
The ICC++ Programmers' ReferenceA. Chien, J. Dolby, V. Karamcheti, J. Plevyak and X. ZhangJuly 30, 1995IntroductionThis document describes the design of ICC++, a new parallel C++ dialect. ICC++ is designedto support both concurrent and sequential programming, and the design priority is to minimizedi�erences with C++ while providing a
exible parallel model. ICC++ is a restricted supersetof C++: some of the more troublesome constructs of C++ are reigned in, and the language isextended for expressing parallelism.� ICC++ generally preserves the basic syntactic structure of C++, permitting ICC++ programs to betranslated to C++ with modest e�ort. This allows a single source to be maintained for parallel andsequential programs, leveraging the programming environments that exist for C++.This document starts with an overview of the sequential language, focusing on its essentialsimilarity to C++ and describing the how its di�erences e�ect sequential programming. The re-mainder of the document covers ICC++ language extensions. First, we explain the extensions tothe C++ object model required to support concurrent programming, mainly object-based concur-rency control, and then the explicitly concurrent statements are described: concurrent blocks andconcurrent loops. We next detail collections, which both integrate arrays into the C++ objectmodel and extend them for parallel programming. The last major feature of ICC++ is a set ofannotations involving locality and aliasing designed to facilitate compiler optimizations. Finally,we cover linking to external libraries (such as existing C++ code) and conclude with a succinctgrammatical summary of ICC++ changes to C++.This document is a programmers reference for the ICC++ language, in which comprehensivenessis more important than brevity. For a concise de�nition of the language, see [2]. The motivationof the language design is discussed in [1].ConventionsIn some places both C++ and ICC++ code are used side-by-side for comparison. Since the codeslook similar, they are distinguished by using this font for C++ and this font for ICC++.
1

July 30, 1995 { 16 : 38 DRAFT 2Contents1 Sequential Features 41.1 Pointers : 41.1.1 Pointers and Arrays : 41.1.2 Pointers to Non-Objects : 51.1.3 Automatic Dereferencing : 51.2 Casts : 51.3 Tuples : 71.4 Unions : 71.5 extern : 71.6 Summary : 82 Concurrent Objects 102.1 Object Consistency : 102.1.1 Member Functions : 102.2 Consistency across Objects : 112.2.1 integral : 112.2.2 friends : 122.3 Concurrency Guarantees : 122.3.1 Data Dependence : 132.4 Summary : 143 Concurrent Statements 153.1 conc Blocks : 153.2 Concurrent Loops : 163.2.1 Reductions : 183.3 Unstructured Concurrency : 193.3.1 Spawn : 193.3.2 Reply : 193.3.3 Unstructured Idioms : 203.4 Summary : 204 Collections 224.1 Collection Members : 234.1.1 Pre-De�ned Members : 234.1.2 User-De�ned Members : 234.1.3 Constructors : 244.2 Nested Collections : 244.3 Derivation : 254.3.1 Derivation From Class : 274.3.2 Derivation From Collection : 274.4 Distribution : 284.4.1 The Physical View : 284.4.2 The Logical View : 294.5 Summary : 30

July 30, 1995 { 16 : 38 DRAFT 3A Performance Annotations 32A.1 restrict : 32A.2 Object Locality : 32A.2.1 Allocation : 33A.2.2 Usage : 33List of Figures1 ICC++ changes to C++ array syntax : 42 Faking pointers to built in types in ICC++ : 53 Automatic dereferencing of pointers in ICC++ : 64 Handling downcasts in ICC++ : 75 Using multiple return values in ICC++ : 86 Faking unions via derivation in ICC++ : 87 ICC++ code using extern "C++" : 98 Member functions requiring simple concurrency control : : : : : : : : : : : : : : : : 119 Member functions that must be sequentialized : 1110 Extending concurrency control to contained objects using integral : : : : : : : : : 1211 Extending concurrency control to multiple objects using friends : : : : : : : : : : : 1312 ICC++ ensures concurrency amongst reads : 1313 Concurrency not guaranteed : 1414 A conc block : 1515 An involved conc block : 1616 forward : 1717 backward : 1718 Dependencies caused by unstructured control
ow in conc blocks : : : : : : : : : : : 1719 A concurrent loop as a dynamically unfolding conc block : : : : : : : : : : : : : : : 1720 A data-parallel loop : 1721 A partially parallel loop : 1822 Reduction examples : 1923 A user-level barrier : 2024 An ICC++ collection : 2225 Using a simple ICC++ collection : 2226 De�ning collection member functions : 2427 Collection constructors : 2428 A matrix collection : 2529 A particle-in-cell nested collection : 2630 Collection derived from class : 2731 Collection derived from collection : 2832 Processor-centric collection operation : 2933 Overloaded operator [] : 2934 Map �le format : 3035 A map �le and the resultant distribution of a 16-element collection. : : : : : : : : : : 3036 restricting subcomputations : 32

July 30, 1995 { 16 : 38 DRAFT 41 Sequential FeaturesICC++ is closely derived from C++, and retains most of the language intact. Classes, objects,members and other basic features are intact; arrays have been extended signi�cantly, but their usageremains the same if the extensions are not used. The �ve major changes are the following. Firstly,ICC++ integrates arrays into the object model; this allows user-de�ned array classes with all ofthe attributes of standard ones. These user-de�ned array classes, called collections, are describedin Section 4. Secondly, pointers to built in types are forbidden. Thirdly, the semantics of castshas been modi�ed so that all casts are either statically safe or are checked at runtime. Fourthly,unions have been forbidden as they, like unsafe casts, vitiate type safety. Finally, the extern formhas been generalized to accept C++ as well as C declarations.1.1 PointersThere are three ICC++ features that a�ect pointers: integrating arrays into the object model,forbidding pointers to non-object types and automatic dereferencing.1.1.1 Pointers and ArraysArrays in ICC++ are �rst-class objects; they are de�ned by class de�nitions and have all theattributes of standard classes. These arrays have a new syntax, based upon the element type[] type speci�er: all declarations of arrays must use the element type array name[] syntax. Inessence the syntax requires programmers to indicate when arrays are being used1, using familiarC++ style declarations. The element type[] syntax in ICC++ is allowed everywhere and dec-larations of the form int foo[][] are permitted. This new use of element type[] syntax isshown in Figure 1 in the ICC++ code fragment on the right. Note the declaration of the functionand of new array; both of these show how the new syntax must be used. This breaks the connec-tion between pointers and arrays, and so inter-conversion between them is forbidden. Thus, thestandard practice of using pointer declarations for arrays, as shown in the left hand of Figure 1 isforbidden.� Divorcing pointers and arrays, and integrating arrays into the object model is increasingly common inC++ dialects such as [3, 7] because it can improve both language safety and analyzability.� Note that separating pointers and arrays makes pointer arithmetic useless, since it was only de�nedwithin arrays (see [4]). Hence, pointer arithmetic is forbidden in ICC++
int *copy(int sz, int *stuff) f
int *dup = new int[sz];
for(int i = 0; i < sz; i++)
dup[i] = stuff[i];

return dup;g int copy(int sz, int stuff[])[] fint dup[] = new int[sz];for(int i = 0; i < sz; i++)dup[i] = stuff[i];return dupgFigure 1: ICC++ changes to C++ array syntax1In C and C++, pointers can be used to refer to both individual objects as well as arrays of objects.

July 30, 1995 { 16 : 38 DRAFT 51.1.2 Pointers to Non-ObjectsThe other restriction of pointers is more fundamental; pointers to built in types are forbidden. Noint * or char * pointers are allowed in ICC++. Some such pointers are used to represent arrays,in which case they can simply use the type [] syntax; however, other uses of such pointers willneed adaptation. A common use of such pointers is to \return" multiple values from a function call;this can be expressed using tuples, as described in Section 1.3. Furthermore, the lack of pointersto built in types can always be worked around by creating an object with one �eld of the desiredtype and taking a pointer to that. This is illustrated in Figure 2; the ICC++ code is on the right.� The lack of pointers to built in types permits more thoroughgoing storage of these type in registers,as there can be no aliasing either within or between concurrent computations.
int sum(int l, int *primes) f
int sum;
for(int i = 0; i < l; i++) f
sum += i;
if (is prime(i))
(*primes)++;g

return sum;g struct Int fint val;gint sum(int l, Int *primes) fint sum;for(int i = 0; i < l; i++) fsum += i;if (is prime(i))primes� >val++;greturn sum;gFigure 2: Faking pointers to built in types in ICC++1.1.3 Automatic DereferencingTraditional object-oriented languages provide object names. Pointers are the closest thing thatC++ has to such names, but they make an explicit distinction between the pointer and the objectwhich is absent for object names. To allow pointers to be used as object names, ICC++ blurs thisdistinction by supporting implicit dereferencing of object pointers used in member function calls:when an operator or function is called on a pointer, that function is applied to the referent.The only exceptions to this rule are operator = and operator * which are both de�ned forpointer types. No other operators are de�ned for pointers since ICC++ forbids pointer arithmetic.This is shown in Figure 3. In C++, t += v would add the two pointer values, but in ICC++,implicit dereferencing calls foo::operator +=(foo *). The other two operations illustrate thecases where implicit dereferencing is not applied: assignment and dereferencing operations.1.2 CastsAll casts in ICC++ are required to be safe, and are checked at runtime if necessary. All caststhat cannot be checked are forbidden. Essentially, this forbids inter-conversion of unrelated pointertypes and casting between an arithmetic type and a pointer type. Furthermore, all casts down

July 30, 1995 { 16 : 38 DRAFT 6class foo fint a;public:foo *operator +=(foo *i) a += i.a; return this;foo *operator =(foo *i) a = i.a; return this;int operator *(void) return a;gvoid main(void) fint a;foo *t = new foo;foo *v = new foo;t += v; // auto-dereference and foo::operator +=t = v; // assignment is legal on pointers: no auto-dereferencea = *t; // no auto-dereference as * is legal for pointers,g // so this would be a type error, as *t is no intFigure 3: Automatic dereferencing of pointers in ICC++inheritance hierarchies are done at runtime using runtime type information. Thus, they corre-spond to dynamic cast rather than static cast in the new C++ casting terminology. As withdynamic cast all failing casts return NULL. All other casts are exactly as in C++.[6, 4] de�ne a new cast syntax consisting of four cast operators: static cast, dynamic cast,const cast and reinterpret cast. These operators are modi�ed as follows:static cast is only allowed for coercions that may be done implicitly. It cannot be used to navigatedown inheritance hierarchies (its main purpose) because it does not do runtime checks.dynamic cast is permitted. Inheritance navigation done by static cast in C++ must usedynamic cast in ICC++ because it checks at runtime to ensure the conversion is correct.reinterpret cast is forbidden.const cast is allowed without restriction.� These restrictions upon casting enable ICC++ to provide garbage collection. Casting pointers intoarithmetic types greatly reduces the e�ectiveness of garbage collection, and even unsafe casts can doso by confusing the system about what pointers it actually has.� Unsafe casts are generally regarded as bad style in application-level programming. While they canbe necessary in low-level system code such as device drivers, ICC++ is not intended for that level ofprogramming.Because all casts are statically safe or checked at runtime programmers can write type-safe codeby simply testing for NULL return values from any dynamic casts. Because ICC++ can checktypes at runtime, programmers can safely downcast in many cases that would be prohibited inC++. As an aid to �nding logical programming errors, code can have diagnostics added to printuseful errors when these casts fail; this is illustrated in Figure 4.

July 30, 1995 { 16 : 38 DRAFT 7
struct foo f
int a;
foo *buddy;g;
struct bar : public foo f
int b;
void do work(void);g;
void do(bar *me) f
bar *bud = (bar *) me� >buddy;
bud� >do work()g

struct foo fint a;foo *buddy;gstruct bar : public foo fint b;void do work(void);gvoid do(bar *me) fbar *bud = (bar *) me� >buddy;if (bud == NULL)cout << "do: bad buddy found";elsebud� >do work()gFigure 4: Handling downcasts in ICC++Figure 4 illustrates the advantage of checking casts at run time. As with the dynamic castoperator, casts that fail return the null pointer; this allows the user code to handle failure explicitly.1.3 TuplesICC++ provides tuples to allow multiple return values for functions. A tuple is essentially animplicit struct in which �elds can be accessed only by destructuring, and are declared using thesyntax (<type>, <type>, ...). Tuples can only be returned by functions and can only beused in assignment; as suggested if Section 1.1.2, tuples can be used in place of pointers to returnmultiple values. This is illustrated in Figure 5.� Using tuples rather than pointers to return multiple values allows the return values to passed directlythrough the stack or as one communication operation in a parallel machine.1.4 UnionsThe last restriction imposed by ICC++ is that unions are not allowed. Unions create a loopholewhich reduces the runtime type safety of programs, and they are already emasculated in C++since they cannot contain �elds of types that have constructors nor can they be used for derivation.Derivation can be used to represent unions (see Figure 6), at some cost in storage.1.5 externJust as C++ permits access to C code using extern declarations, so ICC++ allows access to bothC++ and C code. ICC++ extends the extern declaration slightly to allow the form extern "C++"declaration. The extern declaration indicates that the form is implemented in another languageand all appropriate format conversions and calling conventions will be automatically handled. Theextern "C" works just as it does in C++, but extern "C++" is more involved, as Figure 7 suggests.

July 30, 1995 { 16 : 38 DRAFT 8
double
my div(double a,

double b,
double *q)f

q = a % b;
return a / b;g

void main(void) f
int foo, bar;
foo = my div(88.7, 5, &bar);g

(double, double)my_div(double a, double b) fint quot = a / b;int rem = a % b;return(a,b);gvoid main(void) fint foo, bar;(foo, bar) = my_div(88.7, 5);gFigure 5: Using multiple return values in ICC++
union foo f
int a;
float b;g;
void dump int(foo *a) f
cout << a� >a;g struct foo fg;struct foo_int : public foo fint a;g;struct foo_float : public foo ffloat b;g;void dump_int(foo *a) ffoo int b = (foo int *) a;cout << b� >a;gFigure 6: Faking unions via derivation in ICC++In Figure 7, the class foo can be used normally in ICC++ although it is a C++ class. Anydi�erences in the object format or calling conventions between the ICC++ implementation and theC++ implementation will be handled by the ICC++ system. Just as the C++ extern mechanismis not designed to allow C++ objects to be passed into C2, so the ICC++ extern mechanismdoes not generally allow ICC++ objects to be passed into C++ or C. For this, a more generalinteroperability scheme is required, such as the IDL interface de�ned in a forthcoming Appendixto this manual.1.6 SummaryICC++ makes several signi�cant changes to C++, most prominently reworking the syntax forarrays and forbidding pointers to built in types. Changes are also made to casting and unionsare prohibited. The change to arrays increases the static type safety of programs by preventingconfusion between arrays and pointers to single objects; type safety is further enhanced by banningunions and prohibiting unsafe casts. Disallowing pointers to built in types allows implementations2C++ class declarations will not parse in any C compiler if they use C++ constructs such as member functions.

July 30, 1995 { 16 : 38 DRAFT 9extern "C" f#include <stdio.h>gextern "C++" fclass foo fint a;public:int get a(void);int set a(int);g;gvoid main(void) ffoo *a = new foo;conc fa� >set a(5);printf("set a called with 5.");gg Figure 7: ICC++ code using extern "C++"complete freedom in caching them, without fear of aliasing issues. ICC++ also provides someextensions to the C++ syntax, allowing multiple values to be returned conveniently from functionsand making pointers behave more like traditional object names. In the following sections, we discussextensions to C++ to support high performance and concurrency.

July 30, 1995 { 16 : 38 DRAFT 102 Concurrent ObjectsThe core of object-oriented programming is building abstractions { encapsulated data and programwhich de�ne a well-speci�ed interface. The abstraction model utilizes a set of accessor methods thatperform logically atomic operations upon the abstraction's state; each operation must maintain theconsistency of that state. Concurrency allows only a partial order on state updates, complicatingthe notion of consistency. Any concurrent model must preserve the notion of logically atomicoperations upon an abstraction in a concurrent setting.To support concurrent abstractions, ICC++ extends C++ by introducing explicit object-basedconcurrency; this requires a signi�cant extension to the object model with respect to objects inC++: a concurrency control scheme is introduced to ensure consistency of object state, whichprovides a framework for reasoning about the behavior of concurrent programs. ICC++ providesboth concurrency control and concurrency guarantees which specify respectively at most and atleast how much concurrency a program will have.2.1 Object ConsistencyThe notion behind object-based concurrency control is that objects assure the consistency of theirown state. Concurrent calls upon the object interface are not allowed to interfere with each other,meaning that calls can only run concurrently if such execution is equivalent to some locally sequen-tial order of the calls. E�ectively, two calls can execute concurrently only if neither methods writesany member the other one reads.This notion of consistency applies only to the actual instance variables themselves; that is tothe actual state of the object. Thus for a member of type foo * sequentializability is enforced onlyfor the pointer itself, not for the object to which the pointer refers. Similarly, any state that is notpart of the object is not protected, so updates to global variables from within methods will nothave any concurrency control. For this reason, static member are not considered part of any objectfor concurrency control purposes.� It might seem that static members should be part of every object of that class; however, this wouldentail one of two problems. Either there would still be race conditions amongst updates from di�erentobjects or global serialization would be needed across all objects of that class to prevent such races.2.1.1 Member FunctionsSome examples show how this rule applies to member functions. Figure 2.1.1 illustrates simplesharing patterns: members left(void) and right(void) can be concurrent as can multiple callsto one of them. Such calls both read the same data, but do not write and so cannot interfere.Concurrent calls to set right and set left are also permitted, as neither writes anything theother might read. However, calls to left and set left cannot be concurrent, as they can interferethrough left.Figure 2.1.1 provides a more complex example. Although set length and set height both readand write the object, neither writes a �eld the other reads, and so they can proceed concurrently.A hairier case is multiple calls to set length; while neither writes a �eld the other reads, multipleinterleaved methods writing the same state may not be sequentializable3 , and so these calls wouldnot be concurrent.3At least, not if it writes more than one �eld.

July 30, 1995 { 16 : 38 DRAFT 11class Line fint left;int right;public:int left(void) f return left; gint set_left(int i) f return left = i; gint right(void) f return right; gint set_right(int i) f return right = i; gg; Figure 8: Member functions requiring simple concurrency controlclass Region fint top;int left;int right;int bottom;int length;int height;public:int set_length(void) f return length = right - left; gint set_height(void) f return height = top - bottom; gint area(void) f return length * height; gg; Figure 9: Member functions that must be sequentialized2.2 Consistency across ObjectsICC++ ensures the consistency of single objects, but sometimes consistency is desired across mul-tiple objects. ICC++ provides two mechanisms for this: the integral declaration and friendfunctions.2.2.1 integralThe integral declaration is a type speci�er used like const that can be applied only to membervariables. It extends the concurrency control semantics of the object to include that member.Thus, two methods can run concurrently on an object only if such execution is equivalent tosome sequential order for both that object and all members declared integral. For instance, thebuckets member in Figure 2.2.1 must be declared integral to incorporate it into the hash table'sconcurrency control. If it were not, then calls to add could run concurrently since it does not e�ectthe state of the HashTable itself. If this were to happen, interleaving calls to find and add couldcause the same element to be inserted multiple times. However, since find reads and add writesthe state of buckets, declaring buckets to be integral prevents this from happening.

July 30, 1995 { 16 : 38 DRAFT 12� Note that this is no guarantee that other member functions on an integral object will not interferewith add or find. Other member functions could be called upon the array named by buckets viasome other pointer to it. The integral declaration applies the HashTable's concurrency control tothe buckets member. The only guarantee is that calls from this object using the name buckets willbe sequentializable.class HashTable fintegral Bucket *[] buckets;int n buckets;Bucket *find bucket(Key k) freturn buckets[k.hash%n buckets];gpublic:Element find(Key k) freturn find bucket(k)� >find(k);gElement add(Element e) fBucket *b = find bucket(e.key);if (!b� >find(e.key)) b� >add(e);return e;gg; Figure 10: Extending concurrency control to contained objects using integral2.2.2 friendsfriend functions in C++ are considered member functions upon all friendly arguments, and thusfriend functions in ICC++ can be used to procedurally compose operations on several objects intoa single consistent operation subject to the same object consistency and concurrency guarantees asabove. That is, the friend function will be consistent with respect to all of the objects for whichit operates as a friend.Consider an example of friends (see Figure 2.2.2) in which a matrix is multiplied by a vector.Neither argument may be changed while the operator * is running. Declaring operator * to bea friend of both the matrix and vector classes produces this e�ect by incorporating it into theconcurrency control of both classes.2.3 Concurrency GuaranteesThe other aspect of concurrent semantics is concurrency guarantees. Essentially, two membersare guaranteed to run concurrently if they obviously need not be sequentialized. That is, themember code and any nested calls on this are examined for explicit accesses to object state. Twomembers must run concurrently if neither one can possibly write any object state that might beread or written by the other. Figure 2.3 shows a simple example of methods with guaranteed

July 30, 1995 { 16 : 38 DRAFT 13class Vector;class Matrix f// other state herefriend Vector operator*(Matrix&, Vector&);g;class Vector f// other state herefriend Vector operator*(Matrix&, Vector&);g; Figure 11: Extending concurrency control to multiple objects using friendsparallelism based upon a relaxation method; the only concurrency guarantee for this class is thatreads will be concurrent with other reads and with update. Since update and do step both accessrunning total, no concurrency is guaranteed between them.class GridCell fint total;int running total;public:int read(void) f return total; gvoid update(int i) f running total += i; gvoid do step(void) ftotal = running total;gg; Figure 12: ICC++ ensures concurrency amongst reads2.3.1 Data DependenceFigure 2.3 illustrates the common case where it is apparent what state a member accesses; how-ever, this is not always the case. Conditionals, member pointers, indirect function calls and otherconstructs make the state a method accesses dependent upon the particular invocation. Thus allreads and writes either will happen or may happen during a particular invocation, as determinedbe trivial syntactic examination. Concurrency between two methods is guaranteed only when nei-ther method may write any state the other may read. In Figure 2.3.1, there is in fact no racecondition between update when even and update when odd because guard%2 has to be either 1 or0. However, there is no concurrency guarantee because they both read and write total.

July 30, 1995 { 16 : 38 DRAFT 14� This strict insistence upon simple syntactic analysis that does not even consider obvious cases likesimple conditionals is vital. Otherwise, compiler analysis would be required to implement a languageguarantee, making language semantics dependent upon current compiler capability and potentiallysubjecting them to change in step with compiler technology.class Bizarre fint total;int guard;public:void update when even(int i) fif (guard%2==0)total += i;gvoid update when odd(int i) fif (guard%2==1)total += i;gg; Figure 13: Concurrency not guaranteed2.4 SummaryThe concurrency control semantics of ICC++ are based upon maintaining consistent state forobjects. Concurrency upon an object is allowed only when methods executing simultaneouslywhen such execution is equivalent to some sequential execution. To make reasoning about deadlockfreedom possible, ICC++ also provides a guarantee that concurrency upon a single object will beexploited when it is syntactically obvious that a set of methods cannot e�ect each others' operation.� An implementation has plenty of freedom between the concurrency control and guarantee semantics.For instance, the compiler could choose to run the methods of Figure 2.3.1 concurrently, if it coulddetermine that there is no race condition. Even if it could not �gure this out, it could still make themconcurrent, putting an explicit lock around the total += i in each method.

July 30, 1995 { 16 : 38 DRAFT 153 Concurrent StatementsICC++ allows the programmer to explicitly insert concurrency into a program; essentially con-current statements specify a set of statements to execute and under-specify their order. Blockstructured concurrency is added by means of concurrent blocks and concurrent loops. ICC++ alsoprovides statements to introduce arbitrary, unstructured concurrency.3.1 conc BlocksThe basic mechanism for introducing concurrency in ICC++ is the conc block. A conc blockis a compound statement, pre�xed with the keyword conc. This block, an example of which isFigure 14, de�nes a partial order on its constituent statements. Any pair of statements in a concblock can execute concurrently unless an identi�er appearing in both is assigned in at least one ofthem, or the former statement contains a jump statement (goto, break or continue) that mayprevent the latter being executed. Blocks are considered ordinary statements for this purpose. Forinstance, in Figure 14, statements 1 and 2 can execute concurrently, then statements 3 and 4 canexecute concurrently. Statement 5 must wait until 4 completes, because 4 contains a break.conc fdouble foo = pow(3.0,8); // 1double bar = log(46.7); // 2double baz = foo + bar; // 3if (bar < 0) break; // 4int fuzz = foo; // 5g Figure 14: A conc blockThese rules are designed to expose concurrency upon objects, while preserving sequential se-mantics where it is natural. This enables the introduction of concurrency with small perturbationto program structure. Sequentializing for local variables allows preexisting compound statementsthat declare and use local variables to be transformed into conc blocks, exposing concurrency forcalls upon objects within them. Similarly, permitting control
ow within conc blocks, and provid-ing a natural semantics for it, allows conc to be applied to preexisting code where such irregularcontrol structures are used. Indeed, if the concurrency control on objects is su�cient to maintainprogram correctness, a conc block may be introduced without changing program behavior.Assignment is a decidedly convoluted concept in C++, meaning di�erent things for di�erenttypes. For arithmetic types such as int and double, assignment means operator = and the myriadupdate operators such as operator +=. For pointer types, ICC++ supports only operator =. Forobject types, the concept of assignment breaks down entirely, as the update operators are userde�ned methods and even operator = itself can be overloaded. In this context, only operator =is considered an assignment to an object type, because it \looks like" assignment and even behaveslike it when not overloaded.The results of this are illustrated in Figure 15. In this case, statements 3, 4, 5 and 6 must waitfor statement 1 to �nish and statement 5 must also wait for statement 2. They can then all executeconcurrently, since statement 5 does not assign to a, but instead to a's referent. Statements 7 and8 may start once statement 2 has done; statement 9 waits for them because it assigns b. Statement

July 30, 1995 { 16 : 38 DRAFT 1610 starts once 9 �nishes. Finally, Foo must be called on b; the destructor is considered to assignb, and starts after statement 10 completes.conc fFoo *a = new Foo(5); // statement 1Foo b(5); // statement 2a� >play("happy"); // statement 3a� >work("sad"); // statement 4*a = b; // statement 5// (this is the same as a� >operator=(b);)a� >play("ecstatic"); // statement 6b.work("miserable"); // statement 7b.play("joyous"); // statement 8b = *a; // statement 9b.work("depressed"); // statement 10g Figure 15: An involved conc blockThe basic semantics of jump statements are preserved in conc blocks; statements will notexecute if control
ow jumps around them and can execute multiple times if control
ow jumpsback to them. This is expressed as a dependence between each statement containing a jump andall those statement that it may prevent from execution. The simplest case is a jump, such as breakor continue, that exits the conc block. Such jumps create a dependence upon all subsequentstatements in the conc block, which cannot execute until the statement containing the jump hascompleted without jumping. Figure 3.1 has an example of this. Note that this preserves thebehavior of break and continue when used in a conc block within a loop or switch.Jumps within a conc block come in two
avors: forward and backward. A forward jumpcreates a dependence between itself and all statements in the block between it and its correspondinglabel. This is illustrated in Figure 16, where the statements marked with a * are dependent uponstatement. A backward jump creates dependencies between itself and the next \iteration" of theimplicit loop created by the goto. This is shown in Figure 17.3.2 Concurrent LoopsEach of the C++ looping constructs can be modi�ed by conc producing conc for, conc while,and conc do while. C++ is unusual in that no loop construct has a distinguished loop variable,as does for in Pascal and do in Fortran. Thus, the semantics of the concurrent loop forms must bedesigned carefully to expose cross-iteration concurrency while retaining reasonable behavior for thelocal variables. Furthermore, the concurrent loops must be compatible extensions. Since all C++loops allow control
ow operations, the concurrent loops must support them as well. The resulting

July 30, 1995 { 16 : 38 DRAFT 17conc fa;if (b) goto l1;c; *l1: d;g Figure 16: forward conc fa;l1: c; *if (b) goto l1;...d;g Figure 17: backwardFigure 18: Dependencies caused by unstructured control
ow in conc blockssemantics is that, in a conc loop, loop carried (read after write) dependences are respected only forscalar variables, but not for others such as array dependences and those through pointer structures.Essentially, conc loops are dynamically unfolding conc blocks, with local variables renamed for eachiteration, as shown in Figure 19conc while (i < 5) { if (i < 5)a->foo(i); conc {i += 1; a->foo(i);} i0 = i+1;==> if (i0 < 5)conc {a->foo(i0);i1 = i0 + 1;...Figure 19: A concurrent loop as a dynamically unfolding conc blockThe motivation of this design parallels that of conc blocks. Permitting control
ow and respect-ing scalar variable dependences within concurrent loops simpli�es adding concurrency to preexistingsequential loops. As with conc blocks, concurrent loops specify available concurrency and makeno guarantees about actual concurrency. This allows the implementation considerable latitude inscheduling iterations, such as running groups of iterations sequentially on di�erent nodes.Figure 20. In this loop, the cross-iteration dependency for i causes the loop counter toincrement without race conditions, but there are no restrictions upon the concurrency of theworkers[i].do work() calls.Worker workers[10]conc for (int i = 0; i < 10; i++)workers[i].do work(); Figure 20: A data-parallel loop

July 30, 1995 { 16 : 38 DRAFT 18A more complex example (Figure 21) illustrates the concurrency control in parallel loops in moredetail. The basic idea is that the workers do some work and then dump a checkpoint, repeatinguntil all work is done. Since there is a dependence between the conc while loop test and thework portion, the work portions of each iteration will be sequentialized, and the conc for innerloops will be sequential as well because they all may write s. The checkpoint portion of the whileiterations will happen concurrently, despite the continue statement. The continue statementcreates a dependence between it and the rest of the body, but once it executes, the rest of the loopand subsequent iterations can proceed concurrently. Note that the checkpointing must happen afterthe computation, because it uses stage which the computation updates. The next loop test anditeration can start before the checkpointing has �nished because there is no dependence4 . Thus,this is a partially parallel loop.Worker workers[10];conc while (stage < last_stage) f// do some workint s = last stage;bool no dump = false;conc for(int i = 0; i < 10; i++) fint p = workers[i].do stages();if (p < 0) no dump = true;else if (p < s) s = p;gstage += s;if (no dump) continue;// dump checkpointfor(int j = 0; j < 10; j++)workers[j].dump state(stage);g Figure 21: A partially parallel loopThe motivation of this design parallels that of conc blocks. Permitting control
ow and respect-ing scalar variable dependences within concurrent loops simpli�es adding concurrency to preexistingsequential loops. Observe how a fairly complicated loop like Figure 21 could have concurrency ex-posed by inserting conc, while preserving the sequential semantics required by scalar variables likestage and the continue statement.3.2.1 ReductionsThe semantics of conc blocks and hence of concurrent loops provides that a sequence of updates toa simple variable be sequentialized. However, this is not always desirable. When the operations areassociative and transitive, they can be more e�ciently implemented as parallel reductions. ICC++provides support for this using the update operators of C; the following operators can be used inreductions: +=, -=, *=, <<=, >>=. These operators can be reduced both for arithmetic types4It is up to the Worker objects to make sure that do stages and dump state do not interfere with each other.

July 30, 1995 { 16 : 38 DRAFT 19and user de�ned types. It is up to the programmer to ensure that user-de�ned versions of theseoperators are indeed associative and transitive if they are used in parallel loops.extern int a[];extern int a size;// a potential reductionint total;conc for(int i = 0; i < a size; a++)if (i%2)total += a[i]// cannot reduceconc for(int j = 0; j < a size; j++)printf("%dn", total += a[i]); Figure 22: Reduction examplesAs with concurrent loops themselves, there is no guarantee of concurrency for reductions; theseoperators may execute in parallel but are not required to do so. Furthermore, reductions will onlybe used when the intermediate results are never used.3.3 Unstructured ConcurrencyConcurrent blocks and loops provide a structured mechanism for expressing concurrency withinthe traditional C control structures; however, sometimes a less structured mechanism is requiredto express complex concurrency. ICC++ provides spawn and reply to support this unstructuredconcurrency. The spawn statement generates parallelism and the reply function gives the userprecise control of caller/callee synchronization.3.3.1 SpawnThe statement spawn s; creates a new thread to execute the statement s, which can be an arbitrarystatement, including a compound one. All local variables in scope at the spawn statement becomeread-only in the spawned thread, preventing unsynchronized access to them by the spawning andspawned threads.The spawned and spawning threads are guaranteed to run concurrently, unlike conc which ismerely a hint. This provides the programmer with more direct control over concurrency, but thisguarantee can be expensive to enforce, and generally should be used sparingly.� In this context, \concurrently" means only that neither must wait for the other. The execution ofspawner and spawned will be interleaved if that is required. This is formally known as weak fairness.3.3.2 ReplyAn object reply is created for each function call in the program execution; it accepts operator()and it has the prototype void reply(�), where � is the return type of the callee. When called,

July 30, 1995 { 16 : 38 DRAFT 20it returns a value to the caller, just as the return statement does, but reply does not terminateexecution of the caller, allowing caller and callee to run in parallel.Furthermore, the reply object can be passed out of a function, e�ectively delegating respon-sibility to returning a value to some other function. Passing reply out can be used to implementtail forwarding as well as user de�ned synchronization structures.3.3.3 Unstructured IdiomsThe spawn and reply mechanisms can be used to implement customized communication and syn-chronization structures. A couple of common examples, tail forwarding [5] and barriers, are de-scribed below.Tail Forwarding can accomplished simply using the form spawn reply(e). The expression ewill be spawned and evaluated in parallel, and then the result will be returned to the caller of thespawning function.Barriers can be implemented using a user-de�ned barrier class. Such a class, shown in Figure 23,captures the replys of all the synchronizing functions, and then calls them all at once wheneverybody has made it to the barrier.class Barrier ftypedef void (*reply obj)(...);reply obj replies[];int count;int index;public:Barrier(int i) fcount = i;replies = new reply obj[count];gwait(void) freplies[index++] = reply;if (index == count)for(int i = 0; i < count; i++)(*replies[i])();gg; Figure 23: A user-level barrier3.4 SummaryThe concurrent constructs of ICC++ are designed make expressing concurrency natural within aC++ framework. The conc blocks allows concurrency to be introduced into ICC++ programs

July 30, 1995 { 16 : 38 DRAFT 21while preserving the familiar sequential semantics for variables which cannot handle concurrency.Concurrent loops permit regular parallelism to be expressed simply, and the unstructured constructsallow customized parallel structures to be used when necessary.

July 30, 1995 { 16 : 38 DRAFT 224 CollectionsICC++ replaces C++ arrays with collections, which integrate arrays into the object model. Acollection consists of an indexable set of element objects and a separate collection state. Both thecollection itself and its elements have a class type, which allows both to be treated as objects,permitting members and derivation. Furthermore, this collection of objects provides a convenientform for expressing parallelism and data distribution in a concurrent object-oriented context. Unlikearray elements, the constituent elements are aware they are part of a collection, allowing collectionsto implement an aggregate behavior and interface. A simple collection de�nition is shown inFigure 24.class Counter[] fint elt total;int Counter[]::total;public:Counter(void);Counter[](void);int count(int);int elt sum(int);int Counter[]::sum(void);g; Figure 24: An ICC++ collectionThis declaration creates two classes: the Counter[] collection type and the Counter elementtype. The Counter element has just one �eld: elt total. The Counter[] collection consists ofa linearly addressable set of Counter objects and one �eld of collection state: total. Counter[]has the member function sum, and Counter has the member functions count and elt sum. Noticethat the collection declarations are quali�ed and the element declarations are not; all unquali�eddeclarations in a collection de�nition belong to the element type, and declarations for the wholecollection must be quali�ed with the collection type name.Counter foo[15];conc for(int i = 0; i < 15; i++)foo[i].count(i);printf("%dn", foo.sum()); Figure 25: Using a simple ICC++ collectionA Counter[] object can be used just like an array of Counters, with the addition of its collectionstate. It is also declared just like one, with its size being speci�ed with standard array syntax.Elements of a collection are accessed with operator[] just as array elements are. Collectionmembers are used just like those of any other object. This is illustrated in Figure 25. Note that

July 30, 1995 { 16 : 38 DRAFT 23since there are no syntactic dependencies amongst the iterations of the conc for loop, the countcalls can proceed in parallel.4.1 Collection MembersMembers can be de�ned for both the collection type and the element type just as they can bedeclared for normal classes. In addition, collections and collection elements have several pre-de�nedmembers that give information about their containing collection.4.1.1 Pre-De�ned MembersBoth the collection class and element class have knowledge of the collection, and they provideseveral built in member functions that give information about the collection as a whole. Thecollection contains basic information like its size. Collection elements, unlike array elements, areinherently part of a collection, and so they provide functions that yield information about theircontaining collection. A list of these functions is given below.� Collection membersoperator[](int) indexes the elements of the collection.operator[](void) returns an arbitrary collection element.size(void) returns the number of elements in the collection.nearest(void) returns the nearest element of the collection.� Element memberstype name::this is the enclosing collection of type type nameindex(void) returns this element's index in the collection.4.1.2 User-De�ned MembersThe member functions have access to the object state in the normal fashion: element methodsaccess the state of the element and collection methods access the collection state. Note that, sincethe elements are distinct objects, their member functions do not have direct access to the collectionstate, which is in a di�erent object. Nor do collection member functions have direct access tothe state of the elements. However, the built in members provide collections and elements withinformation about each, allowing collections to exhibit an aggregate behavior through collaborationamongst the collection itself and the elements.� Note that this integration of elements and collections is made possible because the two are de�nedtogether. If a collection's element type were separately de�ned, as it is for arrays, it could be usedoutside a collection and so it not have collection information built into it.In Figure 24, Counter[] has two methods count and sum, which together implement a dis-tributed counter, using the pre-de�ned members to pass information from the elements to thecollection. In Figure 26, the elements gather data with count, and elt sum recurses across theelements accumulating the total sum.

July 30, 1995 { 16 : 38 DRAFT 24int Counter[]::sum(void) freturn (*this)[0].elt sum(size()-1);gint Counter::elt sum(int last) fint my index = index();if (my index < last) freturn elt total + (*Counter[]::this)[my index+1].elt sum();elsereturn elt total;gint Counter::count(int val) felt_total += val;g Figure 26: De�ning collection member functions4.1.3 ConstructorsBoth the element and collection types can de�ne constructors. The syntax is just the same asconstructors for normal classes. Constructors for the collection class can specify which constructorto call for the elements with the normal initializer notation for class �elds. The collection inFigure 24 declared constructors for both the collection and the element class; in Figure 27, theseconstructors combine to set all the elt totals and total to 0.Counter::Counter(void) felt_total = 0;gCounter[]::Counter[] : Counter() ftotal = 0;g Figure 27: Collection constructors� C++ type conversion uses constructors with one argument as conversion operators. Collection con-structors can be so used, but only for the outermost collection type. Since element types cannotexist without a collection, it makes no sense to construct them individually. Thus, only collectionconstructors will be used for conversions.4.2 Nested CollectionsCollections can be nested just as arrays can; nested collections are declared just as regular collec-tions, with as many [] after the class name as desired. Internal layers of the collection are bothcollection objects and elements of another collection, hence they have both sets of pre-de�ned mem-bers. This is analogous to C++ multi-dimensional arrays, where internal arrays are both arrays

July 30, 1995 { 16 : 38 DRAFT 25themselves and elements of the enclosing array. Figure 28 shows how nested collections can be usedto implement a matrix; nested collections are used to provide two-dimensional member addressing.class Matrix[][] fint value;public:Matrix(void) f value = 0; gMatrix[](void) : Matrix() fg;Matrix[][](void) : Matrix[]() fg;int my col(void) f return index(); gint my row(void) f return Matrix[]::this->index(); gvoid Matrix[][]::invert(void) fint rows = size();int cols = (*this)[0].size();int diag = (rows + cols) / 2;conc for(int i = 0; i < rows; i++) fconc for(int j = i; i + j < diag; j++) fint temp = (*this)[i][j].value;(*this)[i][j].value = (*this)[j][i].value(*this)[j][i].value = temp;gggg; Figure 28: A matrix collectionNested collections can also be used to capture nested relationships; Figure 29 illustrates asimple grid data structure. Particles are contained in grid cells which make up a grid. The grid isone-dimensional to simplify the example. Since the nested structure is integrated, communicationcan move up and down it. The basic notion is that move particle adjusts the positions of eachparticle, and then regrid moves any particles that have changed grid cells. The move particlemember communicate down the grid, which would be possible with normal arrays; however, theregrid member communicates up the structure, requiring the particles to know they are part of anested collection.4.3 DerivationCollections can be derived from other collections and from standard classes. When deriving fromother collections of equal nesting level, inheritance of members works just as it does for classesboth for the collection and for the elements. When deriving from a collection of lesser nesting level,the innermost levels of the derived class inherit level-wise from the base class. When deriving acollection from a standard class, the element type is derived from that class.C++ inheritance rules work class-wise in collection inheritance. For instance, C++ speci�esthat declaring a function foo in a derived class hides all functions of that name in the base class, notjust any with the same type signature. For collections, declaring foo would hide all functions named

July 30, 1995 { 16 : 38 DRAFT 26class ParticleGrid[][] fpublic:typedef ParticleGrid Particle;typedef ParticleGrid[] GridCell;typedef ParticleGrid[][] Grid;private:int mass;int pos;int velocity;int regrid_p;int GridCell::width;int GridCell::last particle;int Grid::time step;public:void move(void) fint inc = velocity * Grid::this.time step;int width = GridCell::this.width;regrid_p = (pos / width - (pos += inc) / width);gvoid regrid(void) fGrid::this[GridCell::this.index()+regrid p].add particle(this);GridCell::this.remove_particle(this);gvoid GridCell::move_particles(void) fconc for(int i = 0; i < last particle; i++)this[i].move();gvoid GridCell::add_particle(Particle p) fthis[last particle++] = p;gvoid GridCell::remove particle(Particle p) ffor(int i = p.index(); i < last particle--; i++)this[i] = this[i+1];gvoid Grid::move_particles(void) fconc for(int i = 0; i < size(); i++)this[i].move particles();gvoid Grid::regrid particles(void) fconc for(int i = 0; i < size(); i++)conc for(int j = 0; j < this[0].size(); j++)if (this[i][j]� >regrid p) this[i][j].regrid();gggg; Figure 29: A particle-in-cell nested collection

July 30, 1995 { 16 : 38 DRAFT 27foo for the element type, but not for the collection type. The reverse happens when a collectionmember function named foo is declared in the derived class. An example below elucidates this.4.3.1 Derivation From ClassFigure 30 illustrates deriving a collection from a scalar class. The element type Paraccum hasAccumulator as a base type, so the Paraccum constructor can call Accumulator's. The Accumulatorsimply counts all of the sum calls. The collection functionality provides an interface using sum(int)and computes the total sum with sum(void). That functionality must de�ned separately, as it isnot inherited.class Accumulator fint total;public:Accumulator(void) f total = 0; gint sum(int i = 0) f return total += i; ggclass Paraccum[] : public Accumulator fpublic:Paraccum(void) : Accumulator() f g;Paraccum[](void) : Paraccum() f g;Paraccum[]::sum(int i) f return operator[]().sum(i); gParaccum[]::sum(void) fint total = 0;conc for(int i = 0; i < size(); i++)total += operator[](i).sum();return total;gg; Figure 30: Collection derived from classThis derivation also illustrates the class-wise nature of collection derivation alluded to above.The Paraccum[] class de�nes member functions called sum, and in C++ these would hide anyfunctions called sum that would otherwise be inherited. However, since collection inheritance isclass-wise, these functions only hide any functions called sum that Paraccum[] would inherit, butnot Accumulator::sum which is still inherited by Paracum.4.3.2 Derivation From CollectionIn Figure 31, the collection Paraduce inherits from Paraccum. It extends the Paraccum to allowaccumulation operations other than addition. Both the collection type and the element type arederived in the normal manner, so Paraduce inherits the total �eld from Paraccum and Paraduce[]inherits the sum(int)member from Paraccum[]. Also, Paraduce[] is a derived type of Paraccum[]and Paraduce is a derived type of Paraccum.

July 30, 1995 { 16 : 38 DRAFT 28class Paraduce[] : public Paraccum ftypedef int (*reducer)(int, int);reducer op;reducer Paraduce::op;public:sum(void) f return total; gsum(int i) f return total = op(total, i); gParaduce(reducer iop) : Paraccum() f op = iop; gParaduce[](reducer iop) : Paraduce(iop) f op = iop g;Paraduce[]::sum(void) fint total = 0;conc for(int i = 0; i < size(); i++)total = op(total, operator[](i).sum());return total;gg; Figure 31: Collection derived from collection4.4 DistributionWhile the ICC++ syntax makes little distinction between local and remote objects, locality mustbe managed very carefully to obtain reasonable performance. ICC++ provides a mechanism fordistributing collections to permit both concurrency generation and locality management; it worksby providing two views of a collection: a logical view and a physical view. The logical view allowsmembers of the collection to be distributed in arbitrary ways, while the physical view provides theability to write processor-centric loops and other low-level constructs.4.4.1 The Physical ViewAll collections are distributed cyclically across the physical nodes of the underlying machine, start-ing from node 0. To allow processor-centric operations to be expressed conveniently, direct accessto this physical distribution is provided by the following three operators.physical size(void) returns the number of elements in the physical collection layout, which is notguaranteed to be the same as the size returned by size(void).element(int) returns a physical element of the collection. These elements are layed out in theunderlying cyclic distribution, so element(3) will be on node 3, for instance.valid(void) returns true if a given element returned by element(int) is part of the logical col-lection, which is not guaranteed to be the case.In order to use these primitives to implement processor-centric operations, one more piece ofinformation is required: the number of processors in the system, which is provided in ICC++ by thevariable NUM PROC. A processor-centric member map operation is shown in Figure 32; this functionloops through each collection element on a given node, calling a supplied member function.

July 30, 1995 { 16 : 38 DRAFT 29void Collection[]::do processor(int proc, void (*Collection::fun)(void)) fCollection irep;int idx = proc;int num local elts = physical size() / NUM PROC;while ((irep = this[idx+=NUM PROC]).valid() && num local elts-- > 0)irep.*fun();g Figure 32: Processor-centric collection operationThis physical distribution corresponds to the default behavior of collections, but more complexdistributions can be layered on top of it, as described in the next section.4.4.2 The Logical ViewMany applications require collection distributions other than cyclic to achieve acceptable perfor-mance. ICC++ has two ways of creating a logical view of a collection that provides a customizeddistribution: overloading operator [] and mapped collections.Overloaded operator [] The default operator [] de�ned for collection types directly usesthe underlying cyclic distribution, but it can be overloaded to support customized layouts. Usingelement, overloaded versions of operator [] can map the physical layout of the collection intoany logical layout it fancies. For instance, to implement a blocked distribution, operator [] canbe de�ned as shown in Figure 33.BlockCollection BlockCollection[]::operator[](int i) fint block size = size() / NUM PROC;int which block = i / block size;int block offset = i % block size;return element(which block + block offset*NUM PROC);g Figure 33: Overloaded operator []Note that to de�ne distributions for nested collections, operator [] must be overloaded ateach level, as there is no operator [][] de�ned and no way to de�ne it.Mapped Collections Irregular distributions that do not �t cleanly into an overloaded operator[] are support through the use of mapped collections. A collection map enumerates the distributionof collection elements across virtual processors. All maps are read from a �le in an implementationdependent manner5; the �le is a sequence of integers with the signi�cance shown in Figure 34.A collection created using a map is automatically provided with an overloaded operator [] thataccesses the collection in accordance with the map speci�ed. The map is cycled through multiple5For instance, an ICC++ compiler could have a global variable for the �le name, it could be hardwired or speci�edas an option to the executable

July 30, 1995 { 16 : 38 DRAFT 30Number of maps in fileNumber of virtual processors for map 1virtual processor number for element 0virtual processor number for element 1virtual processor number for element 2...Number of virtual processors for map 2virtual processor number for element 0virtual processor number for element 1virtual processor number for element 2...Number of virtual processors for map N... Figure 34: Map �le formattimes for collections with more elements than the map speci�es. The member element(int) stillhas access to the underlying cyclic distribution.MAP_FILE--------142001
PE 0 PE 1 PE 2 PE 3

01

2

3

4

5

6

7

8

9

10

11

12

13

14

15Figure 35: A map �le and the resultant distribution of a 16-element collection.Mapped collections are created by supplying the map index as a placement argument to thecreation of the collection; the example in Figure 35 illustrates the format of the map �le. It hasone map, which has 4 virtual processors. Collection element zero is mapped to node 2, elements1 and 2 to node 0 and element 3 to node 1. This is repeated for collections with more than fourelements. A collection using this map would be created as new (1) CollectionClassName[16],as 1 is the (one-based) index of the map in the �le.4.5 SummaryCollections generalize arrays and integrate them into the object model. This integration allowsmethods to be de�ned upon arrays, and array elements to cooperate in implementing an aggregate

July 30, 1995 { 16 : 38 DRAFT 31behavior. Furthermore, since collections are collections of objects, they are part of the concurrencycontrol model, and thus can be used to express parallelism.

July 30, 1995 { 16 : 38 DRAFT 32A Performance AnnotationsE�cient execution on parallel machines generally requires careful management of object placementand the ability to optimize concurrency control. While some of this can be done by compileranalysis, it can be simpler for the programmer to provide such information, as (s)he presumablyhas a high-level notion of how the program works. ICC++ provides the type speci�ers restrictthat make assertions about object aliasing. There is also a mechanism to provide hints regardingobject locality.A.1 restrictThe restrict type speci�er can be applied only to object declarations, and it asserts that, whilethe given declaration is in scope, no reference will be made to its referent anywhere in the programexcept through the given name. The restrict speci�er applies only to the referent itself; it is nottransitive to the objects pointed to by the referent.class Tree fNode data;Tree *left;Tree *right;public:void traverse(void (*Node::fun)(void)) frestrict Tree *l = left;restrict Tree *r = right;conc fdata.*fun();left� >traverse();right� >traverse();ggg; Figure 36: restricting subcomputationsFigure 36 uses restrict to assert that the two calls to traverse will never refer to the sameportion of the tree, and that nobody else will touch the tree while traverse is executing.A.2 Object LocalityThe locality annotations of ICC++ have two components: allocation annotations and usage an-notations. The allocation annotations tell the system to create an object locally with respect tothe creator. The usage hints tell the system when an object will be local to the calling method.Both of these constructs take a relative approach to locality, and so can only be used within mem-ber functions, where the creator has a de�nite location6. These two portions work together as acontract; the programmer must ensure that, if the system obeys all the allocation annotations, theusage annotations will be correct.6A function has no associated object and so the notion of local to a function makes no sense.

July 30, 1995 { 16 : 38 DRAFT 33A.2.1 AllocationICC++ provides a pre-de�ned placement parameter for operator new named LOCAL which directsthe system to create the object in the same place as the calling method. It is used in the normalmanner for placement syntax, as shown below.foo *a = new (LOCAL) ObjectClass(7);In addition to this way of asserting locality, all objects created as auto variables of memberfunctions have the locality hint by default.A.2.2 UsageUsage locality is asserted with the type speci�er local, applied to the object declaration. This isa hint in that the system may ignore it, but it must be correct if the system obeys the creationlocality directives.int foo::bar(local foo *a)local foo *b = get my buddy();work(a, b);Here the work member function can be specialized to assume that both its parameters are localto this.

July 30, 1995 { 16 : 38 DRAFT 34References[1] A. A. Chien, U. S. Reddy, J. Plevyak, and J. Dolby. ICC++ { a C++ dialect for high perfor-mance parallel computing. Submitted for Publication, 1995.[2] Andrew Chien and Uday Reddy. ICC++ language de�nition. Concurrent Systems ArchitectureGroup Memo, February 1995.[3] John R. Ellis and David L. Detlefs. Safe, e�cient garbage collection for c++. Technical report,Xerox Palo Alto Research Center, June 1993.[4] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison-Wesley, 1990.[5] W. Horwat, A. Chien, and W. Dally. Experience with CST: Programming and implementation.In Proceedings of the SIGPLAN Conference on Programming Language Design and Implemen-tation, pages 101{9. ACM SIGPLAN, ACM Press, 1989.[6] Bjarne Stroustrup. The Design and Evolution of C++. Addsion-Wesley, 1994.[7] Sun Microsystems Computer Corporation. The Java Language Speci�cation, March 1995. Avail-able at http://java.sun.com/1.0alpha2/doc/java-whitepaper.ps.

Index*=, 18+=, 18-=, 18<<=, 18>>=, 18[], see arrays, type speci�erarraysas objects, 4type speci�er, 4barrieruser de�ned, 20casts, 5failure, 5safe, 5unsafe, 5collections, 21derivation, 24class, 26collection, 26distribution, 27members, 22built in, 22nested, 23conc, 15jumps and, 16partial order, 15concurrent loops, 16do, 17for, 16reductions, see reductionswhile, 17const cast, 6data distribution, 27dynamic cast, 6friend, 11index, collection member, 22integral, 11loopsconcurrent, see concurrent loops

reductions, see reductionsnearest, collection member, 22nested collections, 23operator[], collection member, 22pointers, 4arrays and, 4to built in types, 4reductions, 18operators, 18reinterpret cast, 6reply, 19size, collection member, 22spawn, 19static cast, 6union, 8unsafe casts, see casts, unsafe

35

