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Running Head Runtime Mechanisms for Dynamic MultithreadingContact Author Vijay Karamcheti2233 Digital Computer LaboratoryUniversity of Illinois at Urbana-Champaign1304 W. Spring�eld Ave.Urbana, IL 61801phone: (217) 244-7116, fax: (217) 333-3501E-mail: vijayk@cs.uiuc.eduAbstractHigh performance on distributed memory machines for programming models with dynamic threadcreation and multithreading requires e�cient thread management and communication. Traditional mul-tithreading runtimes, consisting of few general-purpose, bundled mechanisms that assume minimal com-piler and hardware support, are suitable for computations involving coarse-grained threads but providelow e�ciency in the presence of small granularity threads and irregular communication behavior.We describe two mechanisms of the Illinois Concert runtime system which address this shortcoming.The �rst, hybrid stack-heap execution, exploits close coupling with the compiler to dynamically formcoarse-grained execution units; threads are lazily created as required by runtime situations. The second,pull messaging, exploits hardware support to implement a distributed message queue with receiver-initiated data transfer, delivering robust performance across a wide range of dynamic communicationcharacteristics. We measure their performance impact based on a Cray T3D implementation of theConcert system. Individually, the mechanisms increase absolute execution e�ciency by up to 50%.Together, they increase the feasible space of e�cient computations, enabling compute granularities anorder of magnitude smaller. Performance results for two large irregular applications demonstrate thatexpressing programs using dynamic multithreading need not compromise on performance.
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1 IntroductionIrregular and dynamic problems are challenging to express and program e�ciently on distributed mem-ory machines. This is because they are not well matched to the two predominant parallel programmingmodels. Their computation structure often does not �t into data parallel models, and message passingrequires the programmer to deal explicitly with the complexities of data placement, addressability, andconcurrency control. Consequently, programming models based on dynamic thread creation and multi-threading [21, 3, 12, 41, 8, 17, 28, 16] are increasingly popular for expressing such problems. Such modelsinvolve user-de�ned computation units (hereafter referred to as logical threads) which are dynamically cre-ated to re
ect the natural concurrency structure of the program; multithreadingmaps these onto the physicalmachine improving processor utilization. These models form the basis for several concurrent object-orientedlanguages [20, 11, 49] and message-driven systems [28], and simplify program expression by supporting
exible computation and synchronization structures.Several researchers have investigated multithreading runtime systems which provide mechanisms forcommunication and thread creation, synchronization and scheduling. For the most part, these systemsconsist of a few general-purpose, bundled mechanisms which assume minimal compoler and hardware support.Portable runtime systems [21, 16, 40] build these mechanisms on top of vendor-supported, standardized light-weight thread management [27] and communication [15, 44] interfaces; however, these incur relatively largeoverheads, requiring coarse-granularity threads for e�ciency. While systems with specialized runtimes [3, 8,28] can provide e�cient primitives supporting �ner grained threads, they still incur large thread managementand communication overheads for irregular, dynamic computations:� Such computations exhibit wide variations in thread granularity and are typically not amenableto compile-time analyses which can coalesce logical threads into su�ciently coarse-grained physicalthreads.� Such computations exhibit unbalanced communication tra�c which is unsynchronized across the pro-cessors, ine�ciently supported by traditional communication mechanisms.In this paper, we demonstrate that the key to delivering e�cient performance for irregular applicationsinvolving dynamically created threads is for the runtime to exploit closer coupling with the compiler onone end and the hardware on another. We describe two mechanisms of the Illinois Concert runtime system| hybrid stack-heap execution and pull messaging | which enhance the basic multithreading mechanisms(shown in Figure 1) to address the above problems.
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        (Section 4.1)Figure 1: Structure of the Illinois Concert runtime system.Hybrid stack-heap execution dynamically coalesces logical threads into coarser-grained physical threadsbased on runtime data location and available parallelism. Our technique provides a 
exible runtime interface,enabling the compiler to generate code which optimistically executes a logical thread sequentially on itscaller's stack, lazily creating a di�erent heap-allocated thread only if it suspends or need be scheduledseparately. The technique executes sequential program portions (where all accessed data is local) with the4



e�ciency of static procedure calls, and parallel portions using e�cient multithreading among the heap-allocated threads.Pull-messaging provides robust high-performance communication even in the presence of irregular, unbal-anced tra�c, and unsynchronized processor communication and computation phases. Exploiting hardwaresupport for remote memory access, synchronization and prefetching, our mechanism builds a distributedqueue implementation of messaging with lazy, receiver-initiated data transfer. Distributed message queuingdecouples the sending processor from the activity of other processors. Lazy, receiver-initiated data transfer\pulls" the message from the sender's memory, eliminating output contention because data is moved onlywhen the receiver is ready to process it.Detailed performance studies for a synthetic compute-communicatemicrokernel based on a Cray T3D im-plementation, demonstrate that individually, the mechanisms each increase microkernel execution e�ciencyby up to 50 percentage points; hybrid stack-heap execution reduces thread management overheads for smallcompute granularities and high runtime locality, while pull-messaging improves communication performancefor low runtime locality. Together, they increase the space of e�cient computations, enabling computationswith an order of magnitude smaller granularity and decreased runtime locality. For example, the mecha-nisms enable 70% microkernel execution e�ciency, previously requiring compute granularities larger than300�s and greater than 80% local accesses, to be achieved with signi�cantly lower granularities of 10�s (with100% local accesses) and 150�s (with 0% local accesses). Measurements for two large irregular applications| hierarchical radiosity and macromolecular protein dynamics | show that performance is comparableto that achieved by explicitly optimized versions, demonstrating that expressing programs using dynamicmultithreading need not compromise on performance.The rest of the paper is organized as follows. We summarize the relevant background in Section 2describing irregular computation structures as well as our speci�c programming and execution models. InSection 3, we present a microkernel program used as a running example. Section 4 presents the individualcomponents of the Concert runtime system. In Section 5, we quantify the performance advantages of eachmechanism using a synthetic microkernel as well as two large irregular applications. Related work is discussedin Section 6, and we conclude in Section 7.2 Programming and Computational ModelIrregular application programs (such as molecular dynamics, particle simulations, adaptive mesh re�nement,etc.) are characterized by irregularly sized units of work, which may be created dynamically, and data accesspatterns which are unpredictable. In addition, modern algorithms often make use of complex data structuresto achieve high e�ciency [2, 19]. Thus, such computation structures are not easily amenable to expressioneither in a regular data-parallel model, or in a message passing model that requires the programmer to mapthe computation into a �xed number of threads synchronizing using matching communication primitives.Programmingmodels based on a dynamic thread pool operating against shared data provide several toolswhich simplify the expression of irregular parallel computations. A shared name space for the data objectsallows programmers to build sophisticated distributed data structures without explicit name management.Dynamic thread creation frees programmers from explicit thread management and synchronization andallows the irregular concurrency in the application to be expressed in a non-binding manner, leaving theimplementation free to adapt the concurrency to available parallelism.In this work, we assume a �ne-grained concurrent object-oriented model where objects reside in a globalnamespace and each method invocation corresponds to a logical thread. Synchronization between threads isachieved via futures [22]: if the caller thread touches the future, i.e. it attempts to read its value, before thethread responsible for writing the value is �nished, then the caller thread blocks. When the thread holdingthe continuation (the right to determine the future) �nishes its computation, it writes the future's valueand restarts any blocked threads. This programming model supports a wide variety of synchronization andcommunication structures including: synchronous (RPC), data (object) parallel, reactive, etc. In addition,continuations can be forwarded to another thread or stored in data structures, allowing construction ofapplication-speci�c communication and synchronization structures. Our programming model provides im-plicit object-level concurrency control for preventing inconsistent concurrent accesses from several threads,implying that threads may suspend awaiting access control even if data objects are locally available.5
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   ...
   touch(a);
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   reply val;
}

a

b

c

forest of contexts,
mapped to processors

context thread code

Figure 2: Computation model showing processors (large boxes), contexts (small boxes), objects (circles),and thread creation structure (dark lines). A context includes space for the thread local variables, futurelocations for pending requests, and the continuation (linkage to the requester). The shaded contexts areactive (or ready); on each processor, these contexts are linked into a scheduling structure (not shown).E�cient execution of the above programming model on distributed memory parallel machines requiresmapping the logical threads into physical threads according to the computation model shown in Figure 2.Creating a thread involves allocating a context , depositing arguments into it, and initiating execution of thethread code relative to the newly allocated context. The context provides storage for the local variables ofthe thread (similar to a procedure stack frame), and futures and continuations required for synchronization.Thread creation does not suspend the caller; thus, dynamic thread creation produces a forest of contexts.Threads access data objects in a location-independent fashion: the underlying system synthesizes a globalnamespace by detecting accesses to remote data objects and translating them into communication operations.Several contexts can be mapped to the same processor and are managed by a scheduler which interleaves theprocessor resources among ready threads. A thread suspends either when it accesses remote data or whenit touches the value of one of its futures, causing the scheduler to activate the next ready thread. A blockedthread becomes ready when the future it is blocked on is �lled by another thread holding the continuation.The above programming and computation models are supported by the Illinois Concert system [9] whichis an implementation platform for the Concurrent Aggregates [11] and ICC++ [10] concurrent object-orientedlanguages. The Concert system consists of an optimizing compiler [39] and the runtime system described inthe rest of the paper. The compiler is capable of resolving interprocedural control and data 
ow informa-tion [37], enabling it to specialize the generated code based on synchronization and communication featuresrequired by the computation. The compiler generates C code which links with a library of runtime primitivesto produce the executable.3 Example: A Commmunicate-Compute MicrokernelIn this section, we describe a microkernel program used as a running example in the rest of the paper.The microkernel serves to highlight the key performance advantages of the two runtime mechanisms, latercorroborated for whole applications in Section 5.2. The code for the microkernel is shown in Figure 3.The main routine creates a set of independent threads, WorkThread, on each processor. conc speci�esthat all the threads can be processed concurrently. The computation terminates when all threads on allprocessors complete. Each WorkThread thread consists of a data access phase where it gathers data values6



from (potentially remote) objects, followed by a phase where it computes using these values. Since dataaccesses are subject to the object-level concurrency control described earlier, each access creates a logicalthread for processing the service request.1 main() f2 conc for (i=0; i<nprocs; i++)3 conc for (j=0; j<nthreads; j++)4 WorkThread();5 g67 WorkThread() f8 // data access: obj is potentially remote9 conc f x = valx(obj); y = valy(obj); z = valz(obj); g10 // compute with data11 compute(x, y, z);12 gFigure 3: Code structure of the communicate-compute microkernel (shown using ICC++ syntax). Theexecution behavior of the microkernel is characterized by the fraction and distribution of remote accesses inline 9 and the compute granularity and variance in line 11 (shown boxed).This microkernel exhibits the general communication and computation characteristics of several irregularapplications such as molecular dynamics, hierarchical radiosity calculation, etc. where a thread �rst gathersdata from a set of objects and then operates on it. Its speci�c behavior can be controlled by four parameters:� Percentage of remote accesses (line 9): This determines the amount of communication required bythe microkernel. Many irregular applications have statically unpredictable communication behavior;consequently, the computation must adapt to runtime locality for e�ciency.� Distribution of remote accesses (line 9): Unlike regular applications, irregular ones are characterizedby unbalanced tra�c patterns with varying degrees of output contention. Controlling the location ofobj produces various output contention situations.� Compute granularity (line 11): This parameter a�ects the ratio of compute grain size to communicationoverhead. Natural expression of irregular applications often produces small granularity threads.� Variance in compute granularity (line 11): This parameter creates execution scenarios where threadsexhibit wide variations in compute granularities. Irregular computations apply e�ort where moste�ective, creating large granularity variations.Corresponding to the three components shown in Figure 1, we consider microkernel executions for fourruntime versions (described in detail in Section 4):1. Base, consisting of basic runtime primitives.2. Base+Stack, consisting of Base enhanced with hybrid stack-heap execution mechanisms.3. Base+Pull, consisting of Base enhanced with pull-messaging mechanisms.4. Base+Stack+Pull, which includes both hybrid stack-heap execution and pull-messaging mechanisms.4 Runtime MechanismsIn this section, we describe the three Concert runtime system components shown in Figure 1, limiting ourattention to thread management and communicationmechanisms. While all multithreading runtime systems7



provide base mechanisms for data transfer and thread creation, scheduling and synchronization, the Concertruntime includes two additional mechanismswhich address the major shortcomings of dynamicmultithreadedcomputations: increased thread management overheads resulting from �ne-grained threads, and increasedcommunication overheads because of unbalanced, unsynchronized communication.In this section, we �rst describe our implementation of the basic communication and thread managementprimitives. These primitives provide a baseline for evaluating the performance advantages of the other twomechanisms. We then describe the hybrid stack-heap execution and the pull-messaging mechanisms.4.1 Basic Runtime PrimitivesThe thread management mechanisms provide primitives for creation and deletion, scheduling, and synchro-nization. The communication mechanisms provide primitives to send and receive data. The base Concertprimitives represent a high-performance implementation of traditional multithreading runtime systems pro-viding compiler-oblivious bundled primitives. For example, on the IBM SP/2, the Nexus runtime system [16]which is layered on top of a standard thread package (pthreads [27]) and IBM's implementation of MPI [15],incurs thread creation and communication overheads (0-byte latency) of 32.0�s and 44.0�s respectively. Aswe shall see later, the Concert primitives described below incur an order of magnitude less cost (see Tables 1and 2).4.1.1 Thread ManagementThread Creation and Deletion Two primitives, thread create and thread delete, are provided.The thread create operation allocates a context (the thread's activation frame), deposits the suppliedarguments into it, and initiates execution of the thread code (pointed to by function ptr) relative to thisnewly allocated context. The thread delete operation reclaims the context for the thread t.Thread* thread create(function ptr, args, ...);void thread delete(Thread* t);In our base implementation, a context is a heap-allocated structure, whose allocation and deletion isperformed e�ciently using a free list. Use of a heap-allocated context is enabled by a specialized compilerwhich generates code for saving and restoring thread state (into the context) at suspension points. The com-piler can also optimize thread switching cost by managing live state at suspension points. More importantly,heap-allocated contexts enable creation and deletion costs of less than 1�s, an order of magnitude cheaperthan that for portable multithreading systems such as Chant [21], Nexus [16], etc. These latter systemsrequire a dedicated stack per thread because they rely on a sequential compiler infrastructure which doesnot provide any support for saving and restoring thread state across suspensions.Operation Costcycles �sCreation thread create 150 1.00thread delete 100 0.67Scheduling thread enqueue 40 0.27thread dequeue 40 0.27Synchronization make future 20 0.14touch future 11 0.07(if empty) 22 0.14resolve future 10 0.07(if waiting) 50 0.35Table 1: Costs of basic Concert thread management primitives on the T3D.8



Thread Scheduling Two primitives: thread enqueue and thread dequeue are provided: thread enqueueattaches the thread to the scheduler, while thread dequeue selects the next ready thread and initiates exe-cution.void thread enqueue(Thread* t);void thread dequeue();In our base implementation, the scheduler maintains the list of ready threads as a singly-linked list.Making a thread ready is a simple matter of adding the context to the tail of the list. Scheduling thenext ready thread involves dequeuing the head of the list and initiating execution of the thread code viaan indirect function call. More sophisticated thread scheduling policies (e.g., priority-based queuing) can bebuilt on top of this scheme.Thread Synchronization As described in Section 2, thread synchronization is achieved via the futuremechanism. Primitives are provided to make, resolve and touch futures. make future tags the contextlocation as a future and returns a continuation. touch future involves a tag check and returns TRUE if thefuture has already been resolved, else FALSE. resolve future stores a value into the future and enqueuesany blocked threads.Continuation make future(return location);int touch future(return location);void resolve future(Continuation contin, value);In addition, the Concert runtime provides support for counting futures as well as a general touch primitivepermitting synchronization on multiple futures, amortizing the cost of thread restart.4.1.2 CommunicationCommunication operations arise whenever a thread accesses remote data or interacts with a remote thread.The communication primitives in the Concert runtime system exploit a lean messaging interface to incur5-10 times lower latency as compared to vendor communication libraries.The Concert communication primitives use the low-level Fast Messages [35] interface. The interfaceconsists of two send primitives and one receive primitive:typedef void function ptr(...);void send 4(int rnode, function ptr *fptr, arg1, arg2, arg3, arg4);void send(int rnode, function ptr *fptr, void *buf, int size);int extract();Each message send is associated with execution of a handler at the destination node (similar to activemessages [46]). The send 4 is optimized for transferring a small number of register arguments (up to 4)to the destination node, while the send primitive is more general, accepting an arbitrary sized bu�er andthe message length as arguments. Message reception requires use of the extract primitive which executesthe handlers for all pending messages and returns TRUE if any messages were processed. Similar to activemessages, this interface assumes a certain usage discipline. Speci�cally, one must ensure that protocolsinvolving sends from within message handlers must be deadlock free. This is another place where theavailability of a compiler helps reduce the cost of primitive runtime mechanisms: a compiler can enforce therequired discipline.The T3D implementation of the Fast Messages interface [30] makes use of hardware support for fetch-and-increment and remote memory access [34] to perform bu�er management and data transfer withoutinvolving the destination processor. This decouples the sending processor from destination processor activity,improving communication performance. The fetch-and-increment register is used to index a preallocated set9



Operation Message Size (in bytes)(all costs in �s) 16 32 64 128 256Overhead send 1.84 1.85 2.03 2.71 3.53extract 0.73 0.73 0.73 0.73 0.73One-way Latency 6.16 6.25 7.19 8.07 8.65Vendor Library (PVM) Latency 34.31 34.33 34.95 36.49 40.45Table 2: Latency and software overheads of Concert communication primitives on the T3D for variousmessage sizes. The vendor communication library latency numbers are shown for comparison.of message bu�ers. The source node obtains a valid index by performing a fetch-and-increment operationwith respect to the destination node, then transfers data using remote stores. Message completion at thereceiver is detected by a tag at the end of the message bu�er. This implementation of the lean messaginginterface incurs an order of magnitude lower latency (shown in Table 2) as compared to vendor communicationlibraries. In addition, the Concert primitives overlap communication and computation; consequently, thenon-overhead portion of latency can be e�ectively eliminated.4.1.3 Summary: Basic Runtime PrimitivesThe Concert runtime system provides e�cient thread management and communication operations, utilizingthe existence of a specialized compiler to incur an order of magnitude less cost than corresponding vendor-supplied mechanisms. In addition the compiler can customize the bundling of the runtime mechanismsa�ecting procedure call boundary crossings (e.g., the compiler can inline some of the runtime primitivecalls), further reducing cost in situations where it has static information about thread interactions [29].Corresponding to these basic primitives, we de�ne a version of the runtime, Base, which serves as acompetitive baseline for comparing the performance advantages of the other mechanisms. The Base runtimeprovides bundled versions of thread creation and scheduling primitives. Speci�cally, for the microkerneldescribed in Section 3, since the compiler cannot statically determine that all data accesses in line 9 of themicrokernel will complete without blocking for concurrency control, the generated code creates a physicalthread for each of the data access requests. Thus, each data access request involves a make future, anyrequired communication (if the thread needs to be executed remotely1), creation, scheduling, and deallocationof the callee context, and touching the future along with suspension and restart (if required) of the caller. Forthe same reason, each logical WorkThread thread also results in the creation of a separate physical thread.The compiler can perform one optimization though: the synchronization for all thread requests in lines 4and 9 can be grouped, ensuring that the caller context suspends and restarts only once. The performanceof the microkernel code using the Base runtime is described in Section 5.4.2 Enhancement 1: Hybrid Stack-Heap ExecutionWhile the basic runtime primitives in Section 4.1 enable e�cient execution of �ner granularity computations(particularly in comparison with portable runtime systems with more expensive primitives), as we shallsee later, they still incur sizable thread management costs for dynamic computations. These computationsare less amenable to static analyses, so the compiler is typically unable to coalesce logical threads intosu�ciently coarse-grained physical threads. This section describes a hybrid stack-heap execution mechanismwhich addresses this shortcoming.The hybrid stack-heap mechanism constructs coarser-grained physical threads \on the 
y" from �ne-grained logical threads, achieving high sequential e�ciency when the thread accesses only local data objectsand incurring minimal thread management overhead when the thread interacts with remote data objectsor threads. Our technique provides a 
exible interface for the runtime primitives to the compiler, enabling1We assume that the thread is executed local to the data object that it accesses.10



it to generate code which optimistically executes a logical thread sequentially on its caller's stack, lazilycreating a di�erent thread only when the callee computation needs to suspend or be scheduled separately.To separately optimize for the two modes of operation { sequential and parallel { the compiler generatestwo code versions for each thread body. One version executes o� a stack-allocated activation frame andis optimized for sequential e�ciency, accruing the advantages of procedure-call like e�ciency for threadinteractions when only local data is accessed. The other version operates from a heap-allocated context andis optimized to minimize thread scheduling and synchronization overheads. However, since a thread may notcomplete on the stack because of various blocking situations, the stack code version detects these situationsat runtime, lazily creates a heap context (corresponding to a physical thread) and resumes execution fromthe corresponding point in the heap code version. We de�ne a hierarchy of interaction schemas for thestack versions of the thread code, which the compiler can optimize for e�ciency. Table 3 summarizes theseinteraction schemas which are described below in detail.Version Basic OperationHeap Most general schema, thread arguments/linkagethrough heap-allocated contextsStack Non-blocking Regular C call/returnMay-block Regular call; detect and lazily create heap context onblockContinuation-passing Extension of may-block which allows forwarding onthe stackTable 3: Various thread interaction schemas in the hybrid stack-heap execution model.4.2.1 Heap Version: Optimized for Parallel ExecutionThis version operates against a heap-allocated activation frame (context) and is a conservative implemen-tation supporting thread suspension. Suspension may occur while interacting with remote data objects andthreads, or while waiting for results from another blocked thread. Thread creation, scheduling and synchro-nization is identical to that described in Section 4.1. The compiler optimizes the code to minimize the threadmanagement overhead: several requests are issued in parallel and the touching of the corresponding futuresis grouped so as to minimize the number of required restarts. In addition, the compiler carefully managesthe amount of state that needs to be saved and restored across suspension points.4.2.2 Stack Versions: Optimized for Sequential ExecutionStack versions optimistically execute the thread code using a stack-allocated activation frame, lazily \fallingback" to a heap context only when the thread needs to suspend. Thus, logical thread creation is essentiallysimilar to a procedure call, incurring negligible overhead when the thread completes without blocking.However, when the thread blocks, we need to create the callee's heap context and set up the linkage betweenthe caller and callee threads to allow thread execution to continue using the heap version. Dependingon the thread interaction scenario, these operations require di�erent information to be passed across theinitial procedure call boundary and incur di�erent fallback costs. To allow the compiler to optimize thesecosts based on available information, we de�ne a hierarchy of stack schemas: Non-blocking, May-block, andContinuation-passing.The Non-blocking version is used when the compiler can prove that the called thread and all of itsdescendent calls will complete without blocking. When the compiler cannot prove this but knows that thecallee thread does not require the caller's continuation (except to return a value), the May-block version isused. If the thread blocks, a heap context is lazily allocated to continue execution once it resumes. Finally,the Continuation-passing version is used if the callee thread may require the continuation of a future inthe (as yet uncreated) caller thread's context. In this case, we create both the callee's context as well asthe continuation lazily. Our compiler selects the appropriate schema for each thread interaction based on a11



global 
ow analysis [37] which conservatively determines the blocking and continuation requirements of eachthread body [38]. A novel aspect of our hybrid stack-heap execution model is that it is implemented entirelyin C, and consequently, is portable across a variety of parallel platforms. The discussion below describeshow detection of successful completion and setting up of thread linkages in the event of fallback are handledby building on top of the traditional C procedure call/return linkage.Non-blocking: Straight C Call When the compiler can ascertain that a thread will not block, allinteractions are handled using a standard C call. This enables entire non-blocking subgraphs of the threadcall tree to execute with no thread management overhead. The code sequences for the caller and calleethreads are shown in Figure 4....rval = thread code(...);... ret type thread code(...) f...gFigure 4: Caller (left) and Callee (right) code sequences for the Non-blocking schema.May-block: Lazy Context (Thread) Creation This stack version handles the case when a logicalthread call may block. The calling schema, shown in Figure 5, distinguishes between the two outcomes{ successful completion and a blocked callee thread. If the callee runs to completion, a NULL value isreturned, and the caller thread extracts the actual return value from rval, a pointer to which is passed inas an argument to the call. If the callee thread blocks, the callee context (which itself was just created) isreturned (in response to the C procedure call), enabling the caller to set up a linkage to the callee context.This is necessary because the linkage between caller and callee was implicit in the stack structure, and thecaller must insert a continuation for the callee's return value into the callee context to preserve that linkage.Subsequently, the caller will, if necessary, create its own context, reverting to the parallel code version, saveits state for restart from the heap version, and return its own context to its caller. Figure 6 shows theunwinding of stack frames when logical callee threads cannot complete their execution on the stack. In thiscase, the fallback code creates the callee's context, saves local state into it, and propagates the fall back byreturning this context to its caller which then sets up the linkage....callee context = thread code(&rval,...);if (callee context != NULL) fcallee context->contin =make continuation(rval);// propagate blockingg... Context* thread code(rval ptr,...) f...if (non blocking arm) f*rval ptr = val;return NULL;g else f // fallbackown context = create context();// save state to heapreturn own context;g...gFigure 5: Caller (left) and Callee (right) code sequences for the May-block schema.Thus, the may-block calling schema allows a sequence of may-block threads to run to completion on thestack, creating physical threads only as required by the runtime situations.Continuation-passing: Lazy Continuation (and Context) Creation Explicit continuation passingcan improve the composability of concurrent programs [49, 11]. However, when continuation passing occurs,invocations on the stack are complicated because the callee may want its continuation. If the call is being12
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Callee blocks: need to create linkage b/w caller and callee:
    1. create callee context (B) and return
    2. create caller context (A)
    3. store continuation in callee contextFigure 6: May-block interaction schema. The left �gure shows successful completion, while the right �gureshows the stack unwinding when the call cannot be completed.executed on the stack, the callee's continuation is implicit. Since one of our goals is to execute forwardedinvocations [25] on the stack, lazy allocation of the continuation is essential. As we shall see, allocation of acontinuation also implies creation of the context in which the returned value will be stored.The calling schema for the continuation passing case (see Figure 7) uses an additional parameter, cinfo,which, along with the rval ptr encodes information necessary to determine what to do should the con-tinuation be needed. The cinfo information is simply passed along to support local forwarding, but if athread tries to store the continuation or forward it o�-node, it must be created. cinfo contains informationindicating whether or not the context containing the continuation's future has already been created, andsu�cient information to create both the context and the callee's continuation in case it has not.2...caller context =thread code(&rval,cinfo,...);if (caller context != NULL) f// save state to heap// propagate blockingg... Context* thread code(rval ptr,cinfo,...) f...if ( need continuation ) f fallbackcaller context =create context(rval ptr,cinfo);own context = create context();own context->contin =make continuation(caller context,cinfo);// save state to heapreturn caller context;g else f*rval ptr = val;return NULL;g...gFigure 7: Caller(left) and Callee(right) code sequences for the Continuation-passing schema.When the continuation is not created, the thread which resolves the future simply stores the resultthrough rval ptr, and passes NULL return values back to its caller. The caller of the �rst continuation-passing method receives this NULL value and looks in rval for the result, thus executing the forwardedcontinuation completely on the stack. On the other hand, if the continuation is required by the callee,cinfo is consulted. The fallback code �rst obtains the caller context (creating it if necessary), and thenthe continuation for a new future at a location in the caller's context corresponding to rval ptr and thereturn value o�set stored in cinfo. The callee may now do whatever is desired with the continuation, �nallypassing the continuation's future's context back to its caller. The callee code in Figure 7 shows a situation2This typically requires information about the size of the caller context, and the return location within it.13



where the callee also suspends, causing it to create its own context, save any state necessary, and insert thecreated continuation. Figure 8 shows the stack unwinding and linkages which need to be set up as part ofthe fallback. The reader is referred to [38] for implementation details.
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Callee requires own continuation:
    1. create caller’s (A) context
    2. create callee’s (B) context
    3. create and store callee’s continuation (create linkage)
    4. save caller state to created context
    5. callee (eventually) returns value to callerFigure 8: Continuation-passing interaction schema. The left �gure shows callee completion without blocking,while the right �gure shows the fallback when the callee requires the caller's continuation.4.2.3 Overheads of Hybrid Stack-Heap ExecutionCall Overhead (in Alpha instructions)Calling schema for CalleeCalling schema Parallel Sequentialfor Caller NB MB CPParallel 320 0 6 8NB { 0 { {Seq. MB { 0 6 8CP { 0 6 8 Fallback Overhead (in �s)Calling schema for CalleeCalling schema Parallel Sequentialfor Caller NB MB CPParallel { 0 0.15 0NB { 0 { {Seq. MB { 0 2.00 0.30CP { 0 3.50 1.80Table 4: Call and fallback costs (at the caller) for di�erent caller-callee scenarios on the Cray T3D, in termsof overhead required in addition to a C function call. NB, MB and CP stand for Non-blocking, May-blockand Continuation Passing sequential calling schemas respectively.Table 4 presents the cost of the hybrid stack-heap invocation mechanisms for various caller-callee scenariosas overhead required in addition to the cost of a basic C function call on the Cray T3D.3 There are twocomponents to this overhead: the �rst (shown in the left table) corresponds to the situation when the calleethread completes on the stack, and the second (shown in the right table) indicates the additional fallback costwhen the callee stack frame must be unwound into the heap. Stack calls which complete without blockinghave cost comparable to a basic C function call and two orders of magnitude less overhead than the parallel(heap-based) thread interaction (320 instructions). The 6{8 additional instructions for sequential calls aredue to call arguments, and passing the return value through memory, rather than in a register.The fallback overheads vary from 0.15 { 3.50�s depending on the speci�c caller-callee scenario. Theunwinding costs are di�erent for di�erent caller and callee combinations because the di�erent schemas placethe responsibility for context creation and state saving at di�erent places. These fallback overheads makeexplicit the tradeo� in using the sequential and parallel versions. The maximum fallback cost for any3On an Alpha (the node processor of the T3D), a C funtion call costs 25-40 instructions.14



caller-callee pair is comparable to the basic heap-based invocation (320 instructions = 2.1�s),4 so optimisticexecution using a sequential invocation �rst is e�ective in almost all cases. The same numbers also showthat a sequential thread version can incur substantial overhead if it blocks repeatedly incurring multiplefallbacks; thus, reverting to the parallel method after the �rst fallback is a good strategy, especially if severalsynchronizations are likely.4.2.4 Summary: Hybrid Stack-Heap ExecutionThe hybrid stack-heap runtime execution mechanisms permit the compiler to generate code which dynami-cally coalesces logical threads into larger-grained physical threads based on runtime locality and parallelismsituations. By optimistically executing logical threads on the caller's stack using a specialized sequentialcode version, and lazily creating a physical thread only when the callee code needs to block, we minimizethread management overheads and accrue advantages of good sequential performance as appropriate.The addition of the hybrid stack-heap execution mechanisms to the Base runtime described in Section 4.1produces a new version Base+Stack. This runtime version exposes a 
exible interface enabling the generatedcode to take advantage of runtime locality situations. Speci�cally, for the microkernel program, the compileroptimistically inlines the data accesses in line 9 predicated on locality and concurrency control checks.Remote accesses are handled e�ciently by avoiding thread creation and scheduling overheads when theaccess can be completed without blocking for concurrency control reasons. The WorkThread code itself isinvoked via a may-block stack schema. This has the implication that threads which end up accessing onlylocal objects at runtime (i.e., those for whom obj is a local object pointer) execute completely on the stack,incurring only the cost of a C function call. Those threads which access truly remote objects lazily createheap contexts to complete their execution. The performance advantages of using the hybrid stack-heapexecution mechanism are described in Section 5.4.3 Enhancement 2: Pull-based Communication MechanismsWhile hybrid stack-heap execution reduces thread management overheads, it does not address the increasedcommunication overheads that arise from unbalanced tra�c and unsynchronized communication. This sec-tion describes a pull-based messaging implementation which delivers performance robust over a range ofdynamic communication characteristics. The rationale for these mechanisms is that traditional messagingimplementations ine�ciently support the above characteristics because a slow receiver (busy computing orunable to accept data fast enough because of output contention) can back up the network to other processors.This back up increases the send overheads for processors which are now unable to inject messages into thenetwork. This degradation is present even when bu�er management and data transfer for individual messagesends can be accomplished without destination participation (as with our T3D fetch-and-increment basedimplementation described in Section 4.1); this is because the destination needs to eventually participate tomanage �nite bu�ering resources (e.g., by reclaiming consumed bu�ers) and any delay in this participationholds up the senders. The performance degradation due to unresponsive receivers and output contentioneven with modest fan-in can be severe, increasing send overheads by up to an order of magnitude [30].Our solution exploits hardware support on the T3D (also present in several current and likely futuremachines) to build a distributed message queue with lazy receiver-initiated data transfer which decouplessenders from receivers and eliminates output contention. Using the T3D's atomic-swap hardware to linkmessages into a distributed message queue, sending can go at the maximum swap rate with the receivingprocessor \pulling" messages from the sender's memory. Receives incur a round-trip latency, but the T3D'sprefetch queue can be used to mask this latency. Pull messaging eliminates output contention and sender-receiver coupling since data is only moved when the receiver is ready to process it. An additional advantageis that bu�er over
ow happens rarely, only when a node has sent many messages that have not yet beenconsumed. This type of fan-out problem is much easier to solve than fan-in. Figure 9 shows this distributedmessage queue as implemented by the pull messaging primitives in the Fast Messages library. Each processorholds a tail pointer for its distributed message queue in a local memory location. Message transfer involves4The CP-MB fallback corresponds to context creations and scheduling for both caller and callee threads.15
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Figure 9: Distributed message queue implementation of pull-messaging. A message send links in the source-bu�ered message into a distributed queue (by atomically updating the tail pointer). A processor receives by\pulling" messages along its head pointer.four steps: First, the source writes its message data into a local bu�er and swaps a pointer to the bu�er withthe contents of the tail pointer on the destination (Step 1). This makes the local bu�er the last entry inthe destination's distributed message queue. The source then stores a pointer to the bu�er into the memoryaddress swapped out of the tail pointer (Step 2), linking the previous end of the queue to the local bu�er.To receive, the destination uses prefetch operations to retrieve the message data (Step 3). On completionof the transfer it invalidates the source bu�er (Step 4), permitting its reuse. There are no races betweensteps 1 and 2 at the source and step 3 at the destination, because the destination can detect the end of thedistributed message queue and simply wait (or go and do some other work) until more messages have beenadded.4.3.1 Robustness to Output ContentionTo examine the performance advantages of pull-based messaging versus push-based messaging, we considerhow the messaging overheads vary for four multi-party tra�c distributions which load the network and gen-erate output contention spanning from none to extreme. all-to-all is a permutation pattern which generatesmoderate network contention but no output contention (fan-in), and is used as a baseline to evaluate thee�ect of output contention. In random, each processor picks a random destination and sends to it. Sinceseveral processors may pick the same destination, the pattern generates moderate fan-in. hotspot is the sameas random, except that one node is designated a hotspot (processor 0) and receives a constant multiple of thetra�c of the other nodes (we consider hotspot,x4 and hotspot,x16). The hotspot intensity is proportionalto the amount of fan-in. all-to-one represents the extreme hotspot situation where all the tra�c is sent toa single processor.For each pattern, we measure the steady-state send and receive overheads with all processors executing akernel which consists of a �xed size message send, a receive, and a computation part (modeled by a stochasticvariable delay). The overheads for push- and pull-based mechanisms are shown in Figure 10 for four messagesizes. Note that this is a log-log scale and each point corresponds to the harmonic mean of source overheadsover all nodes for a 64-node T3D. The point-to-point costs have been included for comparison. Thesegraphs correspond to a speci�c compute granularity (13.2�s), but the performance trend remains essentiallyunchanged as compute grain size and its variance are modi�ed.Considering the push messaging case �rst, the e�ect of network loading is as expected, increasing sourceoverheads for 1024 byte messages from 13.5�s for the point-to-point case to 30�s for the all-to-all case.However, the results show that the push messaging scheme is not robust over output contention. As the16
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Figure 10: Source overheads for push (left) and pull (right) versions of messaging on the T3D for fourmessage sizes.hotspot intensity increases (greater imbalance in message destinations or larger messages), source overheadsincrease by up to an order of magnitude as compared to the all-to-all case. For the message size consideredabove, the source overheads are 95�s for the hotspot,x16 pattern (3:1 degradation), and 455�s for the all-to-one pattern (15:1 degradation). This performance loss is due to classic hot spot saturation [36] which backsup the network, slowing the injection of all messages into the network. Such hot spot contention will occurin any messaging layer which eagerly pushes messages to their destination.In contrast, pull messaging can eliminate output contention by enqueuing messages onto a distributedmessage queue and moving data to the destination only upon request. As seen in Figure 10, pull messagingmechanisms exhibit robust performance irrespective of the tra�c pattern as indicated by the close clusteringof the curves in the graph. As the intensity of the hot spot increases, there is no noticeable degradation inperformance (the linear increase in send overheads with message size occurs because of the source copy). Themajor reason for pull messaging's robustness is the bene�t of distributed queueing and lazy data movement.Distributed queuing can sustain large fan-in into hot nodes, supporting even all-to-one communication forextremely large machines with no degradation in performance. The hot node only \pulls" in message data asrequired, matching the data transmission rate to that feasible for the node. Thus, there is neither excessivedata tra�c nor enqueue tra�c to interfere with other communication. In fact, we have found it e�ectivelyimpossible to generate tra�c loads which cause any input or output contention using pull-based messaging.4.3.2 Costs of Pull-based MessagingSource and destination overheads for the push (fetch-and-increment based) and pull (atomic swap based)messaging implementations are shown in Table 5. The pull mechanisms are competitive for small messages,but pulling the message data results in increased overheads as compared to push messaging for messageslarger than 64 bytes. This overhead di�erence is largely due to the high cost of interaction with the T3Dprefetch queue: 0.1�s (15 cycles) to issue a single word fetch, and 0.15�s (20 cycles) to extract a word fromthe prefetch queue. Note however, that simple architectural improvements [30] can make the costs of pullmessaging competitive with push messaging for all message sizes.17



Implementation Message size (in bytes)16 32 64 128 256 512 1024Push Messaging Src 1.84 1.85 2.03 2.84 3.53 8.26 14.65(Fetch-and-increment based) Dest 0.73 0.73 0.73 0.73 0.73 0.73 0.73Pull Messaging Src 1.49 1.56 1.67 1.93 2.49 4.13 6.31(Atomic-swap based) Dest 1.30 1.70 2.46 5.49 9.53 17.17 30.18Table 5: Base source and destination overheads of the push (fetch-and-increment based) and pull (atomic-swap based) messaging schemes on the T3D. (all times in �s).4.3.3 Summary: Pull-based MessagingPull messaging mechanisms enable the generated code to deliver communication performance robust overirregular, unbalanced tra�c, and unsynchronized processor communication and computation phases. Adistributed message queue is a form of source bu�ering which eliminates the detrimental coupling betweensender and receiver, while lazy receiver-initiated data transfer eliminates output contention by matchingthe data transfer rate to that sustainable by the node. Exploiting hardware for remote memory access,synchronization, and prefetch which is available on the T3D and present on several current and likely futuremachines, a pull-messaging implementation can deliver performance comparable to push-based messaging.The addition of pull messaging to the runtime primitives described in Sections 4.1 and 4.2 produces theBase+Pull and Base+Stack+Pull runtime versions. Note that these versions perform all communication usingthe pull-based primitives. While there are bene�ts of using a hybrid push- and pull-based messaging approach(e.g., for regular tra�c with large messages), it is currently not used in our compiler because the analysisrequired to automate this selection is complicated, requiring analysis of the temporal nature of asynchronouscommunication operations in a multithreaded setting. Additionally, by �rst quantifying the performance ofan all pull-messaging implementation, we can ascertain the situations in which a hybrid scheme would bebene�cial. Section 5 presents the performance impact of pull-messaging mechanisms, evaluated using themicrokernel and application programs. As we shall see, pull messaging is clearly bene�cial in situations wheretra�c patterns are irregular and unpredictable. Even in cases where communication overhead is critical toperformance, the robustness of pull messaging helps minimize the performance loss.5 Performance ResultsIn this section we describe results of experiments quantifying advantages of the runtime mechanisms de-scribed in Section 4. All experiments were conducted using the Concert system (compiler and runtime)implementation for the Cray T3D. Two sets of experiments are described. The �rst uses the syntheticmicrokernel (Section 3) to perform a controlled study of the individual and aggregate performance impactof the runtime mechanisms, while the second characterizes their aggregate impact on two large irregularapplication programs.5.1 Microkernel PerformanceWe measure the performance of the microkernel program corresponding to the four runtime versions de-scribed earlier. Base (Section 4.1) serves as a baseline and corresponds to the use of general-purpose bundledruntime mechanisms. Base+Stack (Section 4.2) and Base+Pull (Section 4.3) examines the individual contri-butions from the hybrid stack-heap execution and pull-messagingmechanisms respectively. Base+Stack+Pullrepresents the aggregate e�ect of both mechanisms.The performance of these four runtime versions is measured on a 32-processor Cray T3D for variousvalues of the microkernel parameters 3(summarized in Table 6). The metric of interest is the executione�ciency which corresponds to the fraction of useful (user) work in the total execution time. We describeresults of three experiments. First, we examine the individual performance advantages of hybrid stack-heapexecution and pull-messaging as the compute granularity and fraction of remote accesses are varied with the18



Parameter Value(s)Percentage of Remote Accesses 0%, 20%, 40%, 60%, 80%, 100%Distribution of Remote Accesses all-to-all, random, hotspot(4x), hotspot(16x)Compute Granularity (� ) 10�s, 50�s, 100�s, 500�s, 1000�s, 5000�sVariation in Compute Granularity (�) 0.0� , 0.5� , 1.0�Table 6: Values of microkernel parameters used in the experiments.other two parameters kept constant. The second experiment examines the advantages of pull messaging inmore detail by examining the e�ect of variations in compute granularity and distribution of remote accesses.Finally, we characterize constant e�ciency regions for the runtime versions in terms of two parameters: thecompute granularity and fraction of local accesses, demonstrating that the runtime mechanisms increase theregion of parameter space where high performance is achievable.5.1.1 Experiment 1: Impact of Runtime Mechanisms
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Figure 11: Impact of runtime mechanisms: microkernel execution e�ciency for four runtime versions as afunction of the percentage of local accesses, parameterized with the compute granularity (� ).Figure 11 shows the microkernel performance for four versions of the runtime as the percentage of localaccesses is varied from 0% (all remote) to 100% (all local). The six graphs correspond to di�erent values ofthe compute granularity. The following conclusions can be drawn from the results:19



1. Impact of Hybrid Stack-Heap Execution Model: The performance increment between theBase+Stack and Base versions and between the Base+Stack+Pull and Base+Pull versions, shows thathybrid stack-heap execution mechanisms can increase execution e�ciency by up to 50% . For a speci�ccompute granularity, the advantages from hybrid execution mechanisms increase with runtime locality,validating our earlier claim that the mechanism enables higher performance by adapting to runtimesituations. The mechanism enables high performance for a broader range of compute granularities; forexample, 70% e�ciency can be achieved with granularities as low as 10�s. Since the runtime can onlydecrease overheads, the Base scheme catches up for larger compute granularities.2. Impact of Pull Messaging: The performance increment between the Base+Pull and Base versionsand between the Base+Stack+Pull and Base+Stack versions, shows that pull-based messaging canincrease execution e�ciency by up to 50% by providing increased decoupling between the sender andreceiver processors. This decoupling becomes less important as the amount of communication decreases,so the advantages from pull messaging decrease with increased runtime locality. For a �xed fractionof local accesses, the advantages from pull-messaging increase with increases in compute granularity.This behavior arises from the microkernel structure where increasing compute granularity also increasesthe likelihood that a destination processor will be unresponsive to service a communication request.Performance degrades for push messaging because of sender-receiver coupling, while pull messagingeliminates this coupling to deliver robust high performance.3. Aggregate Impact of the Runtime Mechanisms: In addition to the speci�c trends describedabove, one trend can be observed across all the graphs. The hybrid stack-heap execution model ise�ective in improving the e�ciency of computations with small granularity and a high percentageof local accesses. The pull messaging mechanisms targets the other end of the parameter space,improving e�ciency for large granularity computations which have a signi�cant fraction of remoteaccesses. Thus, for the microkernel, the two mechanisms enable computations with signi�cantly smallercompute granularity and larger amounts of communication to be e�ciently executed.5.1.2 Experiment 2: Robustness of Pull-MessagingFigure 12 shows the performance of the Base+Stack and Base+Stack+Pull versions as the distribution ofremote accesses is varied. Each row of plots is parameterized with di�erent values of the standard deviationof compute granularity. The percentage of remote accesses is �xed at 80%. In all the plots, varying thecompute granularity has only a second-order e�ect when compared with the e�ect of the tra�c patterns.As can be seen from Figure 12, the performance of the Base+Stack+Pull version is robust over outputcontention, showing only the e�ects of an increase in the computation's critical path arising from the hotspotprocessors having to do more work. This robust behavior is in contrast to the Base+Stack version whoseperformance is unpredictable and poor both because of unresponsive receivers and because of unbalancedtra�c distributions. These e�ects interact with the push-messaging's sender-receiver coupling, decreasingperformance because of increased overheads at senders waiting to send messages.5.1.3 Experiment 3: Regions of Acceptable E�ciencyFigure 13 shows the parameter space regions, de�ned by compute granularity and the fraction of localaccesses, where microkernel execution for the four runtime versions achieves � 70% e�ciency. Note that thecompute granularity is plotted on a log scale. The � 70% region with the Base version is showed in black atthe upper-right corner of the graph, requiring compute granularities greater than 300�s and greater than 80%local accesses.5 The addition of the hybrid stack-heap mechanisms increases the acceptable e�ciency regionto include the hashed portions, marked +Stack and +Stack or +Pull. This enables 70% execution e�ciencywith granularities as low as 10�s and fewer local accesses (60%). The addition of the pull communicationmechanisms increases the region further (shown by the hashed portion marked +Pull) allowing microkernelexecutions with even 0% local accesses to achieve � 70% e�ciency. Finally, the two mechanisms together add5The 70% e�ciency region requires a large fraction of local accesses even for relatively large compute granularities because thesender-receiver coupling worsens as compute granularity is increased, increasing the likelihood that a receiver is unresponsive.20
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Figure 12: Robustness of pull-messaging: microkernel execution e�ciency of Base+Stack (top) andBase+Stack+Pull (bottom) versions for several output-contention tra�c patterns as compute granularity(� ) is varied (80% of accesses are to remote objects). Each row of plots correspond to variations in thecompute granularity (�).the solid gray region marked +Pull+Stack, allowing 70% execution e�ciency to be achieved with granularitiesas low as 10�s (for 100% local accesses) and 150�s (for 0% local accesses).Figure 13 clearly demonstrates that the two runtime mechanisms increase the 
exibility of achieving highperformance, enabling even computations with smaller compute granularities and a larger fraction of remoteaccesses to achieve high e�ciency levels. The plot also highlights the relative merits of the two runtimemechanisms. Hybrid stack-heap execution enables small granularity threads to be executed e�ciently aslong as the execution has su�cient runtime locality. On the other hand, pull-messaging mechanisms increasethe locality region which can be executed e�ciently for a particular compute granularity.5.2 Application ProgramsIn this section, we examine how the performance advantages observed on a synthetic microkernel translateto two large irregular application programs expressed using dynamic multithreading. For each application,we �rst brie
y describe the application program and its code structure, and then its performance corre-sponding to the four runtime versions. We demonstrate that the mechanisms enable a high-level dynamicmultithreading expression of these applications to achieve performance comparable to explicitly optimizedversions. 21
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Figure 13: Regions of the compute granularity and fraction of local accesses parameter space where themicrokernel achieves � 70% e�ciency for the four runtime versions. The e�ciency region achieved by onlythe Base runtime is shown in black; adding the mechanisms increases this region (the increments correspondto the appropriately labeled hashed and gray portions).5.2.1 Hierarchical RadiosityThe radiosity method computes the global illumination in a scene containing di�usely re
ecting surfacesby expressing the radiosity of an elemental surface patch as a linear function of the radiosities of all otherpatches, weighted by the distance and occlusion between the patches. We use an algorithm due to Hanra-han [23], modeled after hierarchical N-body methods. The method starts with the initial patches comprisingthe scene and computes light transport between pairs of patches, hierarchically subdividing each patch asneeded to ensure accuracy. Each patch maintains interaction lists of potentially visible neighbors. Computa-tion proceeds in iterations, where for each patch, we compute its radiosity due to all patches on its interactionlist, subdividing it or the other patches hierarchically as required. Subdivided patches acquire their own in-teraction lists and contribute a weighted term to their parent's radiosity. The visibility calculation dominatesthe computation time.Our parallel algorithm is derived from the radiosity application in the SPLASH-2 benchmark suite [48].There are three levels of parallelism in each iteration: across all input patches, across child patches of asubdivided patch, and across neighbor patches stored in the interaction list. Unlike the SPLASH-2 codewhich explicitly creates tasks and manages task queues, our Concert program merely exposes the visibilitycalculations as concurrent logical threads. Each thread has a structure similar to the microkernel: it �rstaccesses data from potentially remote patches, and then computes upon them. Our implementation cachessome of these accesses in software so as to reduce the total communication required by the program. Thisapplication exhibits irregularity in how deep each input patch can be re�ned, in how many interactions needto be computed for each patch, and even how long a particular interaction calculation takes. Additionally,the work across the iterations is not uniform with > 90% of the computation occuring in the �rst iteration.Radiosity: Impact of Runtime Mechanisms Figure 14 shows code performance for the four runtimeversions, expressed as speedup with respect to the fastest single node execution time. The mechanisms make22
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4 8 16 32 64Figure 14: Speedup achieved by the radiosity code for four runtime versions: base, base+pull, base+stack,and base+pull+stack, for various T3D con�gurations. The BF re�nement threshold was set to 0.015 andthe area re�nement threshold to 2000 units. Pull messaging and hybrid stack-heap execution model eachimprove performance by up to two times.good speedups possible even with a �ne-grained dynamic multithreading speci�cation. Hybrid stack-heapexecution and pull messaging individually improve performance over the Base case by up to 2 times. Forexample, in the 32-processor case, these mechanisms enable the speedup to increase from 6x to 12x. Hybridstack-heap execution causes visibility calculations to complete on the stack when the patches are co-located(or found in the software cache), unwinding to a heap context otherwise. The outer thread responsible forcomputing all interactions for a particular patch unwinds to the heap when one of the interaction threads itselfsuspends. Pull-messaging helps provide robust communication performance in the presence of unpredictablecommunication which is unsynchronized with ongoing computation and dictated by patch placement. Thetwo mechanisms together have a cumulative e�ect across the range of processors, increasing the achievedspeedup by up to 2 times over either of the mechanisms used alone, and up to 4 times over the Base version.Radiosity: Performance in Context To place the above speedups in context, we compared our absolutesequential run time with that achieved by the SPLASH-2 version of the program. Our sequential performanceis within 20% of the SPLASH-2 code on a SparcStation 20 and within 80% of it on a single T3D node. Theperformance degradation on the T3D arises from the inability of the generated code to e�ectively exploitthe small L1 cache (along with the lack of an L2 cache) on the DEC Alpha 21064. Our parallel performancecan be compared with previously published application speedup numbers (obtained from [43]) based on ahand-tuned implementation running on the DASH [31], a cache-coherent shared-memorymachine. Although,the T3D and the DASH are architecturally quite di�erent | the DASH has hardware support for cache-coherent shared memory and has relatively faster communication (in terms of processor clocks), while theT3D is a distributed memory machine requiring an order of magnitude higher cost to access remote data |our implementation achieves a speedup of 23 on 32 T3D processors which compares well with a speedup of26 on 32 processors of the DASH. 23



5.2.2 Molecular Dynamics: IC-CedarIC-CEDAR is a medium-sized protein molecular dynamics (MD) simulation program that models the motionof individual protein and surrounding solvent atoms using Newton's equations of motion. The applicationis challenging to parallelize on distributed memory machines because of its irregular computation and com-munication structure. IC-CEDAR is based on CEDAR [24], a sequential MD program written in C andFORTRAN. Simulations are carried out in discrete time steps with four computation phases: calculationof neighbor lists, computation of bonded and non-bonded forces, integration of motion, and SHAKE (aniterative coordinate correction phase). The neighbor list phase constructs a list of interacting atoms foreach atom based on a cuto� radius and requires irregular data accesses. The force-calculation phase includesboth short-range bonded forces, involving groups of 3-4 atoms, and long-range Coulombic and Lennard-Jonesforces involving atom pairs determined by each atom's neighbor list. The force calculation on each group of2 to 4 atoms requires �rst reading the position �elds and then updating the force �elds of each atom.Our expression of the above algorithm makes use of a spatial partitioning of atoms along with softwarecaching of data accesses to reduce the amount of required communication. Additionally, each major phaseis separated into a subphase which fetches all remote data values (implemented as a single thread whichperforms several data accesses to potentially remote objects), and another subphase which operates againstthese fetched values. Thus, although IC-CEDAR relies on the dynamic multithreading model to concurrentlyinitiate and synchronize among data accesses to remote objects, it resembles a message-passing program inits explicit separation of communication and computation phases. As we shall see later, this separation hasan important rami�cation on the performance advantages of pull messaging mechanisms.
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Figure 15: Scaled speedup achieved by four versions of the IC-CEDAR code: base, base+pull,base+stack,and base+pull+stack for various T3D con�gurations. Pull messaging does not yield additional advantagesdue to the explicit decoupling between communication and computation in the code. Hybrid heap-stackexecution improves performance by up to 1.5 times.IC-CEDAR: Impact of RuntimeMechanisms Figure 15 shows the code performance for four runtimeversions on the myoglobin data set, expressed as speedup measured with respect to the compute portionof the 8 node execution time. As with the Radiosity application, the mechanisms enable good speedupsto be achieved despite using a �ne-grained natural application speci�cation. Individually, hybrid stack-24



heap execution improves performance by up to 1.5 times. For example, for the 64 processor case, Basegets a speedup of 24x in contrast to Base+Stack which achieves a speedup of 36x. This mechanism yieldsbene�t both for accesses which complete in the local cache (these complete on the stack) and for remoteaccesses which complete without blocking for concurrency control reasons (these complete in the messagehandler avoiding thread creation). However, unlike the Radiosity application, pull messaging yields littleadditional advantages over push messaging mechanisms. Communication in IC-CEDAR involves largermessage sizes for which pull messaging incurs higher per-message overheads. Additionally, the explicitseparation of communication and computation phases is well-suited to push messaging because all processorsare responsive and participating to complete the communication phase. Thus, this is a situation where ahybrid scheme consisting of both push and pull messaging can yield bene�t. However, as the di�erence inabsolute runtimes for the 128-processor case shows, this degradation is less severe than the speedup barsindicate.IC-CEDAR: Performance in Context To place the above speedups in context, we measured the abso-lute sequential times for the same data set with for the sequential C/FORTRAN version of CEDAR and aone-processor run of IC-CEDAR. On a SparcStation 20, the sequential performance of IC-CEDAR is within75% of the performance achieved by the C/FORTRAN version of CEDAR. To compare our parallel perfor-mance, we looked at the performance achieved by CHARMM [26], a highly tuned SPMD implementationbuilt on top of sequential FORTRAN code with manually inserted calls to the CHAOS runtime library re-sponsible for communication and load-balancing. Despite di�erences in simulation models, both IC-CEDARand CHARMM exhibit similar computation and communication behavior, and perform similar amounts ofwork. For similar myoglobin data sets on 64 nodes on the T3D, IC-CEDAR achieves comparable absoluteperformance coming within 33% of the CHARMM performance (23.49s versus 18.46s). The remaining isvery likely a result of di�erences in quality of code produced by the Fortran and C compilers.6 Discussion and Related WorkWe have described two runtime mechanisms which overcome the excessive thread management and commu-nication overheads for dynamic computations resulting both from the lack of compile-time information andthe unbalanced, unsynchronized nature of communication and computation. While these mechanisms weredeveloped in the context of �ne-grained concurrent object-oriented languages, we believe they are applicableto other multithreaded programming models where the compute and communicate operations of dynami-cally created threads cannot be explicitly managed and scheduled statically. The biggest advantage of thehybrid stack-heap execution and pull-based messaging mechanisms are that they enable applications exhibit-ing a much larger range of compute granularities and communication characteristics to be executed withhigh e�ciency. As a compiler target, these mechanisms produce robust, high performance despite imperfectcompile-time information, irregular computation structure, and even poor programmer data distributiondecisions.Our work is related to previous research which has looked at e�cient support for thread managementand communication; however, the primary distinction is its emphasis on delivering high performance fordynamic, �ne-grained applications without specialized hardware support.E�cient Thread Management Specialized hardware approaches have suggested providing multiplehardware contexts [1, 13] and integrating thread creation with message reception [42, 33]. In contrast, hybridstack-heap execution can be supported entirely on stock hardware bene�ting from advances in commoditymicroprocessor architectures.Portable multithreading runtime systems such as Chant [21], Nexus [16] and PORTS [40], built on top ofvendor-supported, standardized light-weight thread [27] and communication [15, 44] interfaces, incur largethread and communication overheads (30-50�s) requiring large granularity threads for e�ciency. Finergrained threads can be supported by programming systems such as Mentat [20], Cilk [3], COOL [8], andCharm++ [28]. However, such systems typically assume minimal compiler support, relying on the pro-grammer to control thread granularity and mapping for performance. Automating these decisions requires25



compile-time knowledge of how the execution unfolds; consequently, such systems achieve low e�ciency forirregular, dynamic computations.The close compiler-runtime coupling which characterizes hybrid stack-heap execution is also found in otherdynamic, �ne-grained programming systems. The Threaded Abstract Machine (TAM) [12] model providesa cost hierarchy, enabling the compiler to manage synchronization, scheduling and storage at the activation-frame level. Our work complements TAM's by providing mechanisms which enable robust performancein spite of statically unpredictable situations. The idea of lazily creating threads as required by runtimesituations can also be found in the work on Lazy Task Creation [32] and Leapfrogging [47] in the context ofshared-memory machines, and Olden [41], Stacklets [18], and StackThreads [45] in the context of distributed-memory machines. The former two schemes were developed in the context of parallel languages with explicitfutures [22], and allow stealing previously deferred stack frames to adaptively control execution granularityand work distribution. Hybrid stack-heap execution di�ers in that it allows eager work distribution. Thelatter three schemes all allocate new threads whenever the current one blocks due to a remote operation.Thus, unlike hybrid stack-heap execution, they use the same mechanism to support both work distributionand latency-hiding and cannot optimize their code for either situation.E�cient Communication Previous research has largely focused on reducing point-to-point messagingcosts and paid less attention to multi-party communication characteristics. Hardware approaches [13, 4] haveargued for a closer integration of the network interface with the processor. Software approaches have inves-tigated the design of messaging layers with minimal kernel interaction [14, 6], and the active messages [46]approach of o�oading all but the essential operations from the messaging layer. These approaches alone areinadequate to prevent performance degradation arising from sender-receiver decoupling in the presence ofunbalanced and unsynchronized communication tra�c.Two recent approaches address the above shortcoming. Callahan [7] proposes a network interface whichlimits the number of outstanding messages between pairs of processors to improve network performanceeven for unbalanced tra�c. Pull messaging achieves the same e�ect with general-purpose hardware: remotememory access and synchronization hardware is available in several current parallel machines. Brewer [5]has looked at software solutions for improving performance for all-pairs communication tra�c on the CM-5.However, their solutions consider only permutation tra�c patterns, requiring all processors to cooperate forachieving high performance. In contrast, our pull-based messaging scheme provides robust performance forasynchronous and varied communication behaviors.7 ConclusionsWe have described two runtime mechanisms which can enable stock scalable parallel machines to supportdynamic �ne-grained multithreaded computations e�ciently, enabling them to achieve performance com-parable to hand-tuned approaches. Hybrid stack-heap execution dynamically coalesces �ne-grained logicalthreads into larger-grained physical threads, overcoming lack of compile-time information which otherwiseincreases thread management overheads. Closer coupling with the compiler enables logical threads to beoptimistically executed on the caller's stack; threads are lazily created as required by runtime situations.Pull messaging provides performance robust over unbalanced and unsynchronized communication tra�c.The shared address space hardware on the Cray T3D is used to implement a distributed message queue withlazy receiver-initiated data transfer which improves performance by providing sender-receiver decoupling.Performance studies for a synthetic compute-communicate microkernel and two irregular applicationsbased on a Cray T3D implementation demonstrate that these mechanisms signi�cantly enhance the range ofcomputation granularities and communication characteristics which can be e�ciently supported. In particu-lar, each increases microkernel execution e�ciency by up to 50 percentage points; hybrid stack-heap executionis e�ective for executions with small compute granularity and high runtime locality, while pull messagingimproves performance for executions with low runtime locality. In addition, the mechanisms enable 70%microkernel execution e�ciency with compute granularities of 10�s (for 100% local accesses) and 150�s (for0% local accesses); in contrast, reaching the 70% e�ciency level originally required the microkernel to havecompute granularity larger than 300�s and greater than 80% local accesses. Furthermore, measurements fortwo irregular applications { hierarchical radiosity and macromolecular dynamics { show that performance is26
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