
Analysis of Dynamic Structures for E�cient Parallel Execution�John Plevyak Vijay Karamcheti Andrew A. ChienDepartment of Computer ScienceyUniversity of Illinois at Urbana-ChampaignUrbana, IL 61801
Workshop on Lanuguages and Compilers for Parallel Computing of '93.

AbstractPrograms written in high-level programming languages and in particular object-oriented lan-guages make heavy use of references and dynamically allocated structures. As a result, precise anal-ysis of such features is critical for producing e�cient implementations. The information producedby this analysis is invaluable for compiling programs for both sequential and parallel machines.This paper presents a new structure analysis technique handling references and dynamic struc-tures which enables precise analysis of in�nite recursive data structures. The precise analysis dependson an enhancement of Chase et al.'s Storage Shape Graph (SSG) called the Abstract Storage Graph(ASG) which extends SSG's with choice nodes, identity paths, and specialized storage nodes and ref-erences. These extensions allow ASG's to precisely describe singly- and multiply-linked lists as wellas a number of other pointer structures such as octrees, and to analyze programs which manipulatethem.We describe program analysis to produce the ASG, and focus on the key operations: the transferfunctions, summarization and deconstruction. Summarization compresses the ASG in such a wayas to capture critical interdependencies between references. Deconstruction uses this information,stored by identity paths and re�ned references and nodes, to retrieve individual nodes for strongupdates.1 IntroductionCompilation, the translation of high-level programming languages to produce e�cient program imple-mentation in machine executable code, plays a major role in supporting the widespread use of computersystems. Optimizing compilers that transform programs to increase execution e�ciency allow users tofocus on high-level concerns rather than low level machine detail while achieving acceptable levels ofe�ciency. An essential element in such compilers is accurate program analysis which provides the com-piler with information as to which program transformations may be safely applied without changing theprogram's functional behavior. Thus, good program analysis is necessary for e�ective optimization ande�cient implementations.Recent developments in programming languages and the widespread use of computing in non-numericapplications have produced a broad class of computer applications and algorithms. These applicationsand algorithms make use of a growing diversity of sophisticated data structures which rely on dynamicstorage allocation and the use of references as basic tools for e�ciency and expressibility. Thoughtheir use is ubiquitous, references and dynamic storage allocation raise di�cult problems in programanalysis. In this paper we focus on structure analysis, the problem of building a safe approximation ofthe program's run time data structures. Structure analysis is used to direct program optimization atcompile time, consequently its accuracy is critical to improving code e�ciency.yE-mail: fjplevyak,vijayk,achieng@cs.uiuc.edu�The research described in this paper was supported in part by National Science Foundation grant CCR-9209336,O�ce of Naval Research grant N00014-92-J-1961, and National Aeronautics and Space Administration grant NAG 1-613.Additional support has been provided by a generous special-purpose grant from the AT&T Foundation.1

Structure analysis estimates at compile time the shape of the runtime store. Alias analysis is arelated problem, but is subsumed by structure analysis since alias relations are described by the abstractstore. However, the shape of unaliased dynamic structures cannot in general be inferred from aliasinformation alone. While the alias information produced by structure analysis su�ces for traditionalserial optimizations and for dependence analysis based parallelization, the unique structure informationis required for other important optimizations. Since determining precise alias information even in asingle function is NP-complete [LH88, Mye81] practical structure analysis algorithms approximate theprogram store.2 Background2.1 Related WorkMost of the work on structure and alias analysis has been based on a data
ow analysis framework.Such a framework de�nes a lattice of possible structure or alias situations, a function for each part of aprogram which models the e�ect of that part on an element of the lattice, and a meet operator whichcombines two elements into one.Three basic approaches to both structure analysis and the alias problem have been explored. Thesebasic approaches are (1) explicit annotation [Lar89] (2) access paths [HN90] and (3) graph based ap-proaches [CWZ90]. Explicit annotations allow the user to supply the compiler with information whicheither cannot be derived, or is more easily veri�ed than derived. In access path approaches, the aliasesat each program point are described by pairs of access paths. In the graph based approaches, an approx-imation of the entire heap is computed for each program point and the graph nodes and edges expressthe possible sets of aliases and structure relations at execution time.Many algorithms also use a combination of these approaches. For instance, the Abstract DynamicData Structure description (ADDS) approach [HNH92] combines annotation with access paths and seeksto verify programmer assertions. Larus [LH88] uses graphs to represent the structures reachable fromeach program variable, but labels the nodes with access paths and uses the labels to identify aliases.In contrast, Chase [CWZ90] uses graphs alone in which each node in the graph corresponds to oneor more nodes in the runtime heap and the edges correspond to references. In this paper we do notconsider annotations. The addition of program annotations is orthogonal to the problem of analyzing anunannotated program since for any imprecise algorithm, annotations could be added which guide andassist analysis at the cost of programmer e�ort.In recent work, access path and graph based approaches have been drawn together [CBC93]. Withaccess paths, the aliases at a program point are described by alias relations (pairs of access paths). Anaccess path is a tuple consisting of a cell and a sequence of �elds. The cell is either a program variableor a storage location name and the set of alias relations determines the edges of a directed graph. Ifthe alias relations are stored with only one level of dereferencing, the aliases are precisely the edges ofa graph whose vertices are the starting cells of the access paths [CBC93]. As a result, access paths areused to implement an essentially graph based algorithm.Current alias and structure analysis algorithms are unable to accurately analyze many common datastructures. Structure analysis approaches based on k-limited graphs [JM81, LH88, HPR89] or on k-limited naming schemes [CBC93] are unable to adequately describe recursive structures such as lists; ingeneral, structures extend beyond the k-limit and the summary process destroys all structure beyond knodes. If the list is traversed beyond k elements, the analysis cannot preserve the list structure, losingprecision in analysis which leads to missed opportunities for optimization.Chase et al.'s SSG algorithm [CWZ90] circumvents the k-limitation by augmenting the basic referencegraph with heap reference counts. Thus, for singly-linked structures, SSGs can sometimes obtain aprecise analysis of the program. However, the SSG algorithm su�ers from two major limitations: itcannot analyze singly-linked lists in the face of mutation nor can it precisely analyze multiply linked2

structures.1 . To remedy these limitations, the ASG incorporates extensions to the SSG (not based onheap reference counts). These extensions are described in detail in Section 3.2.2 Project ContextThis work has been done as part of the Concert Project [CKP93]. The objective of the Concert systemis to achieve e�cient, portable implementations of �ne-grained concurrent object-oriented languages onparallel machines. Current commercial multicomputers are the primary target and present a variety ofdi�cult problems since the cost of �ne grained synchronization, consistency, communication and contextswitching in these machines can easily overwhelm that of computation. Controlling these costs requiresdetermining the runtime shape of program structures and transforming both them and the program toincrease the computation grain size.These transformations fall in the general category of optimizations addressed via grain size tuning[CFKP92] which seeks to match the amount of serial processing between communication or synchro-nization points in the program to that e�ciently supported by hardware. In parallel programs, mergingcomputational grains requires enhancing data locality. For programs with complex data structures,accurate structure information at compile time allows identi�cation of collections of data which aretransformable for enhanced locality. Two examples of these transformations and the structure relationswhich facilitate them are given below:object fusion When an object (dynamic structure) has an invariant reference to an unaliased object,the second object may be fused with (allocated as part of) the �rst object. A special case of objectfusion is tiling in which recursive data structures consisting of unaliased objects can be blockedalong dimensions and treated as a unit. Operations on the resultant object are scheduled as asingle computation grain.object clustering When a group of objects is identi�ed which exhibit strong internal cohesion, theycan be designated as a cluster for scheduling, placement and migration purposes.These data transformations not only increase the execution grain size, they also increase the e�ective-ness of traditional optimizations such as instruction scheduling and register allocation which are moree�ective on the resulting larger schedulable units of instructions.2.3 Overview of the PaperThe general mechanism of the reference graph based approach to structure analysis follows a standarddata
ow analysis framework consisting of an abstract store as the lattice, abstract interpretation astransfer functions, and a safe merge as the meet operator. The approach combines an approximation2of the runtime store with an approximation of the e�ect of the program.In this paper, we describe an extension of the generic reference graph (called the Abstract StorageGraph) which can model multiply-linked in�nite structures precisely in a �nite representation. Ourstructure analysis algorithm interprets the e�ects of the program on the abstract store while preservingthe informationwhich it contains. The algorithmdeconstructs the �nite representation to reveal portionsof the in�nite structure enabling precise updates.In Section 3, we discuss the Abstract Storage Graph (ASG). Section 4 describes the construction of theASG through abstract interpretation of program statements. Section 5 presents the �nite summarizationand iteration mechanisms. The safety and complexity of the intraprocedural algorithm are discussed inSections 6 and 7. Finally, we conclude with current status and future work in Sections 8 and 9.1An extension to heap reference counts is mentioned to handle the construction of multiply-linked structures, but isnot developed.2In this paper approximation should be taken to mean safe approximation in the sense of describing or creating at leastas many aliases as that which it approximates. 3

3 Abstract Storage GraphsA store representation �nitely approximates the reference pattern of a program at an execution point.It must safely approximate the pattern so that transformations which use the reference information willpreserve program semantics. In this section, we describe our store representation, the Abstract StorageGraph (ASG), and relate it to Chase et al.'s Storage Shape Graph (SSG) [CWZ90].A generic reference graph is a store representation containing nodes which model dynamic programstructures, and edges which model references. In order to produce a precise approximation, the referencegraph must preserve as much deterministic reference information as possible. Determinism in the graphrefers to the knowledge that a particular reference does exist as opposed to may exist.The ASG is a variant of the generic reference graph with the following extensions which enable it topreserve deterministic reference information:� single nodes and summary nodes re�ne generic storage nodes.� deterministic references and nondeterministic references re�ne generic references.� choice nodes encode unique alternatives between references.� identity paths are used to annotate summary nodes preserving their internal structure.The nodes of the ASG are variables, single nodes, summary nodes and choice nodes. The edgesrepresent di�erent types of references between nodes and include deterministic (d-references) and non-deterministic (n-references) references3 . The di�erent components of the ASG are described below(Figure 1 shows the symbols used in the rest of the paper).
x y z ... Variables

Null Pointer

Choice Node

Identity Paths{forward backward, backward forward}

Summary Node

D−Reference

N−Reference

Single Node Field Namenext

Figure 1: Abstract Storage Graph ElementsReferences can have two orthogonal attributes. All references incident on storage nodes have anattribute indicating whether or not they are deterministic, and all references leaving storage nodes havea �eld name attribute. Deterministic references indicate that a reference emanating from exactly onenode enters exactly one instance of the target node4. Nondeterministic references indicate that a nodemay be referenced zero or more times. N-references arise from control
ow con
uence, summarization3One restriction is that variables may not be the target of references.4Contingent on the existence of both the source and destination nodes4

Doubly−Linked ListSingly−Linked List

Binary Tree

{left parent, right parent}

next

prev

{next prev, prev next}

root
next

root

Octree

left right

root

{child* parent}

8

next

leaves

root

parent

parent

childFigure 2: ASG Examplesand other sources of imprecision. They correspond to the traditional de�nition of a reference in a genericreference graph where nodes represent multiple pieces of storage.The nodes of a generic reference graph (here called storage nodes) are re�ned into summary nodesand single nodes which correspond to single pieces of storage. A single node of a particular type canhave only one �eld reference for each �eld in its type, and this reference refers to only one node (choiceor storage). Summary nodes correspond to an indeterminate number of pieces of storage of the sametype. Summary nodes arise when storage nodes are combined, and may be deconstructed (uncombined)while preserving deterministic reference information. A d-reference to a summary node indicates thateach summarized node is referenced exactly once along that arc.Choice nodes describe a set of disjoint possibilities and along with identity paths are used to avoidunnecessary introduction of non-determinism into the ASG. Choice nodes are introduced during thecombining phase of the algorithm, preserving the two sets of disjoint alternatives represented by thenodes being combined. For instance, if two nodes each of which have a single deterministic referenceare combined, a choice node is inserted between the two incoming references and the combined node.The choice node preserves the information that the combined node can have only a single incomingdeterministic reference; thus, the two references which come into the choice node are unaliased. Notethat converting the two references into a non-deterministic reference would have resulted in a loss ofinformation. Since choice nodes do not model real program structures, references which are incident onchoice nodes de�ne connectivity. A storage node is reachable from an particular reference if a path canbe found through a set of choice nodes to the storage nodes.Identity paths are pairs of labels which describe cycles in the reference graph. Identity paths preservethe internal structure of summary nodes enabling storage nodes to be summarized and deconstructedwhile preserving d-references between them. This allows, a precise, �nite representation of some in�nitedata structures. For instance, in a doubly-linked list, the identity path (next prev) describes therelationship that the previous node of any next node is the node itself. Reversing labels in an identitypath does not always produce a valid identity path. For example, in a binary tree, (left parent, rightparent) is a valid identity path, but (parent left) is not (see Figure 2. Section 5.2 shows how identity5

paths can be used to extract a list of storage nodes from a single summary node without introducingnon-determinism.3.1 ExamplesASGs can model many common recursive data structures precisely in a small amount of space. Someexamples of di�erent structures and how they are modeled using an ASG are shown in in Figure 2. Asingly-linked list is modeled with a choice node and a summary node. The key piece of information isthat each node has only one incoming reference (a reference count of one); this describes the structureas acyclic. For a doubly-linked list the ASG consists of two choice nodes and a summary node annotatedwith the identity paths (next prev, prev next). The key information is that (i) the reference fromroot shares the d-reference incident on the summary node with the summary node's own next reference.This means that the one of the summarized nodes is pointed to directly by root, and the list whichfollows is unaliased along next. And (ii) the identity paths preserve the information that the referencesin the next and prev �elds are inverses of each other. As a result, we can conclude that the graphaccessible from root is indeed that of a doubly-linked list.3.2 Comparison with SSGASGs and SSGs model similar information, but our analysis produces ASGs which contain more in-formation than SSGs. An ASG can be transformed into a comparable SSG by removing information.For instance, the ASG which describes a singly-linked list can be transformed to the SSG for the samestructure (see Figure 3).
nilnil

HRC = 1

x

HRC = 0
next

root

ASG

nil

SSGFigure 3: ASG & SSG Singly-Linked ListThe general transformation is complicated by the succinctness of the ASG which allows us to representa singly-linked list with a single summary node. The transformation requires an informal de�nition ofdeconstruction (formalized later). Deconstruction is a technique which splits a storage node out of asummary node allowing that single node to be dealt with separately.To transform an arbitrary ASG to an SSG:1. Deconstruct any storage nodes referenced directly from variables (this mimics the SSG's determin-istic variables).2. Set the heap reference count (HRC) by counting the number of incoming D-references of each nodewhich do not originate at a variable and mapping all counts greater than 1 to 1. Any node withan incoming N-reference has an HRC of 1.3. Remove choice nodes, adding labeled references to all the objects reachable through choice nodes,and either D- or N-references to the storage nodes themselves.6

next

root ASG

nilnil

HRC = 1

x

HRC = 0

nil

next

root
next

(1)

HRC = 0 HRC = 1(2)

(3,4) nextroot
next

HRC = 1

HRC = 0

SSGFigure 4: ASG to SSG Translation4. Change single and summary nodes to simply storage nodes. The graph is now an SSG.5. In order to �t the SSG algorithm requirements, the graph must be compressed such that there isonly one storage node per variable and per storage allocation point.In Figure 4 we show how the canonical ASG representation of a singly-linked list is transformed intothe canonical SSG representation of the same structure. At the top is the original ASG. In the �rst step,the node which is reached from root is separated from the �rst summary node. Then the Heap ReferenceCount is calculated. Only the summary node is reached from another storage node, so it has a countof one whereas the single node is only reached by a variable and has a count of zero. In the third andfourth steps, the distinctions between the special node and reference types are forgotten, and the choicenodes are removed. The graph is now identical to the SSG; only the graph symbols are di�erent.4 Building ASGsStructure analysis begins with an initial store, built from initial values of program variables (global andstatic data declarations). The program is then interpreted against this store, statement by statement. Forour purposes, the program consists of storage allocation, assignment, conditional and loop statements.Assignments are to and from a variable or a �eld of an object referenced from a variable. The programis considered to be in Static Single Assignment form [CFR+91].7

4.1 DriverThe overall structure of the analysis algorithm follows that of conventional iterative data
ow analysis.The solution at every program point is related to the solution at other points. Program points areprogram statements and the relations are de�ned on control
ow arcs. The driver procedure appears inFigure 5.COMPUTE-PROCEDURE-ASG(procedure)work.Enqueue(procedure.entry)while work.Not-Empty() dos work.Dequeue()s.COMPUTE-STATEMENT-ASG()if (s.outASG 6= s.old-outASG)work.Enqueue(s.Successors())end ifend whileend Figure 5: Driver FunctionEach statement a�ects the ASG as shown in Figure 6 and described below. Most of the functions initalics have the obvious de�nitions. The others include:reachable-along Given an access path a ! b, the locations labeled b in the nodes which are pointedto by a.reachable-from Given an access path a ! b, the nodes which are pointed to with label b from allnodes pointed to by a.node Given a location, return the node which contains it.type For nodes, return single or summary. For references, return d-ref or n-ref.refs Given an access path and a node, returns all the incoming references along the path to the node.strong-update Given a location to update, a node and its access path, if the node is a single node andall references along the access path to the node are d-references then make a d-reference from thelocation to the node, otherwise make an n-reference.4.2 AllocationWhen a new node is allocated and assigned to a variable, a new single node of the appropriate type iscreated, and the variable is set to d-reference that node.4.3 AssignmentIn order to analyze programs which manipulate structures (as opposed to simply building them), wemust remove as many references as we create. This follows from the observation that the graph beforethe manipulation must match the resulting graph. We therefore di�erentiate between two types ofupdates | strong and weak. When one reference replaces another it is called a strong update [CWZ90]and corresponds to the killing rules of standard data
ow techniques [ASU87]. Strong updates can onlyoccur when a location is de�nitely updated. When a location may or may not be changed this resultsin a weak update. Not only is the new reference nondeterministic, but any existing references must beweakened (made nondeterministic) as well. 8

allocation::COMPUTE-STATEMENT-ASG()n new-single-node(struct-type(rhs))outASG.make-ref(d-ref,lhs,n)endcfg-diverge::COMPUTE-STATEMENT-ASG()outASG-1 inASGoutASG-2 inASGendcfg-converge::COMPUTE-STATEMENT-ASG()s-vars inASG-1.vars()\inASG-2.vars()8v 2 s-varsc new-choice-node()outASG.make-ref (ref,v,c)outASG.make-ref (inASG-1.ref-type(v),c,inASG-1.dest(v))outASG.make-ref (inASG-2.ref-type(v),c,inASG-2.dest(v))outASG.COMPRESS()end
assignment::COMPUTE-STATEMENT-ASG()lvals reachable-along(lhs)rvals reachable-from(rhs)8v 2 node(lvals),type(v) = summary,type(ref-from-to(lhs,v) = d-refinASG.DECONSTRUCT(lhs,v)8v 2 rvals,type(v) = summary,type(ref-from-to(rhs,v) = d-refinASG.DECONSTRUCT(rhs,v)8r 2 lvalsc new-choice-node()if (type(node(r)) 6= summary and8v 2 refs(lhs,node(r)),type(v) = d-ref)8m 2 rvalsoutASG.strong-update(c,m,rhs)else8k reachable from node(r) along routASG.make-ref (n-ref,c,k)8m 2 rvalsoutASG.make-ref (n-ref,c,m)end ifoutASG.make-label-ref(label(r),ref,node(r),c)endFigure 6: Basic FunctionsManipulating summary nodes directly results in weak updates introducing nondeterminism into thegraph. We present a technique called deconstruction in Section 5.2 which separates out a single node froma summary node making strong updates possible. With this facility, we discuss the steps to interpret ageneral assignment of and through a �eld (a! b = c! d).First, any summary nodes pointed to by a, c and c! d are deconstructed. This step is not necessaryto preserve a safe approximation, but it improves precision by enabling strong updates of nodes whichhave been summarized. Deconstructing the nodes in which the update will occur allows single locationsto be updated and deconstructing the right hand side make it possible to assign a pointer to a particularnode.Second, for each node on the left hand side (pointed to by a) we decide if we can make a strongupdate. If the node is reached from a by only d-references then, if the node exists, a de�nitely pointsto it. If that node is also a single node, then we have a single location to update and can do a strongupdate, otherwise we do a weak update. The pseudocode for assignment appears on the right side ofFigure 6.4.4 Conditionals and LoopsThe e�ect of the conditional can be safely approximated by applying the e�ects of each branch separately,and then taking a safe merger of the results. This is accomplished by starting each branch of theconditional with the ASG at the conditional.At any point where control
ow converges, for instance at the back-edge of a loop, a merge is taken(see Section 4.5). Loops are automatically handled by the worklist approach where transfer functions for9

statement successors are evaluated if the incoming ASG changes. However, for the data
ow algorithmto terminate the �xed-point of the iteration must be detected.Detection of the �xed point requires a node labeling which allows nodes in di�erent ASGs to bematched. The nodes are labeled on the basis of their creation points as represented by (i) the programstatement which caused their creation, and (ii) a timestamp based on the
ow of ASGs through theprogram (the order in which program statements are required to be evaluated). When two summarynodes are combined, a total order over creation points determines the label of the resulting node. Nodesmatch when they either have identical labels, or the same label relative to the current timestamp. The�xed-point is detected if all the edges match for the matched nodes. Since matching is deterministic,the size of the graph is bounded and the references increase monotonically, all nodes will be matched atthe �xed point.4.5 A Safe MergeAt points of control con
uence, such as the exits of loops or the point below a conditional, the ASGsfrom each path must be combined. Merging combines two ASGs, producing a safe approximation to thereference patterns of both. Any number of paths may merge at a program point, but such cases can behandled as a sequence of pairwise merges.A safe merge is achieved by inserting choice nodes in front of each program variable pointing tothe alternatives from each graph. Such a merge is safe because each variable points to everything itpointed to in either graph. The result, however, is large since it includes all the nodes of both graphs.Consequently, while merging ASGs is logically the result of compressing the result of the safe mergeabove, a more e�cient mechanism should be used in practice. In Figure 6, a safe merge occurs in thefunction cfg-converge::COMPUTE-STATEMENT-ASG.5 Bounding the Size of ASGsWhile the preceding description yields an algorithm which is safe, it is not e�cient. Since we havepresented no mechanism for summarization, the ASG will continue to expand (in most programs) forever.In order to prevent this, the ASG at a program point is compressed to a size proportional to the numberof program variables. This is done by combining storage nodes into summary nodes. Unfortunately,summarization can result in the loss of critical information. ASGs provide two additional mechanismsfor dealing with this problem:� Identity paths to preserve the internal structure of summary nodes.� Deconstruction to enable the extraction of a single node from a summary node.The pseudocode for these functions is given in Figure 7 with subfunctions:ref-along-label Given two nodes and a label, return d-ref if all the references from the �rst node withthe label to the second node are d-references, otherwise if a reference exists return n-ref otherwisereturn no-ref.ref-from-to Given a location and a target node, returns the ref-along-label of the node of the location,target node, and the label of the location.ref-along Given a node and a label, return the reference from the node along the label.locations Given an access path, return all the locations which store the terminal reference.10

5.1 Identity PathsIdentity paths are pairs of labels which de�ne circular relationships following d-references between pairsof storage nodes. They preserve the reference pattern internal to summary nodes. This information isused during deconstruction to retrieve the in�nite structure of the data structure. If this informationwere not stored, self references would always imply a potential cycle.Identity paths are initially created and attached to single nodes where the circular relationship isexplicit in the d-references. They are preserved when storage nodes are combined, resulting in a summarynode which inherits the intersection of the identity paths compatible with both its constituents. Anidentity path (a b) is compatible if it either holds for the node or if the outgoing reference labeled a isNIL.DECONSTRUCT(src, n)m new-single-node(struct-type(n))8r 2 in-refs(n)make-ref (type(r),src(r),m)8r 2 out-refs(n)make-ref (type(r),m,dest(r))8s 2 locations(src)c new-choice-node()make-ref (ref,s,c)8x 2 reachable-from(s), x 6= nmake-ref (type(ref-from-to(s,x)),c,x)end forend for8k 2 fn,mg8p 2 id-paths(k),p = a.bif (8s 2 reachable-from-label(k,a),k 62 reachable-from-label(s,b)remove-ref (ref-along(k,a))end ifendCHECK-VALIDITY(n,p)if 8m 2 reachable-from-label(n,p.out-label)(type(ref-along-label(n,m,p.out-label))= d-ref andtype(m) = single or p�1 2 id-paths(m)andtype(ref-along-label(m,n,p.in-label))= d-ref andtype(n) = single or p 2 id-paths(n))return TRUEelsereturn FALSEend

UPDATE-IDENTITY-PATHS(r)8n 2 back-reachable-from(r)8p 2 id-paths(n),9s 2 out-refs-to(n,r),p.out-label = label(s)if (CHECK-VALIDITY(n,p) = FALSE)remove-path(n,p)8n 2 reachable-from(r)8p 2 id-paths(n),9s 2 in-refs-from(n,r),p.in-label = label(s)if (CHECK-VALIDITY(n,p) = FALSE)remove-path(n,p)8n 2 back-reachable-from(r)8m 2 reachable-from(r)8p 2 paths(label(out-refs-to(n,r)),label(out-refs(m)))if (CHECK-VALIDITY(n,p) = TRUE)add-path(n,p)8p 2 paths(label(out-refs(n)),label(out-refs-to(m,r)))if (CHECK-VALIDITY(n,p) = TRUE)add-path(n,p)end
Figure 7: Identity Path and Deconstruction FunctionsAfter adding or deleting a reference, storage nodes may fall into or out of identity relationships. The11

pseudocode for updating identity paths whenever a reference is added or deleted appears in Figure 7.Identity paths are determined locally by examining the nodes which are either sources or targets of thechanged reference. All identity paths which are e�ected by the change are checked for validity (usingfunction CHECK-VALIDITY), and if the nodes are both single nodes, any new valid identity paths arecreated.An identity path (a b) is valid for a storage node if all nodes reachable along the reference a ared-referenced, and the node itself is d-referenced with label b starting from these nodes. If the node inquestion is a summary node, we assume that the current identity paths attached to the summary nodeare valid. This assumption is safe since the only d-references incident on summary nodes were createdbetween single nodes.5.2 Deconstruction
x

f

b
{fb bf}

x
f

b f

b
{fb bf}Figure 8: DeconstructionTo preserve as much information as possible, variables used in updates must refer to storage nodes notsummary nodes. As necessary, summary nodes are deconstructed into a storage node and a summarynode, isolating the node to be assigned to or from. An example of deconstruction is shown in Figure 8.Deconstruction is done on all summary nodes which are d-referenced from a location. A new storagenode is created with all the references of the summary node, except those that can be eliminated byexploiting disjunction information or by considering identity paths. In addition, since the new singlenode is de�ned to be the one which is reached along the d-reference, other references which refer to thenew node along the d-reference are removed. The pseudocode for deconstruction appears in Figure 7.Consider the graphs in Figure 8. We have eliminated the f reference to the new storage node becausethe reference from x and an f reference are disjoint alternatives. Identity paths also constrain the newnode's references. In the example, the b reference for the new storage node must be NIL since theidentity path would require it to point to the source of an f reference which does not exist. Lastly, theNIL reference from the b �eld of the summary node is also removed since some incoming d-referencemust have been generated only by an f �eld reference. Figure 11, Step 4 shows how the deconstructedstorage nodes form a doubly-linked list as required by the identity path.12

COMPRESS()pair-nodes-by-combine-criteria()while (jASG.nodes()j > c*jASG.vars()j)REMOVE-REDUNDANT-NODES()COMBINE-DUPLICATE-EDGES()n-pair remove-�rst-pair()COMBINE-NODES(n-pair.1,n-pair.2)end whileendREMOVE-REDUNDANT-NODES()compute-connectivity()8x,y 2 ASG.nodes()if (type(x) = type(y) = choice andconnects(x) = connects(y))fuse(x,y)end ifif (type(x) = type(y) = storage andstruct-type(x) = struct-type(y) andconnects(x)/y = connects(y)/x)fuse(x,y)end ifend
COMBINE-DUPLICATE-EDGES()8x 2 ASG.nodes(),type(x) = choiceif (9u,v 2 x.edges(),dest(u) = dest(v))make-ref (n-ref,x,dest(u))remove-ref (u)remove-ref (v)end ifendCOMBINE-NODES(x,y)n new-node(comb-type(x,y),struct-type(x))8r 2 in-refs(x),9s 2 in-refs(y),type(r) = type(s) = d-ref andsrc(r) = src(s)make-ref (d-ref,src(s),n)8r 2 in-refs(x),choose unadded s 2 in-refs(y)c new-choice-node()make-ref (ref,src(s),c)make-ref (ref,src(r),c)make-ref (d-ref,c,n)8r 2 in-refs(x) [in-refs(y),r has not been added yetmake-ref (n-ref,src(r),n)8r 2 out-refs(x)c new-choice-node()make-label-ref (label(r),ref,src(r),c)make-ref (type(r),c,dest(r))s ref-along(y,label(r))make-ref (type(s),c,dest(s))id-paths(n) = valid-path-union(x,y)endFigure 9: Compression Functions5.3 CompressionApproximating the store in �nite space and detecting termination requires an upper bound on the sizeof the ASG along with a deterministic compression function. The compression function is composed ofthe following subroutines which are each discussed in turn in the following sections:1. Remove redundant choice nodes, references and storage nodes.2. Select storage nodes to be combined.3. Combine storage nodes.The pseudocode for the compress function appears in Figure 9 with subfunctions:pair-nodes-by-combine-criteria This is de�ned as part of the Combine operation later in this sec-tion. 13

compute-connectivity Compute for each choice node, the set of incoming references which are reach-able from the choice node. This is a transitive closure calculation.connects Given a choice node, the set of incoming references reachable from that choice node.in-refs Given a node, all the incoming references.out-refs Given a node, all the outgoing references.valid-path-union Given two nodes, all the identity paths attached to either of them that are valid forboth of them.fuse Given two nodes with identical connectivity and identity paths, combine them into a summarynode.comb-type Given two nodes, returns single if the two nodes can be combined into a single node,otherwise returns summary.
x1) x

f

b

2) x
f

b

f

b

{fb}

{bf}
3)

x
f

b

f

b

{fb} f

b
{bf}

{fb bf}

4) x
f

b

f

b

{fb}
f

b

{fb bf} f

b
{bf}

{fb bf}

5)

Combine Remaining Storage Node

f

b
{fb bf}

9)

x
f

b b

ff

b
{fb} {bf}

6)

{fb bf}

Combine Unsupported Node

{fb bf}

x

b

{fb}
f

b

7)

8)

{fb bf}

x

b

{fb}

b

f

Combine Redundant Choice Nodes

Combine Redundant Storage NodesFigure 10: Doubly-linked List Loop ASG5.3.1 RedundanciesRedundancies in the ASG arise from merge points. An edge is redundant if removing it does not changethe alias pattern between variables. Any two edges from a choice node to a storage node (one of whichmust be an n-reference by de�nition) can be combined into a single n-reference since the reference patternthrough the choice node to the storage node is already nondeterministic.Choice nodes are redundant when merging them would not change the ASG's connectivity. Connec-tivity must be determined independently for the d- and n-references emanating from a group of choice14

nodes. Any pair of choice nodes which reach the same outputs may be merged without changing the con-nectivity. Connectivity is determined by a transitive closure algorithm followed by pairwise comparisonof directly connected nodes.A storage node is redundant if combining it with a summary node does not change the connectivityof the summarized nodes (deconstruction would result in recovery of the original graph).For example, in Figure 10, Step 6, the storage node to the far right is redundant, and combining itwith the summary node in the center results in the addition of a reference to NIL to the choice nodereferenced by the f �eld in Step 8. In Step 7, a set of choice nodes are all connected to the summarynode and the storage node pointed to by x, so they are merged. In Step 9, the last storage node witha compatible identity path is combined because no variable directly references the storage node. Theresulting graph matches that for the doubly-linked list in Figure 2.5.3.2 Combine CriteriaThe combine criteria determines which nodes to combine such that the size of the ASG is within aconstant factor of the number of program variables and as much deterministic reference information ispreserved as possible. The following heuristics are used to identify nodes to be combined and are usedto implement the subfunction pair-nodes-by-combine-criteria.1. Similar Nodes: two nodes which were the same node before a control
ow divergence and are nowin the graph being compressed.2. Directly-referenced Nodes: two nodes which are d-referenced from the same variable.3. Distant Nodes: nodes which are \farthest" from variables using the number of intermediate storagenodes as a measure of distance.The �rst heuristic pairs up natural combinations, such as nodes which have not changed. This can beaccomplished logically as follows: starting from the set of variables which are not listed in the �-functionsat the merge point [CWZ90] (those that were not assigned in the region of the program for which themerge point is on the post-dominator front), select all nodes referenced only by these variables whoseoutgoing references have not changed. Applying this criteria recursively will result in the combiningof untouched portions of the graph. In practice, storing the graph as edge di�erence lists attached tovariables and nodes allows the untouched portion of the graph to be determined quickly.The second heuristic chooses to pair nodes which have similar reference patterns. The rationale forthis is that fewer n-references are created as a result of combining two such nodes.The third heuristic chooses nodes which are distant from variables since updates occur in the vicinityof variables. Such nodes are less likely to contain information which will be needed by the algorithmin succeeding steps; consequently, these nodes can be summarized. One way of identifying such nodesis by distributing a unit weight among nodes within a neighborhood of all variables, such that distantstorage nodes get a lower weight.Nodes selected through the latter two heuristics are matched with a node of the same type selectedthrough a limited breath �rst search since neighboring nodes are likely to share reference patterns.Should the search fail, the node will be combined with a random node of the same type, but it will becombined after all those for whom the search succeeded since, as was noted in [CWZ90], combining twounrelated nodes will not decrease space usage.It is important to note that the combine criteria must be deterministic. A total order over the nodescan be used to ensure this.5.3.3 CombineGiven two nodes selected according to the combine criteria, a decision needs to be made as to whetherthe combined node will be a single node or a summary node. Any two single nodes which cannot15

simultaneously exist can be combined into a single node. This condition can be determined for unchangedportions of the graph at merge points by using di�erence lists. It can also be determined locally bychecking if the two nodes are both d-referenced from a single location (either a labeled reference from asingle node or a variable). All other pairs of nodes are combined into a summary node. The pseudocodefor the combine function (COMBINE-NODES) is shown in Figure 9. The combine operation results in anew node of the appropriate type with incoming and outgoing references as described below.
x

f
b

x

y

x

y

f

b

f

{fb bf}

{fb bf}

{fb bf}

f

x

y

f

b

f f

b

{fb bf}{fb bf} {fb bf}

b

{fb bf}

x

y

{fb bf}

f

b

x

y

{fb bf}

f

b

{fb bf}

f

b

f

{fb bf}

x

y

{fb bf}f

b

f

b

{fb bf}
f

b

z

{fb bf}

1)

2)

3)

4)

6)

x

f
b

{fb bf}

8)
5)

w

w

2−5

1

6−8

z = new
x = {the list}
y = x
while ...
 y = y.f
w = y.f
z.f = w
y.f = z
z.b = y
w.b = z

b

7)
b

f f

b

{fb bf}{fb bf}
{fb bf}

b

b

b

{fb bf}

f

{fb bf}
f

b

b

{fb bf}
f

b

b

{fb bf}

f

b

{fb bf}

f

Figure 11: Insertion in a Doubly-linked ListTo make strong updates to the ASG, we need to preserve incoming d-references, so we apply heuristicsdesigned to preserve as many d-reference alternatives as possible. For each d-reference, if it is possible to�nd a corresponding d-reference incident on the other node with identical source, the two d-references canbe combined into one. If it is not possible to �nd a corresponding d-reference with identical source, the d-reference is paired heuristically with a d-reference incident on the other node giving priority to referencesoriginating at variables, and to references sharing the same �eld name. For each pair of d-referencesa choice node is created to join the d-references from the two sources into one d-reference. All other16

incoming references become n-references. For outgoing references choice nodes are simply inserted whichpoint to the two alternatives for the di�erent nodes. These heuristics attempt to prevent the introductionof n-references since their introduction results in a loss of deterministic reference information.In Figure 10, Steps 5 and 6 show the combination of two nodes in a doubly-linked list. First, the twocentral nodes in Step 5 are selected for combining since they are (i) not pointed to directly by a variableand (ii) have the same number of incoming d-references. Then new choice nodes are inserted with edgesattached according to the rules above (see Step 6).6 SafetyThe ASG's approximation of the structure of the program store is contingent on the safety of the initialapproximation and the safety of the functions which manipulate it. The abstract interpretation ofprogram statements and the safe merge have been shown to be safe in their respective sections.The identity path operations are safe since (i) identity paths are only created when the identityrelation is explicit in the graph and (ii) combining of nodes results in the combined node getting identitypaths which are compatible with both the constituent nodes.Compress is safe since the resulting nodes have at least the connectivity of the constituent nodes andat least as many potentially incoming edges from any source. It follows that the resulting graph has atleast the connectivity of the source graph.Deconstruction is safe since the newly created node has the same connectivity as the parent summarynode which is logically an in�nite set of single nodes of like connectivity. The references which areremoved are the result of the de�nition of the deconstructed node as the node which is reached alongthe incoming d-reference. Since such a node must exist, and since the identity path operations are safe,removing these edges is safe as well.7 Complexity AnalysisThe analysis below assumes that the maximum number of nodes in the ASG is bounded from above bya constant times the number of distinct program objects (variables, etc.) (V). Note that this conditioncan be easily ensured in any implementation of the algorithm.Since at the end of the intraprocedural algorithm, each program statement stores O(1) copies of theASG, the worst-case space complexity of the intraprocedural algorithm is O(S � V 2), where S is thenumber of program statements.The time complexity is obtained by noting that the dominant cost-contributors in the construction(update) of the ASG for any program statement are the identity-path update, summary-node deconstruc-tion, and the ASG compression steps. Each call to UPDATE-IDENTITY-PATHS involves O(V) invocationsof CHECK-VALIDITY, each of which requires a transitive-closure computation on the ASG, and resultsin an overall complexity of O(V 4). DECONSTRUCT also requires a transitive-closure computation andhas complexity O(V 3). The four constituent operations of COMPRESS each have complexity O(V 3): thedominant operation in REMOVE-REDUNDANT-NODES is compute-connectivity which involves a transitive-closure operation, while in case of COMBINE-NODES it is valid-path-union which requires O(1) calls toCHECK-VALIDITY. The overall complexity of COMPRESS is O(V 4) because the number of iterations beforethe ASG gets compressed to the required size is O(V) since in each iteration the number of storagenodes are being reduced by at least one, and the number of choice nodes in the graph is at most aconstant factor of storage-node pairs. Thus, the worst-case time complexity of modifying the ASG dueto a program statement is O(V 4).To bound the number of iterations required for the algorithm to reach �xed point, we consider a round-robin evaluation of the program statements. This is more ine�cient than the worklist approach but doesnot change the asymptotic complexity. Since the longest cycle in a control-
ow graph for a procedurewith S statements can have length O(S), propagating structure information to all statements of the17

procedure requires O(S) iterations. This corresponds to O(S2) statement evaluations; consequently, theoverall complexity of the iterative algorithm is O(S2V 4). This is a pessimistic measure of the algorithmcomplexity; in practice, we expect the asymptotic complexity to be considerably less since the improvedprecision of the algorithm should result in sparse connectivity.8 Current StatusWe are implementing this algorithm as part of the Concert compiler. The resulting information willbe used to enable transformations of runtime data structures such as fusion, clustering and tiling aswell as a host of other traditional and novel optimizations. Structure analysis is so critical to attaininge�cient use of distributed memory parallel machines that we believe the cost of such analysis is justi�ed.Uninformed compilation of such languages can result in programs which are several orders of magnitudeslower than corresponding fast serial implementations.The Concert system includes a compiler for an extended version of Concurrent Aggregates [CD90]and a runtime which exposes the cost hierarchy among the basic operations required for �ne grainedreactive computation [KC93]. Programs compiled with the system execute on uniprocessor workstationsand the CM5 [Thi91].9 Summary and Future WorkE�cient execution of irregular computations containing dynamic structures on parallel architecturesrequires that the compiler know the shape of the runtime store. The ease of general purpose parallelprogramming depends on future compilers being able to determine this information without programmerassistance. We present an algorithm for determining structure information.We have described a new structure graph, the ASG, which can model multiply-linked in�nite struc-tures in a �nite representation without loss of information. We have also described an algorithm forcomputing the ASG which can analyze programs with such structures, even in the presence of mutation.The key to this analysis is to preserve deterministic reference information. This is accomplished throughthe novel features of the ASG | deterministic references, choice nodes and identity paths, and the novelfeatures of the algorithm including deconstruction of summarized nodes.Successful structure analysis results when the functions which manipulate the real data structurescan be be shown to preserve the ASG which models the data structures. The key issues are:1. The ability to precisely model recursive structures in �nite space.2. The ability to deconstruct the �nite model revealing part of the in�nite structure.3. The ability to make strong updates to the revealed portion.While we are pursuing a much needed implementation and empirical veri�cation of the algorithm,manual application on small examples has encouraged us to believe that our algorithm meets thesecriteria. In Figure 11, we show the analysis of a code segment which inserts a node into a doubly linkedlist. A variable y traverses the list starting in step 2. Values of the graph within the loop are given insteps 3 and 4 with the �xed point being reached in 5. In steps 6 and 7, strong updates are done to thegraph to insert the new node. The temporary variables fall out of scope, and the graph is compressedin step 8, resulting in the same graph that we started with.In the future, we plan to enhance the algorithm for incremental
ow-sensitive analysis by storinginformation about distinct call paths and their entry ASGs. If the ASGs entering a procedure aresu�ciently distinct, the path through the procedure can be split incrementally resulting in
ow-sensitiveanalysis. We are considering path nodes as a means to reduce the cost of a splitting operation [CU91].18

References[ASU87] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and Tools. Com-puter Science. Addison-Wesley, Reading, Massachusetts, 1987.[CBC93] Jong-Deok Choi, Michael Burke, and Paul Carini. E�cient
ow-sensative interproceduralcomputation of pointer-induced aliases and side e�ects. In Twentieth Symposium on Princi-ples of Programming Languages, pages 232{245. ACM SIGPLAN, 1993.[CD90] A. A. Chien and W. J. Dally. Concurrent Aggregates (CA). In Proceedings of Second Sym-posium on Principles and Practice of Parallel Programming. ACM, March 1990.[CFKP92] A. A. Chien, W. Feng, V. Karamcheti, and J. Plevyak. Techniques for e�cient execu-tion of �ne-grained concurrent programs. In Proceedings of the Fifth Workshop on Com-pilers and Languages for Parallel Computing, pages 103{13, New Haven, Connecticut, 1992.YALEU/DCS/RR-915, Springer-Verlag Lecture Notes in Computer Science, 1993.[CFR+91] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadeck. An e�cient method of com-puting static single assignment form and the control dependence graph. ACM Transactionson Programming Languages and Systems, 13(4):451{490, October 1991.[CKP93] Andrew Chien, Vijay Karamcheti, and John Plevyak. The concert system { compiler andruntime support for e�cient �ne-grained concurrent object-oriented programs. DCS TechnicalReport UIUCDCS-R-93-1815, University of Illinois, Department of Computer Science, 1304W. Spring�eld Avenue, Urbana, Illinois, June 1993.[CU91] C. Chambers and D. Ungar. Making pure object-oriented languages practical. In OOPSLA'91 Conference Proceedings, 1991.[CWZ90] D. Chase, M. Wegman, and F. Zadeck. Analysis of pointers and structures. In Proceedingsof SIGPLAN Conference on Programming Language Design and Implementation, pages 296{310, June 1990.[HN90] L. Hendren and A. Nicolau. Parallelizing programs with recursive data structures. IEEETransactions on Parallel and Distributed Systems, 1(1):35{47, January 1990.[HNH92] L. Hendren, A. Nicolau, and J. Hummel. Abstractions for recursive pointer data structures:Improving the analysis and transformation of imperative programs. In Proceedings of theSIGPLAN Conference on Programming Language Design and Implementation, pages 249{260. ACM SIGPLAN, ACM Press, June 1992.[HPR89] S. Horwitz, P. Pfei�er, and T. Reps. Dependence analysis for pointer variables. In Proceedingsof the SIGPLAN Conference on Programming Language Design and Implementation, pages28{40. ACM SIGPLAN, ACM Press, 1989.[JM81] N. Jones and S. Muchnick. Flow analysis and optimization of lisp-like structures. In S. Much-nick and N. Jones, editors, Program Flow Analysis: Theory and Applications, pages 102{131.Prentice-Hall, 1981.[KC93] Vijay Karamcheti and Andrew Chien. Concert { e�cient runtime support for concurrentobject-oriented programming languages on stock hardware. To appear in the Proceedings ofSUPERCOMPUTING'93, 1993.[Lar89] James Richard Larus. Restructuring symbolic programs for concurrent execution on multi-processors. Technical Report UCB/CSD 89/502, University of California at Berkeley, 1989.19

[LH88] J. R. Larus and P. N. Hil�nger. Detecting con
icts between structure accesses. In SIGPLANConference on Programming Language Design and Implementation, pages 21{33. ACM, June1988.[Mye81] E. Myers. A precise interprocedural data
ow algorithm. In Eighth Symposium on Principlesof Programming Languages, pages 219{30, 1981.[Thi91] Thinking Machines Corporation, Cambridge, Massachusets. CM5 Technical Summary, Octo-ber 1991.

20

