iterative Flow Analysis
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Appendix CRaw OOP Databenchmark CA baseline CA no arrayalias CA no standard CA no instvarsbubble 10.224 10.22 10.23 10.23intmm 8.12 8.12 17.74 17.74perm 8.70 8.70 8.89 8.89puzzle 128.11 128.59 188.15 188.12queens 10.10 10.10 10.71 10.71sieve 2.47 2.44 2.45 2.44towers 12.91 13.78 16.60 16.60trees 64.85 65.12 91.10 90.40Table C.1: Raw Data for Stanford Integer Benchmarksbenchmark CA no inlining CA no cloning CA no analysis C inline C -O2bubble 67.07 135.10 135.12 11.19 11.13intmm 43.45 60.70 487.15 11.12 10.57perm 34.78 64.47 64.45 12.50 9.46puzzle 393.60 614.04 6567.59 72.81 64.35queens 19.25 34.79 34.88 8.37 8.27sieve 6.09 11.18 57.34 2.59 2.63towers 56.20 81.618 86.34 19.59 13.01trees 164.13 480.98 986.44 141.09 125.66Table C.2: Raw Data for Stanford Integer Benchmarks (cont)201



benchmark CA base CA no arrayalias CA no standard CA no instvarsProjection 66.98 66.02 64.64 64.30Chain 52.09 52.67 129.22 128.34Richards 57.72 67.68 223.28 223.37Table C.3: Raw Data for Stanford OOP Benchmarks)
benchmark CA no inlining CA no cloning CA no analysis C++ inline C++ -O2Projection 232.84 617.65 1599.78 318.6 323.7Chain 402.00 1320.59 3320.34 350.7 354.1Richards 795.70 4085.57 7153.84 121.5 125.9Table C.4: Raw Data for Stanford OOP Benchmarks (cont))

benchmark C++ no inlining C++ all virtual C++ no inlining all virtualProjection 486.9 586.6 598.4Chain 491.0 652.5 649.1Richards 207.9 124.6 207.1Table C.5: Raw Data for Stanford OOP Benchmarks (cont cont))202



Appendix DCA Standard Prologue;; Standard Prologue for Concurrent Aggregates;; "Builtin" Classes must be declared early as they are used to define;; constants.;; ROOTCLASS : everything inherits from this(class rootclass)(method rootclass primitive ()) ;; *handled internally*(method rootclass new () :no_exclusion)(method rootclass new_local () :no_exclusion)(method rootclass eq (a) :no_exclusion(reply (primitive root_equal self a)))(method rootclass neq (a) :no_exclusion(reply (primitive root_not_equal self a)))(method rootclass assert_class (asserted_class)(reply (primitive assert_class self asserted_class)))(method rootclass check_type (v)(seq (primitive check_type v self) (reply done)))(method rootclass check_null (v)(seq (primitive check_null v self) (reply done)))(function rootclass break () :no_exclusion(let ((con (global console)))(if (eq self con)(reply (primitive debugger_break self))(reply (primitive debugger_break con)))))(function rootclass numproc () :no_exclusion(reply (primitive num_proc)))(function rootclass procid () :no_exclusion(reply (primitive proc_id)))(function rootclass if_local (obj) :no_exclusion(reply (primitive check_if_local obj)));; CONTINUATIONCLASS 203



(class continuationclass (rootclass))(method continuationclass reply (value)) ;; *handled internally*;; ROOTAGG : all aggregates inherit from this(aggregate rootagg (rootclass) group groupsize myindex physize(parameters sz)(initial sz));; unoptimized(method rootagg sibling (i) :no_exclusion :unoptimized(if (bounds_check i groupsize)(reply (primitive aggregate_to_representative self i))(SIBLING_BOUNDS_ERROR (global console) self groupsize i)));; optimized(method rootagg sibling (i) :no_exclusion :optimized(reply (primitive aggregate_to_representative self i)))(method rootagg physical_sibling (i) :no_exclusion(reply (primitive agg_to_physical_rep self i)))(method rootagg physical_groupsize () :no_exclusion(reply (primitive physical_groupsize self)));; only works on local objects(method rootagg if_logical () :no_exclusion(reply (primitive check_if_logical self)));; NULLCLASS(class nullclass (rootclass))(method nullclass eq (a) :no_exclusion(reply (primitive null_equal self a)))(method nullclass neq (a) :no_exclusion(reply (primitive null_not_equal self a)));; unoptimized(method nullclass :rest () :unoptimized(NIL_MESSAGE (global console)));; optimized(method nullclass :rest () :optimized );; OSYSTEM(class osystem (rootclass));; GLOBALCLASS 204



(class globalclass (rootclass) state)(method globalclass global ()(reply (state self)))(method globalclass set_global (val)(seq (set_state self val)(reply (state self))));; STRING_CONSTANT(class string_constant (rootclass));; SELECTOR(class selector (string_constant));; INTEGER(class integer (rootclass))(method integer + (i) :no_exclusion(reply (primitive integer_add self i)))(method integer - (i) :no_exclusion(reply (primitive integer_subtract self i)))(method integer * (i) :no_exclusion(reply (primitive integer_multiply self i)))(method integer / (i) :no_exclusion(reply (primitive integer_divide self i)))(method integer > (i) :no_exclusion(reply (primitive integer_greater_than self i)))(method integer < (i) :no_exclusion(reply (primitive integer_less_than self i)))(method integer >= (i) :no_exclusion(reply (primitive integer_greater_than_or_equal_to self i)))(method integer <= (i) :no_exclusion(reply (primitive integer_less_than_or_equal_to self i)))(method integer = (i) :no_exclusion(reply (primitive integer_equal_to self i)))(method integer != (i) :no_exclusion(reply (primitive integer_not_equal_to self i)))(method integer mod (i) :no_exclusion(reply (primitive integer_modulo self i)))(method integer lshift (i) :no_exclusion(reply (primitive integer_left_shift self i)))(method integer rshift (i) :no_exclusion(reply (primitive integer_right_shift self i)))(method integer and (i) :no_exclusion(reply (primitive integer_bitwise_and self i)))205



(method integer or (i) :no_exclusion(reply (primitive integer_bitwise_or self i)))(method integer not () :no_exclusion(reply (primitive integer_not self)))(method integer int2float () :no_exclusion(reply (primitive integer_to_float self)))(method integer min (i) :no_exclusion(if (> self i) (reply i)(reply self)))(method integer max (i) :no_exclusion(if (> self i) (reply self)(reply i)))(method integer ash (i) :no_exclusion(if (>= i 0) (reply (lshift self i))(reply (rshift self (- 0 i)))))(method integer +1 () :no_exclusion(reply (+ self 1)))(method integer bounds_check (size) :no_exclusion(reply (and (>= self 0) (< self size))));; FLOAT(class float (rootclass))(method float + (f) :no_exclusion(reply (primitive float_add self f)))(method float - (f) :no_exclusion(reply (primitive float_subtract self f)))(method float * (f) :no_exclusion(reply (primitive float_multiply self f)))(method float / (f) :no_exclusion(reply (primitive float_divide self f)))(method float > (f) :no_exclusion(reply (primitive float_greater_than self f)))(method float < (f) :no_exclusion(reply (primitive float_less_than self f)))(method float = (f) :no_exclusion(reply (primitive float_equal_to self f)))(method float != (f) :no_exclusion(reply (primitive float_not_equal_to self f)))(method float sin () :no_exclusion(reply (primitive float_sin self)))(method float cos () :no_exclusion(reply (primitive float_cos self)))(method float tan () :no_exclusion(reply (primitive float_tan self)))(method float sqrt () :no_exclusion 206



(reply (primitive float_square_root self)))(method float exp () :no_exclusion(reply (primitive float_exp self)))(method float pow (f) :no_exclusion(reply (primitive float_pow self f)))(method float log () :no_exclusion(reply (primitive float_log self)))(method float asin () :no_exclusion(reply (primitive float_arc_sin self)))(method float acos () :no_exclusion(reply (primitive float_arc_cos self)))(method float atan () :no_exclusion(reply (primitive float_arc_tan self)))(method float atan2 (f) :no_exclusion(reply (primitive float_arc_tan2 self f)))(method float ceil () :no_exclusion(reply (primitive float_ceil self)))(method float floor () :no_exclusion(reply (primitive float_floor self)))(method float float2int () :no_exclusion(reply (primitive float_to_integer self)))(method float min (i) :no_exclusion(if (> self i) (reply i)(reply self)))(method float max (i) :no_exclusion(if (> self i) (reply self)(reply i)));; ARRAY(class array (rootclass) size);; unoptimized versions(method array at (index) :unoptimized(if (bounds_check index (size self))(reply (primitive array_at self index))(ARRAY_BOUNDS_ERROR (global console))))(method array put_at (val index) :unoptimized(if (bounds_check index (size self))(reply (primitive array_put_at self val index))(ARRAY_BOUNDS_ERROR (global console))))(method array putat (val index) :unoptimized(if (bounds_check index (size self))(reply (primitive array_put_at self val index))(ARRAY_BOUNDS_ERROR (global console))));; optimized versions with no bounds check (to match FORTRAN and C)(method array at (index) :optimized 207



(reply (primitive array_at self index)))(method array put_at (val index) :optimized(reply (primitive array_put_at self val index)))(method array putat (val index) :optimized(reply (primitive array_put_at self val index)));; included for backward compatibility(method array atput (val index)(reply (put_at self val index)));; MESSAGECLASS(class messageclass (array) selector receiver continuation :no_reader_writer)(method messageclass msg_at (pos) :no_exclusion(reply (primitive message_at self pos)))(method messageclass msg_putat (val pos) :no_exclusion(reply (primitive message_put_at self val pos)))(method messageclass msg_atput (val pos) :no_exclusion(reply (msg_putat self val pos)))(method messageclass send () :no_exclusion(forward (primitive message_send self)))(method messageclass send_to (to) :no_exclusion(forward (primitive message_send_to self to)))(method messageclass get_requester () :no_exclusion(reply (primitive message_requester self)))(method messageclass set_requester (to) :no_exclusion(reply (primitive message_set_requester self to)))(method messageclass get_receiver () :no_exclusion(reply (primitive message_receiver self)))(method messageclass set_receiver (to) :no_exclusion(reply (primitive message_set_receiver self to)))(method messageclass get_selector () :no_exclusion(reply (primitive message_selector self)))(method messageclass set_selector (to) :no_exclusion(reply (primitive message_set_selector self to)));; RAW_ARRAY(class raw_array (array));; STRING(class string (raw_array)(parameters isize)(initial (initial super isize)))208



;; STREAMCLASS(class streamclass (raw_array) id status(parameters name)(initial (set_id self (primitive open_file name self))))(method streamclass fileopen (name) :no_exclusion(reply (new streamclass 520 name))) ; 512 bytes + NULL(method streamclass id () :no_exclusion(reply id))(method streamclass close () :no_exclusion(forward (primitive close_file self)))(method streamclass read_int () :no_exclusion(forward (primitive read_integer self)))(method streamclass read_float () :no_exclusion(forward (primitive read_float self)))(method streamclass write_int (i) :no_exclusion(forward (primitive write_integer self i)))(method streamclass write_float (f) :no_exclusion(forward (primitive write_float self f)))(method streamclass write_string (s) :no_exclusion(forward (primitive write_string self s)))(method streamclass write_object (o) :no_exclusion(forward (primitive write_object self o)))(method streamclass end_of_file () :no_exclusion(forward (primitive end_of_file self)));; CONSOLECLASS(class consoleclass (streamclass)(parameters name)(initial (initial_streamclass super name)))(method consoleclass id () :no_exclusion(reply id))(method consoleclass :rest () :no_exclusion(forward (primitive write_message self msg)));; INSTR_COUNTER_AGG (and auxiliary classes)(function rootclass increment (instr_counter_obj)(reply(primitive increment_instr_counter(storage_obj (sibling instr_counter_obj (procid))) 1)))(function rootclass increment_by (instr_counter_obj value)(reply 209



(primitive increment_instr_counter(storage_obj (sibling instr_counter_obj (procid))) value)))(function rootclass read_count(instr_counter_obj)(reply (read instr_counter_obj)))(function rootclass read_local_count(instr_counter_obj node_id)(reply (read_local (sibling instr_counter_obj node_id))))(aggregate instr_counter_agg summary_obj storage_obj(parameters isize summary storage_size)(initial isize(forall i from 0 below groupsize(init (sibling self i) summary storage_size))))(handler instr_counter_agg create ()(let* ((summary_obj (create instr_summary_class))(agg_obj (new instr_counter_agg (numproc) summary_obj 32)))(reply agg_obj)))(handler instr_counter_agg init (summary size)(seq(set_summary_obj self summary)(set_storage_obj self (new_local array size))(primitive init_instr_counter (storage_obj self))(reply DONE)))(handler instr_counter_agg reset () :no_exclusion(seq(forall i from 0 below groupsize(reset_myself (sibling self i)))(reset (summary_obj self))(reply DONE)))(handler instr_counter_agg reset_myself () :no_exclusion(seq(primitive reset_instr_counter (storage_obj self))(reply DONE)))(handler instr_counter_agg read () :no_exclusion(let ((count 0))(seq(forall i from 0 below groupsize(set! count (+ count (read_local (sibling self i)))))(reply count))))(handler instr_counter_agg read_local () :no_exclusion(reply (primitive read_instr_counter (storage_obj self))))(handler instr_counter_agg min () :no_exclusion(seq(sync_summary self)(reply (min (summary_obj self)))))(handler instr_counter_agg max () :no_exclusion(seq 210



(sync_summary self)(reply (max (summary_obj self)))))(handler instr_counter_agg mean () :no_exclusion(seq(sync_summary self)(reply (mean (summary_obj self)))))(handler instr_counter_agg stdev () :no_exclusion(seq(sync_summary self)(reply (stdev (summary_obj self)))))(handler instr_counter_agg summarize (stream title) :no_exclusion(let ((total_count 0))(seq(write_string stream title)(write_string stream "\tNode\tCount\n")(forall i from 0 below groupsize(let ((count (read_local_count self i)))(seq(write_string stream "\t")(write_int stream i)(write_string stream "\t")(write_int stream count)(write_string stream "\n"))(set! total_count (+ total_count count))(inc (summary_obj self) (int2float count))))(write_string stream "\tTotal:\t")(write_int stream total_count)(write_string stream "\n\tMin:\t")(write_float stream (min (summary_obj self)))(write_string stream "\tMax:\t")(write_float stream (max (summary_obj self)))(write_string stream "\n\tMean:\t")(write_float stream (mean (summary_obj self)))(write_string stream "\tStdev:\t")(write_float stream (stdev (summary_obj self)))(write_string stream "\n")(reply DONE))))(handler instr_counter_agg sync_summary () :no_exclusion(seq(reset (summary_obj self))(forall i from 0 below groupsize(inc (summary_obj self) (int2float (read_local (sibling self i)))))(reply DONE)));; INSTR_SUMMARY_CLASS 211



(class instr_summary_class (array)(initial (primitive init_instr_summary self)))(method instr_summary_class create ()(reply (new instr_summary_class 32)))(method instr_summary_class inc (value)(reply (primitive inc_instr_summary self value)))(method instr_summary_class min ()(reply (primitive instr_summary_min self)))(method instr_summary_class max ()(reply (primitive instr_summary_max self)))(method instr_summary_class mean ()(reply (primitive instr_summary_mean self)))(method instr_summary_class stdev ()(reply (primitive instr_summary_stdev self)))(method instr_summary_class reset ()(reply (primitive reset_instr_summary self)));; INSTR_STOPWATCH_CLASS(class instr_stopwatch_class (rootclass) start_time elapsed_time(initial (set_start_time self 0.0) (set_elapsed_time self 0.0)))(method instr_stopwatch_class create ()(reply (new instr_stopwatch_class)))(method instr_stopwatch_class start ()(set_start_time self (primitive now))(reply (elapsed_time self)))(method instr_stopwatch_class stop ()(seq(set_elapsed_time self(+ (elapsed_time self) (- (primitive now) (start_time self))))(reply (elapsed_time self))))(method instr_stopwatch_class read ()(reply (elapsed_time self)))(method instr_stopwatch_class reset ()(let ((old_elapsed (elapsed_time self)))(set_start_time self 0.0)(set_elapsed_time self 0.0)(reply old_elapsed)));; TRACECLASS(class traceclass)(method traceclass :rest ()(reply (primitive write_event msg)));; SYSTEM CONSTANTS 212



(constant true -1)(constant false 0);; PREDEFINED GLOBALS(global nil (new nullclass))(global console (new consoleclass 520 "console_stream")) ; same as streamclass(global trace_monitor (new traceclass))
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