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Introduction

This document describes the design of ICC++, a new parallel C4++ dialect. ICC++4 is designed
to support both concurrent and sequential programming, and the design priority is to minimize
differences with C4++4 while providing a flexible parallel model. ICC++4 is a restricted superset
of C++4: some of the more troublesome constructs of C++ are reigned in, and the language is
extended for expressing parallelism.

e [CCH+ generally preserves the basic syntactic structure of C++4, permitting ICC++ programs to be
translated to C++ with modest effort. This allows a single source to be maintained for parallel and
sequential programs, leveraging the programming environments that exist for C4+4-.

This document starts with an overview of the sequential language, focusing on its essential
similarity to C+4 and describing the how its differences effect sequential programming. The re-
mainder of the document covers ICC++ language extensions. First, we explain the extensions to
the C++4 object model required to support concurrent programming, mainly object-based concur-
rency control, and then the explicitly concurrent statements are described: concurrent blocks and
concurrent loops. We next detail collections, which both integrate arrays into the C4++ object
model and extend them for parallel programming. The last major feature of ICC+—+ is a set of
annotations involving locality and aliasing designed to facilitate compiler optimizations. Finally,
we cover linking to external libraries (such as existing C++ code) and conclude with a succinct
grammatical summary of ICC++ changes to C++.

This document is a programmers reference for the ICC++ language, in which comprehensiveness
is more important than brevity. For a concise definition of the language, see [2]. The motivation
of the language design is discussed in [1].

Conventions

In some places both C++ and ICC++ code are used side-by-side for comparison. Since the codes
look similar, they are distinguished by using this font for C++ and this font for ICC++.
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1 Sequential Features

ICC++ is closely derived from C++, and retains most of the language intact. Classes, objects,
members and other basic features are intact; arrays have been extended significantly, but their usage
remains the same if the extensions are not used. The five major changes are the following. Firstly,
ICC++ integrates arrays into the object model; this allows user-defined array classes with all of
the attributes of standard ones. These user-defined array classes, called collections, are described
in Section 4. Secondly, pointers to built in types are forbidden. Thirdly, the semantics of casts
has been modified so that all casts are either statically safe or are checked at runtime. Fourthly,
unions have been forbidden as they, like unsafe casts, vitiate type safety. Finally, the extern form
has been generalized to accept C+4 as well as C declarations.

1.1 Pointers

There are three ICC++ features that affect pointers: integrating arrays into the object model,
forbidding pointers to non-object types and automatic dereferencing.

1.1.1 Pointers and Arrays

Arrays in ICCH+4 are first-class objects; they are defined by class definitions and have all the
attributes of standard classes. These arrays have a new syntax, based upon the element_type
[ 1 type specifier: all declarations of arrays must use the element type array name[] syntax. In
essence the syntax requires programmers to indicate when arrays are being used!, using familiar
C++ style declarations. The element typel ] syntax in ICC++ is allowed everywhere and dec-
larations of the form int foo[ ][ ] are permitted. This new use of element_typel ] syntax is
shown in Figure 1 in the ICC++ code fragment on the right. Note the declaration of the function
and of new_array; both of these show how the new syntax must be used. This breaks the connec-
tion between pointers and arrays, and so inter-conversion between them is forbidden. Thus, the
standard practice of using pointer declarations for arrays, as shown in the left hand of Figure 1 is

forbidden.

e Divorcing pointers and arrays, and integrating arrays into the object model is increasingly common in
C++ dialects such as [3, 7] because it can improve both language safety and analyzability.

e Note that separating pointers and arrays makes pointer arithmetic useless, since it was only defined
within arrays (see [4]). Hence, pointer arithmetic is forbidden in ICC++

int *copy(int sz, int *stuff) { int copy(int sz, int stuff[1)[] {
int *dup = new int[sz]; int dupl[] = new int([sz];
for(int i =0; i < sz; i++4) for(int 1 = 0; i < sz; i++)
dup[i] = stuff[i]; dup[i] = stuff[i];
return dup; return dup
} }

Figure 1: ICC++4 changes to C++4 array syntax

'In C and C++, pointers can be used to refer to both individual objects as well as arrays of objects.



July 30, 1995 — 16: 38 DRAFT 5

1.1.2 Pointers to Non-Objects

The other restriction of pointers is more fundamental; pointers to built in types are forbidden. No
int * or char * pointers are allowed in ICC++4. Some such pointers are used to represent arrays,
in which case they can simply use the type [ ] syntax; however, other uses of such pointers will
need adaptation. A common use of such pointers is to “return” multiple values from a function call;
this can be expressed using tuples, as described in Section 1.3. Furthermore, the lack of pointers
to built in types can always be worked around by creating an object with one field of the desired
type and taking a pointer to that. This is illustrated in Figure 2; the ICC++ code is on the right.

e The lack of pointers to built in types permits more thoroughgoing storage of these type in registers,
as there can be no aliasing either within or between concurrent computations.

int sum(int |, int *prinmes) { struct Int {
int sum int val;
for(int i =0; i < |I; i++) { }
sum += i;
if (isprinme(i)) int sum(int 1, Int *primes) {
(*prines) ++; int sum;
for(int i = 0; 1 < 1; i++) {
return sum sum += i;
} if (isprime(i))
primes— >val++;
}
return sum;
}

Figure 2: Faking pointers to built in types in ICC4++

1.1.3 Automatic Dereferencing

Traditional object-oriented languages provide object names. Pointers are the closest thing that
C++ has to such names, but they make an explicit distinction between the pointer and the object
which is absent for object names. To allow pointers to be used as object names, ICC4++ blurs this
distinction by supporting implicit dereferencing of object pointers used in member function calls:
when an operator or function is called on a pointer, that function is applied to the referent.

The only exceptions to this rule are operator = and operator * which are both defined for
pointer types. No other operators are defined for pointers since ICC++ forbids pointer arithmetic.

This is shown in Figure 3. In C4++, t += v would add the two pointer values, but in ICC++,
implicit dereferencing calls foo::operator +=(foo *). The other two operations illustrate the
cases where implicit dereferencing is not applied: assignment and dereferencing operations.

1.2 Casts

All casts in ICCH++ are required to be safe, and are checked at runtime if necessary. All casts
that cannot be checked are forbidden. Essentially, this forbids inter-conversion of unrelated pointer
types and casting between an arithmetic type and a pointer type. Furthermore, all casts down
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class foo {
int a;

public:
foo *operator +=(foo *i) a += i.a; return this;
foo *operator =(foo *i) a = i.a; return this;
int operator *(void) return a;

void main(void) {
int a;
foo *t = new foo;
foo *v = new foo;
t += v; // auto-dereference and foo::operator +=
t = v, // assignment is legal on pointers: no auto-dereference
a = *t; // no auto-dereference as * is legal for pointers,
} // so this would be a type error, as *t is no int

Figure 3: Automatic dereferencing of pointers in ICCH++

inheritance hierarchies are done at runtime using runtime type information. Thus, they corre-
spond to dynamic_cast rather than static_cast in the new C+4+ casting terminology. As with
dynamic_cast all failing casts return NULL. All other casts are exactly as in C++.

[6, 4] define a new cast syntax consisting of four cast operators: static_cast, dynamic_cast,
const_cast and reinterpret_cast. These operators are modified as follows:

static_cast is only allowed for coercions that may be done implicitly. It cannot be used to navigate
down inheritance hierarchies (its main purpose) because it does not do runtime checks.

dynamic_cast is permitted. Inheritance navigation done by static _cast in C4++ must use
dynamic_cast in ICC++ because it checks at runtime to ensure the conversion is correct.

reinterpret_cast is forbidden.
const_cast is allowed without restriction.

o These restrictions upon casting enable ICC+4++ to provide garbage collection. Casting pointers into
arithmetic types greatly reduces the effectiveness of garbage collection, and even unsafe casts can do
so by confusing the system about what pointers it actually has.

e Unsafe casts are generally regarded as bad style in application-level programming. While they can
be necessary in low-level system code such as device drivers, ICC++ 1s not intended for that level of
programming.

Because all casts are statically safe or checked at runtime programmers can write type-safe code
by simply testing for NULL return values from any dynamic_casts. Because ICC+4++ can check
types at runtime, programmers can safely downcast in many cases that would be prohibited in
C++. As an aid to finding logical programming errors, code can have diagnostics added to print
useful errors when these casts fail; this is illustrated in Figure 4.
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struct foo { struct foo {
int a; int a;
foo *buddy; foo *buddy;
1 1
struct bar : public foo { struct bar : public foo {
int b; int b;
voi d dowor k(void); void do_work(void);
1 1
voi d do(bar *ne) { void do(bar *me) {
bar *bud = (bar *) ne— >buddy; bar *bud = (bar *) me— >buddy;
bud— >do_wor k() if (bud == NULL)
} cout << "do: bad buddy found";
else
bud— >do_work()
}

Figure 4: Handling downcasts in ICC++

Figure 4 illustrates the advantage of checking casts at run time. As with the dynamic_cast
operator, casts that fail return the null pointer; this allows the user code to handle failure explicitly.

1.3 Tuples

ICC++ provides tuples to allow multiple return values for functions. A tuple is essentially an
implicit struct in which fields can be accessed only by destructuring, and are declared using the
syntax ( <type>, <type>, ... ). Tuples can only be returned by functions and can only be
used in assignment; as suggested if Section 1.1.2, tuples can be used in place of pointers to return
multiple values. This is illustrated in Figure 5.

e Using tuples rather than pointers to return multiple values allows the return values to passed directly
through the stack or as one communication operation in a parallel machine.

1.4 Unions

The last restriction imposed by ICC++ is that unions are not allowed. Unions create a loophole
which reduces the runtime type safety of programs, and they are already emasculated in C4++
since they cannot contain fields of types that have constructors nor can they be used for derivation.
Derivation can be used to represent unions (see Figure 6), at some cost in storage.

1.5 extern

Just as C+4 permits access to C code using extern declarations, so ICC++ allows access to both
C++ and C code. ICC++ extends the extern declaration slightly to allow the form extern "C++"
declaration. The extern declaration indicates that the form is implemented in another language
and all appropriate format conversions and calling conventions will be automatically handled. The
extern "C" works just as it does in C4++, but extern "C++" is more involved, as Figure 7 suggests.
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doubl e (double, double)
ny_di v(doubl e a, my_div(double a, double b) {
doubl e b, int quot = a / b;
doubl e *q) int rem = a % b;
{ return(a,b);
g =a %b; }
return a / b;
} void main(void) {
int foo, bar;
void mai n(voi d) { (foo, bar) = my_div(88.7, 5);
int foo, bar; }
foo = nydiv(88.7, 5, &bar);
}

Figure 5: Using multiple return values in ICCH++

uni on foo { struct foo {};
int a; struct foo_int : public foo {
fl oat b; int a;
b IS
struct foo_float : public foo {

voi d dunmpint(foo *a) { float b;

cout << a— >a; }s
}

void dump_int(foo *a) {
foo_int b = (foo_int *) a;
cout << b— >a;

1

Figure 6: Faking unions via derivation in ICCH++

In Figure 7, the class foo can be used normally in ICC++ although it is a C++ class. Any
differences in the object format or calling conventions between the ICC4++ implementation and the
C++ implementation will be handled by the ICC++ system. Just as the C++ extern mechanism
is not designed to allow C+4 objects to be passed into Cz7 so the ICC44 extern mechanism
does not generally allow ICC++ objects to be passed into C+4 or C. For this, a more general
interoperability scheme is required, such as the IDL interface defined in a forthcoming Appendix
to this manual.

1.6 Summary

ICC+4 makes several significant changes to C+4, most prominently reworking the syntax for
arrays and forbidding pointers to built in types. Changes are also made to casting and unions
are prohibited. The change to arrays increases the static type safety of programs by preventing
confusion between arrays and pointers to single objects; type safety is further enhanced by banning
unions and prohibiting unsafe casts. Disallowing pointers to built in types allows implementations

204+ class declarations will not parse in any C compiler if they use C4++4 constructs such as member functions.
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extern "C" {
#include <stdio.h>

1

extern "C++" {
class foo {
int a;

public:
int get_a(void);
int set_a(int);
b
}

void main(void) {
foo *a = new foo;
conc {
a— >set_a(b);
printf("set_a called with 5.");

}
}

Figure 7: ICC++4 code using extern "C++"

complete freedom in caching them, without fear of aliasing issues. ICCH4+ also provides some
extensions to the C++ syntax, allowing multiple values to be returned conveniently from functions
and making pointers behave more like traditional object names. In the following sections, we discuss
extensions to C++ to support high performance and concurrency.
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2 Concurrent Objects

The core of object-oriented programming is building abstractions — encapsulated data and program
which define a well-specified interface. The abstraction model utilizes a set of accessor methods that
perform logically atomic operations upon the abstraction’s state; each operation must maintain the
consistency of that state. Concurrency allows only a partial order on state updates, complicating
the notion of consistency. Any concurrent model must preserve the notion of logically atomic
operations upon an abstraction in a concurrent setting.

To support concurrent abstractions, ICC4++ extends C++ by introducing explicit object-based
concurrency; this requires a significant extension to the object model with respect to objects in
C++: a concurrency control scheme is introduced to ensure consistency of object state, which
provides a framework for reasoning about the behavior of concurrent programs. ICC++4 provides
both concurrency control and concurrency guarantees which specify respectively at most and at
least how much concurrency a program will have.

2.1 Object Consistency

The notion behind object-based concurrency control is that objects assure the consistency of their
own state. Concurrent calls upon the object interface are not allowed to interfere with each other,
meaning that calls can only run concurrently if such execution is equivalent to some locally sequen-
tial order of the calls. Effectively, two calls can execute concurrently only if neither methods writes
any member the other one reads.

This notion of consistency applies only to the actual instance variables themselves; that is to
the actual state of the object. Thus for a member of type foo * sequentializability is enforced only
for the pointer itself, not for the object to which the pointer refers. Similarly, any state that is not
part of the object is not protected, so updates to global variables from within methods will not
have any concurrency control. For this reason, static member are not considered part of any object
for concurrency control purposes.

e It might seem that static members should be part of every object of that class; however, this would
entail one of two problems. Fither there would still be race conditions amongst updates from different
objects or global serialization would be needed across all objects of that class to prevent such races.

2.1.1 Member Functions

Some examples show how this rule applies to member functions. Figure 2.1.1 illustrates simple
sharing patterns: members left(void) and right(void) can be concurrent as can multiple calls
to one of them. Such calls both read the same data, but do not write and so cannot interfere.
Concurrent calls to set_right and set_left are also permitted, as neither writes anything the
other might read. However, calls to left and set_left cannot be concurrent, as they can interfere
through left.

Figure 2.1.1 provides a more complex example. Although set_length and set_height both read
and write the object, neither writes a field the other reads, and so they can proceed concurrently.
A hairier case is multiple calls to set_length; while neither writes a field the other reads, multiple
interleaved methods writing the same state may not be sequentializable®, and so these calls would
not be concurrent.

® At least, not if it writes more than one field.
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class Line {
int _left;
int _right;

public:
int left(void) { return _left; }
int set_left(int i) { return _left = i; }
int right(void) { return _right; }
int set_right(int i) { return _right = i; }

Figure 8: Member functions requiring simple concurrency control

class Region {
int _top;
int _left;
int _right;
int _bottom;

int _length;
int _height;

public:
int set_length(void) { return _length
int set_height(void) { return _height

right - _left; }
_top - _bottom; }

int area(void) { return _length * _height; }

b
Figure 9: Member functions that must be sequentialized

2.2 Consistency across Objects

ICC++ ensures the consistency of single objects, but sometimes consistency is desired across mul-
tiple objects. ICCH++ provides two mechanisms for this: the integral declaration and friend
functions.

2.2.1 1integral

The integral declaration is a type specifier used like const that can be applied only to member
variables. It extends the concurrency control semantics of the object to include that member.
Thus, two methods can run concurrently on an object only if such execution is equivalent to
some sequential order for both that object and all members declared integral. For instance, the
buckets member in Figure 2.2.1 must be declared integral to incorporate it into the hash table’s
concurrency control. If it were not, then calls to add could run concurrently since it does not effect
the state of the HashTable itself. If this were to happen, interleaving calls to £ind and add could
cause the same element to be inserted multiple times. However, since £ind reads and add writes
the state of buckets, declaring buckets to be integral prevents this from happening.
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e Note that this is no guarantee that other member functions on an integral object will not interfere
with add or find. Other member functions could be called upon the array named by buckets via
some other pointer to it. The integral declaration applies the HashTable’s concurrency control to
the buckets member. The only guarantee is that calls from this object using the name buckets will
be sequentializable.

class HashTable {
integral Bucket *[] buckets;
int n_buckets;

Bucket *find bucket(Key k) {
return buckets[k.hash¥%n buckets];
}

public:

Element find(Key k) {
return find_bucket(k)— >find(k);
}

Element add(Element e) {
Bucket #b = find_bucket(e.key);
if ('b— >find(e.key)) b— >add(e);
return e;

}
¥

Figure 10: Extending concurrency control to contained objects using integral

2.2.2 friends

friend functions in C++ are considered member functions upon all friendly arguments, and thus
friend functions in ICCH+—+ can be used to procedurally compose operations on several objects into
a single consistent operation subject to the same object consistency and concurrency guarantees as
above. That is, the friend function will be consistent with respect to all of the objects for which
it operates as a friend.

Consider an example of friends (see Figure 2.2.2) in which a matrix is multiplied by a vector.
Neither argument may be changed while the operator * is running. Declaring operator * to be
a friend of both the matrix and vector classes produces this effect by incorporating it into the
concurrency control of both classes.

2.3 Concurrency Guarantees

The other aspect of concurrent semantics is concurrency guarantees. Essentially, two members
are guaranteed to run concurrently if they obviously need not be sequentialized. That is, the
member code and any nested calls on this are examined for explicit accesses to object state. Two
members must run concurrently if neither one can possibly write any object state that might be
read or written by the other. Figure 2.3 shows a simple example of methods with guaranteed
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class Vector;

class Matrix {
// other state here

friend Vector operator*(Matrix&, Vector);

¥

class Vector {
// other state here

friend Vector operator*(Matrix&, Vector);

b
Figure 11: Extending concurrency control to multiple objects using friends

parallelism based upon a relaxation method; the only concurrency guarantee for this class is that
reads will be concurrent with other reads and with update. Since update and do_step both access
running total, no concurrency is guaranteed between them.

class GridCell {
int total;
int running total;

public:
int read(void) { return total; }
void update(int i) { running total += i; }

void do_step(void) {
total = running total;

}
¥

Figure 12: ICC++ ensures concurrency amongst reads

2.3.1 Data Dependence

Figure 2.3 illustrates the common case where it is apparent what state a member accesses; how-
ever, this is not always the case. Conditionals, member pointers, indirect function calls and other
constructs make the state a method accesses dependent upon the particular invocation. Thus all
reads and writes either will happen or may happen during a particular invocation, as determined
be trivial syntactic examination. Concurrency between two methods is guaranteed only when nei-
ther method may write any state the other may read. In Figure 2.3.1, there is in fact no race
condition between update_when_even and update_when_odd because guard2 has to be either 1 or
0. However, there is no concurrency guarantee because they both read and write total.
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e This strict insistence upon simple syntactic analysis that does not even consider obvious cases like
simple conditionals is vital. Otherwise, compiler analysis would be required to implement a language
guarantee, making language semantics dependent upon current compiler capability and potentially
subjecting them to change in step with compiler technology.

class Bizarre {
int total;
int guard;

public:

void update when even(int i) {
if (guard’2==0)
total += 1i;
}

void update when odd(int i) {
if (guard2==1)
total += 1i;

Figure 13: Concurrency not guaranteed

2.4 Summary

The concurrency control semantics of ICC++ are based upon maintaining consistent state for
objects. Concurrency upon an object is allowed only when methods executing simultaneously
when such execution is equivalent to some sequential execution. To make reasoning about deadlock
freedom possible, ICC4++ also provides a guarantee that concurrency upon a single object will be
exploited when it is syntactically obvious that a set of methods cannot effect each others’ operation.

e An implementation has plenty of freedom between the concurrency control and guarantee semantics.
For instance, the compiler could choose to run the methods of Figure 2.3.1 concurrently, if it could
determine that there is no race condition. Even if it could not figure this out, it could still make them
concurrent, putting an explicit lock around the total += i in each method.
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3 Concurrent Statements

ICC++ allows the programmer to explicitly insert concurrency into a program; essentially con-
current statements specify a set of statements to execute and under-specify their order. Block
structured concurrency is added by means of concurrent blocks and concurrent loops. ICC++4 also
provides statements to introduce arbitrary, unstructured concurrency.

3.1 conc Blocks

The basic mechanism for introducing concurrency in ICC++ is the conc block. A conc block
is a compound statement, prefixed with the keyword conc. This block, an example of which is
Figure 14, defines a partial order on its constituent statements. Any pair of statements in a conc
block can execute concurrently unless an identifier appearing in both is assigned in at least one of
them, or the former statement contains a jump statement (goto, break or continue) that may
prevent the latter being executed. Blocks are considered ordinary statements for this purpose. For
instance, in Figure 14, statements 1 and 2 can execute concurrently, then statements 3 and 4 can
execute concurrently. Statement 5 must wait until 4 completes, because 4 contains a break.

conc {
double foo = pow(3.0,8); // 1
double bar = log(46.7); // 2
double baz = foo + bar; // 3
if (bar < 0) break; // 4
int fuzz = foo; // 5

Figure 14: A conc block

These rules are designed to expose concurrency upon objects, while preserving sequential se-
mantics where it is natural. This enables the introduction of concurrency with small perturbation
to program structure. Sequentializing for local variables allows preexisting compound statements
that declare and use local variables to be transformed into conc blocks, exposing concurrency for
calls upon objects within them. Similarly, permitting control flow within conc blocks, and provid-
ing a natural semantics for it, allows conc to be applied to preexisting code where such irregular
control structures are used. Indeed, if the concurrency control on objects is sufficient to maintain
program correctness, a conc block may be introduced without changing program behavior.

Assignment is a decidedly convoluted concept in C4++, meaning different things for different
types. For arithmetic types such as int and double, assignment means operator = and the myriad
update operators such as operator +=. For pointer types, ICC++ supports only operator =. For
object types, the concept of assignment breaks down entirely, as the update operators are user
defined methods and even operator = itself can be overloaded. In this context, only operator =
is considered an assignment to an object type, because it “looks like” assignment and even behaves
like it when not overloaded.

The results of this are illustrated in Figure 15. In this case, statements 3, 4, 5 and 6 must wait
for statement 1 to finish and statement 5 must also wait for statement 2. They can then all execute
concurrently, since statement 5 does not assign to a, but instead to a’s referent. Statements 7 and
8 may start once statement 2 has done; statement 9 waits for them because it assigns b. Statement
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10 starts once 9 finishes. Finally, Foo must be called on b; the destructor is considered to assign
b, and starts after statement 10 completes.

conc {
Foo *a = new Foo(5); // statement 1
Foo b(5); // statement 2
a— >play("happy") ; // statement 3
a— >work("sad"); // statement 4
*a = b; // statement 5

// (this is the same as a— >operator=(b);)
a— >play("ecstatic"); // statement 6

b.work("miserable"); // statement 7
b.play("joyous"); // statement 8

b = *a; // statement 9

b.work("depressed"); // statement 10

Figure 15: An involved conc block

The basic semantics of jump statements are preserved in conc blocks; statements will not
execute if control flow jumps around them and can execute multiple times if control flow jumps
back to them. This is expressed as a dependence between each statement containing a jump and
all those statement that it may prevent from execution. The simplest case is a jump, such as break
or continue, that exits the conc block. Such jumps create a dependence upon all subsequent
statements in the conc block, which cannot execute until the statement containing the jump has
completed without jumping. Figure 3.1 has an example of this. Note that this preserves the
behavior of break and continue when used in a conc block within a loop or switch.

Jumps within a conc block come in two flavors: forward and backward. A forward jump
creates a dependence between itself and all statements in the block between it and its corresponding
label. This is illustrated in Figure 16, where the statements marked with a * are dependent upon
statement. A backward jump creates dependencies between itself and the next “iteration” of the
implicit loop created by the goto. This is shown in Figure 17.

3.2 Concurrent Loops

Each of the C++ looping constructs can be modified by conc producing conc for, conc while,
and conc do while. C+4+ is unusual in that no loop construct has a distinguished loop variable,
as does for in Pascal and do in Fortran. Thus, the semantics of the concurrent loop forms must be
designed carefully to expose cross-iteration concurrency while retaining reasonable behavior for the
local variables. Furthermore, the concurrent loops must be compatible extensions. Since all C4++
loops allow control flow operations, the concurrent loops must support them as well. The resulting
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conc {
conc { a;
a; 11: c; *
if (b) goto 11; if (b) goto 11;
c; * ..
11: d; d;

Figure 16: forward Figure 17: backward

Figure 18: Dependencies caused by unstructured control flow in conc blocks

semantics is that, in a conc loop, loop carried (read after write) dependences are respected only for
scalar variables, but not for others such as array dependences and those through pointer structures.
Essentially, conc loops are dynamically unfolding conc blocks, with local variables renamed for each
iteration, as shown in Figure 19

conc while (i < 5) { if (1 < 5)
a->foo(i); conc {
i+=1; a->foo(i);
¥ i0 = i+1;
==> if (i0 < 5)
conc {
a->foo(i0);
il = i0 + 1;

Figure 19: A concurrent loop as a dynamically unfolding conc block

The motivation of this design parallels that of conc blocks. Permitting control flow and respect-
ing scalar variable dependences within concurrent loops simplifies adding concurrency to preexisting
sequential loops. As with conc blocks, concurrent loops specify available concurrency and make
no guarantees about actual concurrency. This allows the implementation considerable latitude in
scheduling iterations, such as running groups of iterations sequentially on different nodes.

Figure 20. In this loop, the cross-iteration dependency for i causes the loop counter to
increment without race conditions, but there are no restrictions upon the concurrency of the
workers[i].dowork() calls.

Worker workers[10]
conc for (int 1 = 0; 1 < 10; i++)
workers[i] .dowork();

Figure 20: A data-parallel loop
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A more complex example (Figure 21) illustrates the concurrency control in parallel loops in more
detail. The basic idea is that the workers do some work and then dump a checkpoint, repeating
until all work is done. Since there is a dependence between the conc while loop test and the
work portion, the work portions of each iteration will be sequentialized, and the conc for inner
loops will be sequential as well because they all may write s. The checkpoint portion of the while
iterations will happen concurrently, despite the continue statement. The continue statement
creates a dependence between it and the rest of the body, but once it executes, the rest of the loop
and subsequent iterations can proceed concurrently. Note that the checkpointing must happen after
the computation, because it uses stage which the computation updates. The next loop test and
iteration can start before the checkpointing has finished because there is no dependence®. Thus,
this is a partially parallel loop.

Worker workers[10];
conc while (stage < last_stage) {
// do some work
int s = last_stage;
bool no_dump = false;
conc for(int i = 0; i < 10; i++) {
int p = workers[i].do_stages();
if (p < 0) no_dump = true;
else if (p < s8) s = p;
}
stage += s;
if (no_dump) continue;

// dump checkpoint
for(int j = 0; j < 10; j++)
workers[j].dump_state(stage);

Figure 21: A partially parallel loop

The motivation of this design parallels that of conc blocks. Permitting control flow and respect-
ing scalar variable dependences within concurrent loops simplifies adding concurrency to preexisting
sequential loops. Observe how a fairly complicated loop like Figure 21 could have concurrency ex-
posed by inserting conc, while preserving the sequential semantics required by scalar variables like
stage and the continue statement.

3.2.1 Reductions

The semantics of conc blocks and hence of concurrent loops provides that a sequence of updates to
a simple variable be sequentialized. However, this is not always desirable. When the operations are
associative and transitive, they can be more efficiently implemented as parallel reductions. ICC++
provides support for this using the update operators of C; the following operators can be used in
reductions: +=, -=, *=, <<=, >>=, These operators can be reduced both for arithmetic types

Tt is up to the Worker objects to make sure that do_stages and dump_state do not interfere with each other.
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and user defined types. It is up to the programmer to ensure that user-defined versions of these
operators are indeed associative and transitive if they are used in parallel loops.

extern int all;
extern int a_size;

// a potential reduction
int total;
conc for(int 1 = 0; i < a_size; a++)
if (i%2)
total += al[i]

// cannot reduce

conc for(int j = 0; j < a_size; j++)
printf ("%d

n", total += al[il);

Figure 22: Reduction examples

As with concurrent loops themselves, there is no guarantee of concurrency for reductions; these
operators may execute in parallel but are not required to do so. Furthermore, reductions will only
be used when the intermediate results are never used.

3.3 Unstructured Concurrency

Concurrent blocks and loops provide a structured mechanism for expressing concurrency within
the traditional C control structures; however, sometimes a less structured mechanism is required
to express complex concurrency. ICC++ provides spawn and reply to support this unstructured
concurrency. The spawn statement generates parallelism and the reply function gives the user
precise control of caller/callee synchronization.

3.3.1 Spawn

The statement spawn s; creates a new thread to execute the statement s, which can be an arbitrary
statement, including a compound one. All local variables in scope at the spawn statement become
read-only in the spawned thread, preventing unsynchronized access to them by the spawning and
spawned threads.

The spawned and spawning threads are guaranteed to run concurrently, unlike conc which is
merely a hint. This provides the programmer with more direct control over concurrency, but this
guarantee can be expensive to enforce, and generally should be used sparingly.

e In this context, “concurrently” means only that neither must wait for the other. The execution of
spawner and spawned will be interleaved if that i1s required. This is formally known as weak fairness.

3.3.2 Reply

An object reply is created for each function call in the program execution; it accepts operator ()
and it has the prototype void reply(r), where 7 is the return type of the callee. When called,
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it returns a value to the caller, just as the return statement does, but reply does not terminate
execution of the caller, allowing caller and callee to run in parallel.

Furthermore, the reply object can be passed out of a function, effectively delegating respon-
sibility to returning a value to some other function. Passing reply out can be used to implement
tail forwarding as well as user defined synchronization structures.

3.3.3 Unstructured Idioms

The spawn and reply mechanisms can be used to implement customized communication and syn-
chronization structures. A couple of common examples, tail forwarding [5] and barriers, are de-
scribed below.

Tail Forwarding can accomplished simply using the form spawn reply(e). The expression e
will be spawned and evaluated in parallel, and then the result will be returned to the caller of the
spawning function.

Barriers can be implemented using a user-defined barrier class. Such a class, shown in Figure 23,
captures the replys of all the synchronizing functions, and then calls them all at once when
everybody has made it to the barrier.

class Barrier {
typedef void (*reply obj)(...);
reply obj replies[];
int count;
int index;

public:
Barrier(int i) {
count = i;
replies = new reply. objlcount];

}

wait(void) {
replies[index++] = reply;
if (index == count)
for(int 1 = 0; i < count; i++)
(*replies[i]) O);

Figure 23: A user-level barrier

3.4 Summary

The concurrent constructs of ICC++ are designed make expressing concurrency natural within a
C++ framework. The conc blocks allows concurrency to be introduced into ICC++4 programs
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while preserving the familiar sequential semantics for variables which cannot handle concurrency.
Concurrent loops permit regular parallelism to be expressed simply, and the unstructured constructs
allow customized parallel structures to be used when necessary.
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4 Collections

ICC++ replaces C++4 arrays with collections, which integrate arrays into the object model. A
collection consists of an indexable set of element objects and a separate collection state. Both the
collection itself and its elements have a class type, which allows both to be treated as objects,
permitting members and derivation. Furthermore, this collection of objects provides a convenient
form for expressing parallelism and data distribution in a concurrent object-oriented context. Unlike
array elements, the constituent elements are aware they are part of a collection, allowing collections

to implement an aggregate behavior and interface. A simple collection definition is shown in
Figure 24.

class Counter[] {
int elt_total;
int Counter[]::total;
public:
Counter(void);
Counter[](void);

int count(int);
int elt_sum(int);
int Counter[]::sum(void);

Figure 24: An ICCH++ collection

This declaration creates two classes: the Counter[] collection type and the Counter element
type. The Counter element has just one field: elt_total. The Counter[] collection consists of
a linearly addressable set of Counter objects and one field of collection state: total. Counter[]
has the member function sum, and Counter has the member functions count and elt_sum. Notice
that the collection declarations are qualified and the element declarations are not; all unqualified
declarations in a collection definition belong to the element type, and declarations for the whole
collection must be qualified with the collection type name.

Counter fool[15];

conc for(int 1 = 0; i < 15; i++)
fool[il.count(i);

printf ("%d
n", foo.sum());

Figure 25: Using a simple ICC++ collection

A Counter[] object can be used just like an array of Counters, with the addition of its collection
state. It is also declared just like one, with its size being specified with standard array syntax.
Elements of a collection are accessed with operator[] just as array elements are. Collection
members are used just like those of any other object. This is illustrated in Figure 25. Note that
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since there are no syntactic dependencies amongst the iterations of the conc for loop, the count
calls can proceed in parallel.

4.1 Collection Members

Members can be defined for both the collection type and the element type just as they can be
declared for normal classes. In addition, collections and collection elements have several pre-defined
members that give information about their containing collection.

4.1.1 Pre-Defined Members

Both the collection class and element class have knowledge of the collection, and they provide
several built in member functions that give information about the collection as a whole. The
collection contains basic information like its size. Collection elements, unlike array elements, are
inherently part of a collection, and so they provide functions that yield information about their
containing collection. A list of these functions is given below.

e (ollection members

operator| |(int) indexes the elements of the collection.
operator| |(void) returns an arbitrary collection element.
size(void) returns the number of elements in the collection.

nearest(void) returns the nearest element of the collection.
e [lement members

type_name::this is the enclosing collection of type type name

index(void) returns this element’s index in the collection.

4.1.2 User-Defined Members

The member functions have access to the object state in the normal fashion: element methods
access the state of the element and collection methods access the collection state. Note that, since
the elements are distinct objects, their member functions do not have direct access to the collection
state, which is in a different object. Nor do collection member functions have direct access to
the state of the elements. However, the built in members provide collections and elements with
information about each, allowing collections to exhibit an aggregate behavior through collaboration
amongst the collection itself and the elements.

e Note that this integration of elements and collections is made possible because the two are defined
together. If a collection’s element type were separately defined, as it is for arrays, it could be used
outside a collection and so it not have collection information built into it.

In Figure 24, Counter[] has two methods count and sum, which together implement a dis-
tributed counter, using the pre-defined members to pass information from the elements to the
collection. In Figure 26, the elements gather data with count, and elt_sum recurses across the
elements accumulating the total sum.
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int Counter[]::sum(void) {
return (*this)[0].elt_sum(size()-1);

1

int Counter::elt_sum(int last) {
int my_index = index();
if (my_index < last) {
return elt_total + (*Counter[]::this)[my_index+1].elt_sum();
else
return elt_total;
}

int Counter::count(int val) {
elt_total += val;

1

Figure 26: Defining collection member functions

4.1.3 Constructors

Both the element and collection types can define constructors. The syntax is just the same as
constructors for normal classes. Constructors for the collection class can specify which constructor
to call for the elements with the normal initializer notation for class fields. The collection in
Figure 24 declared constructors for both the collection and the element class; in Figure 27, these
constructors combine to set all the elt_totals and total to 0.

Counter: :Counter(void) {
elt_total = 0;

1

Counter[]::Counter[] : Counter() {
total = O;

1

Figure 27: Collection constructors

e CH+ type conversion uses constructors with one argument as conversion operators. Collection con-
structors can be so used, but only for the outermost collection type. Since element types cannot
exist without a collection, it makes no sense to construct them individually. Thus, only collection
constructors will be used for conversions.

4.2 Nested Collections

Collections can be nested just as arrays can; nested collections are declared just as regular collec-
tions, with as many [ | after the class name as desired. Internal layers of the collection are both
collection objects and elements of another collection, hence they have both sets of pre-defined mem-
bers. This is analogous to C+4 multi-dimensional arrays, where internal arrays are both arrays
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themselves and elements of the enclosing array. Figure 28 shows how nested collections can be used
to implement a matrix; nested collections are used to provide two-dimensional member addressing.

class Matrix[1[] {
int value;

public:

Matrix(void) { value = 0; }
Matrix[](void) : Matrix() {};
Matrix[][](void) : Matrix[1() {};

int my_col(void) { return index(); }
int my row(void) { return Matrix[]::this->index(); }

void Matrix[][]::invert(void) {

int rows = size();

int cols (*this) [0].size();

int diag = (rows + cols) / 2;

conc for(int i = 0; i < rows; i++) {

conc for(int j = i; i + j < diag; j++) {

int temp = (*this)[i][j].value;
(*this)[i][j].value = (*this)[j][i].value
(*this)[j]1[i].value = temp;

Figure 28: A matrix collection

Nested collections can also be used to capture nested relationships; Figure 29 illustrates a
simple grid data structure. Particles are contained in grid cells which make up a grid. The grid is
one-dimensional to simplify the example. Since the nested structure is integrated, communication
can move up and down it. The basic notion is that move particle adjusts the positions of each
particle, and then regrid moves any particles that have changed grid cells. The move_particle
member communicate down the grid, which would be possible with normal arrays; however, the
regrid member communicates up the structure, requiring the particles to know they are part of a
nested collection.

4.3 Derivation

Collections can be derived from other collections and from standard classes. When deriving from
other collections of equal nesting level, inheritance of members works just as it does for classes
both for the collection and for the elements. When deriving from a collection of lesser nesting level,
the innermost levels of the derived class inherit level-wise from the base class. When deriving a
collection from a standard class, the element type is derived from that class.

CH+ inheritance rules work class-wise in collection inheritance. For instance, C+-+ specifies
that declaring a function foo in a derived class hides all functions of that name in the base class, not
just any with the same type signature. For collections, declaring foo would hide all functions named
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class ParticleGrid[1[] {

public:
typedef ParticleGrid Particle;
typedef ParticleGrid[] GridCell;
typedef ParticleGrid[][] Grid;

private:
int mass;
int pos;
int velocity;
int regrid_p;
int GridCell: :width;
int GridCell::last_particle;
int Grid::time_step;

public:
void move(void) {
int inc = velocity * Grid::this.time_step;
int width = GridCell::this.width;
regrid_p = (pos / width - (pos += inc) / width);

1

void regrid(void) {
Grid::this[GridCell::this.index()+regrid p].add particle(this);
GridCell::this.remove_particle(this);

1

void GridCell::move_particles(void) {
conc for(int i = 0; i < last_particle; i++)
this[i] .move();
}

void GridCell::add_particle(Particle p) {
this[last particle++] = p;

1

void GridCell::remove particle(Particle p) {
for(int i = p.index(); i < last_particle-—; i++)
this[i] = this[i+1];

}

void Grid::move_particles(void) {
conc for(int i = 0; i < size(); i++)
this[i] .move particles();
}

void Grid::regridparticles(void) {
conc for(int i = 0; i < size(); i++)
conc for(int j = 0; j < this[0].size(); j++)
if (this[il[jl— >regridp) this[il[j].regrid();

Figure 29: A particle-in-cell nested collection

26
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foo for the element type, but not for the collection type. The reverse happens when a collection
member function named foo is declared in the derived class. An example below elucidates this.

4.3.1 Derivation From Class

Figure 30 illustrates deriving a collection from a scalar class. The element type Paraccum has
Accumulator as a base type, so the Paraccum constructor can call Accumulator’s. The Accumulator
simply counts all of the sum calls. The collection functionality provides an interface using sum(int)
and computes the total sum with sum(void). That functionality must defined separately, as it is
not inherited.

class Accumulator {

int total;
public:

Accumulator(void) { total = 0; }

int sum(int i = 0) { return total += i; }
}

class Paraccum[] : public Accumulator {
public:
Paraccum(void) : Accumulator() { };
Paraccum[] (void) : Paraccum() { };

Paraccum[]::sum(int i) { return operator[]1().sum(i); }
Paraccum[]::sum(void) {
int total = 0;
conc for(int i = 0; i < size(); i++)
total += operator[](i).sum();
return total;

}
¥

Figure 30: Collection derived from class

This derivation also illustrates the class-wise nature of collection derivation alluded to above.
The Paraccum[] class defines member functions called sum, and in C++ these would hide any
functions called sum that would otherwise be inherited. However, since collection inheritance is
class-wise, these functions only hide any functions called sum that Paraccum[] would inherit, but
not Accumulator: :sum which is still inherited by Paracum.

4.3.2 Derivation From Collection

In Figure 31, the collection Paraduce inherits from Paraccum. It extends the Paraccum to allow
accumulation operations other than addition. Both the collection type and the element type are
derived in the normal manner, so Paraduce inherits the total field from Paraccum and Paraduce[]
inherits the sum(int) member from Paraccum[]. Also, Paraducel[] is a derived type of Paraccum[]
and Paraduce is a derived type of Paraccum.



July 30, 1995 — 16: 38 DRAFT 28

class Paraduce[] : public Paraccum {
typedef int (*reducer)(int, int);
reducer op;

reducer Paraduce::op;

public:
sum(void) { return total; }
sum(int i) { return total = op(total, i); }

Paraduce(reducer iop) : Paraccum() { op = iop; }
Paraduce[] (reducer iop) : Paraduce(iop) { op = iop };

Paraduce[]::sum(void) {
int total = 0;
conc for(int i = 0; i < size(); i++)
total = op(total, operator[](i).sum());
return total;

}
¥

Figure 31: Collection derived from collection

4.4 Distribution

While the ICC++4 syntax makes little distinction between local and remote objects, locality must
be managed very carefully to obtain reasonable performance. 1CC++ provides a mechanism for
distributing collections to permit both concurrency generation and locality management; it works
by providing two views of a collection: a logical view and a physical view. The logical view allows
members of the collection to be distributed in arbitrary ways, while the physical view provides the
ability to write processor-centric loops and other low-level constructs.

4.4.1 The Physical View

All collections are distributed cyclically across the physical nodes of the underlying machine, start-
ing from node 0. To allow processor-centric operations to be expressed conveniently, direct access
to this physical distribution is provided by the following three operators.

physical_size(void) returns the number of elements in the physical collection layout, which is not
guaranteed to be the same as the size returned by size(void).

element(int) returns a physical element of the collection. These elements are layed out in the
underlying cyclic distribution, so element (3) will be on node 3, for instance.

valid(void) returns true if a given element returned by element(int) is part of the logical col-
lection, which is not guaranteed to be the case.

In order to use these primitives to implement processor-centric operations, one more piece of
information is required: the number of processors in the system, which is provided in ICC4++ by the
variable NUM_PROC. A processor-centric member map operation is shown in Figure 32; this function
loops through each collection element on a given node, calling a supplied member function.
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void Collection[]::doprocessor(int proc, void (*Collection::fun)(void)) {
Collection irep;
int idx = proc;
int num local elts = physical size() / NUM_PROC;
while ((irep = this[idx+=NUM_PROC]).valid() && num local_elts-- > 0)
irep.*fun();

1

Figure 32: Processor-centric collection operation

This physical distribution corresponds to the default behavior of collections, but more complex
distributions can be layered on top of it, as described in the next section.

4.4.2 The Logical View

Many applications require collection distributions other than cyclic to achieve acceptable perfor-
mance. [CC4++ has two ways of creating a logical view of a collection that provides a customized
distribution: overloading operator [] and mapped collections.

Overloaded operator [] The default operator [] defined for collection types directly uses
the underlying cyclic distribution, but it can be overloaded to support customized layouts. Using
element, overloaded versions of operator [] can map the physical layout of the collection into
any logical layout it fancies. For instance, to implement a blocked distribution, operator [] can
be defined as shown in Figure 33.

BlockCollection BlockCollection[]::operator[](int i) {
int block_size = size() / NUM_PROC;
int which_ block = i / block_size;
int block_offset = i % block.size;
return element(which block + block_offset*NUM_PROC);

Figure 33: Overloaded operator []

Note that to define distributions for nested collections, operator [] must be overloaded at
each level, as there is no operator [][] defined and no way to define it.

Mapped Collections Irregular distributions that do not fit cleanly into an overloaded operator
(] are support through the use of mapped collections. A collection map enumerates the distribution
of collection elements across virtual processors. All maps are read from a file in an implementation
dependent manner®; the file is a sequence of integers with the significance shown in Figure 34.

A collection created using a map is automatically provided with an overloaded operator [] that
accesses the collection in accordance with the map specified. The map is cycled through multiple

5For instance, an ICC++ compiler could have a global variable for the file name, it could be hardwired or specified
as an option to the executable
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Number of maps in file

Number of virtual processors for map
virtual processor number for element
virtual processor number for element
virtual processor number for element

N = O =

Number of virtual processors for map
virtual processor number for element
virtual processor number for element
virtual processor number for element

N = ON

Number of virtual processors for map N

Figure 34: Map file format

times for collections with more elements than the map specifies. The member element (int) still
has access to the underlying cyclic distribution.

PEO PE 1 PE 2 PE 3
1 3 0

MAP_FILE

________ 2 7 4
5 11 8

1 6 15 12

4 9

9 10

0 13

0 14

1

Figure 35: A map file and the resultant distribution of a 16-element collection.

Mapped collections are created by supplying the map index as a placement argument to the
creation of the collection; the example in Figure 35 illustrates the format of the map file. It has
one map, which has 4 virtual processors. Collection element zero is mapped to node 2, elements
1 and 2 to node 0 and element 3 to node 1. This is repeated for collections with more than four
elements. A collection using this map would be created as new (1) CollectionClassName[16],
as 1 is the (one-based) index of the map in the file.

4.5 Summary

Collections generalize arrays and integrate them into the object model. This integration allows
methods to be defined upon arrays, and array elements to cooperate in implementing an aggregate
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behavior. Furthermore, since collections are collections of objects, they are part of the concurrency
control model, and thus can be used to express parallelism.
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A Performance Annotations

Efficient execution on parallel machines generally requires careful management of object placement
and the ability to optimize concurrency control. While some of this can be done by compiler
analysis, it can be simpler for the programmer to provide such information, as (s)he presumably
has a high-level notion of how the program works. ICC4++ provides the type specifiers restrict
that make assertions about object aliasing. There is also a mechanism to provide hints regarding
object locality.

A.1 restrict

The restrict type specifier can be applied only to object declarations, and it asserts that, while
the given declaration is in scope, no reference will be made to its referent anywhere in the program
except through the given name. The restrict specifier applies only to the referent itself; it is not
transitive to the objects pointed to by the referent.

class Tree {
Node data;
Tree *left;
Tree *right;

public:
void traverse(void (*Node::fun)(void)) {
restrict Tree *1 = left;
restrict Tree *r = right;
conc {
data.*fun();
left— >traverse();
right— >traverse();

}
}
¥

Figure 36: restricting subcomputations

Figure 36 uses restrict to assert that the two calls to traverse will never refer to the same
portion of the tree, and that nobody else will touch the tree while traverse is executing.

A.2 Object Locality

The locality annotations of ICC++ have two components: allocation annotations and usage an-
notations. The allocation annotations tell the system to create an object locally with respect to
the creator. The usage hints tell the system when an object will be local to the calling method.
Both of these constructs take a relative approach to locality, and so can only be used within mem-
ber functions, where the creator has a definite location®. These two portions work together as a
contract; the programmer must ensure that, if the system obeys all the allocation annotations, the
usage annotations will be correct.

A function has no associated object and so the notion of local to a function makes no sense.
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A.2.1 Allocation

ICC++ provides a pre-defined placement parameter for operator new named LOCAL which directs
the system to create the object in the same place as the calling method. It is used in the normal
manner for placement syntax, as shown below.

foo *a = new (LOCAL) ObjectClass(7);

In addition to this way of asserting locality, all objects created as auto variables of member
functions have the locality hint by default.

A.2.2 Usage

Usage locality is asserted with the type specifier local, applied to the object declaration. This is
a hint in that the system may ignore it, but it must be correct if the system obeys the creation
locality directives.

int foo::bar(local foo *a)
local foo *b = getmy_buddy();
work(a, b);

Here the work member function can be specialized to assume that both its parameters are local
to this.
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