
Obtaining Sequential E�ciency for Concurrent Object-OrientedLanguagesJohn Plevyak, Xingbin Zhang and Andrew A. ChienDepartment of Computer Science1304 W. Spring�eld AvenueUrbana, IL 61801fjplevyak,zhang,achieng@cs.uiuc.eduAbstractConcurrent object-oriented programming (COOP)languages focus the abstraction and encapsulationpower of abstract data types on the problem of con-currency control. In particular, pure �ne-grainedconcurrent object-oriented languages (as opposedto hybrid or data parallel) provides the programmerwith a simple, uniform, and exible model whileexposing maximum concurrency. While such lan-guages promise to greatly reduce the complexity oflarge-scale concurrent programming, the popularityof these languages has been hampered by e�ciencywhich is often many orders of magnitude less thanthat of comparable sequential code. We presenta su�cient set of techniques which enables the ef-�ciency of �ne-grained concurrent object-orientedlanguages to equal that of traditional sequentiallanguages (like C) when the required data is avail-able. These techniques are empirically validated bythe application to a COOP implementation of theLivermore Loops.1 IntroductionThe increasing use of parallel machines has exacer-bated the longstanding tension between high-leveland low-level programming languages. Thoughhigh-level languages ease the task of expressing acomputation, advocates of low-level languages ar-gue that detailed control is required to achieve ef-�ciency. Arguably, moving to parallel systems in-creases both the complexity of programming andthe importance of achieving high e�ciency. Thus,determining what high level features can be sup-ported e�ciently and how to implement them e�-ciently is an important topic of research.Concurrent object-oriented programming lan-guages are a promising approach to parallel pro-gramming. Recent years have seen the rapid pop-In the Proceedings of the 22nd Symposium on Princi-ples of Programming Languages (POPL'95), January1995, San Francisco, California.

ularization of object-oriented programming tech-niques for sequential computers, largely becauseof their bene�ts in managing program complexity.Concurrent object-oriented programming (COOP)languages focus the abstraction and encapsulationpower of abstract data types on managing the com-plexities of concurrency and distribution. Withconcurrent objects, which encapsulate their ownconcurrency control, programmers can safely com-pose concurrent operations on distributed collec-tions of objects. Unfortunately, to date the bestCOOP implementations have been ine�cient com-pared to sequential languages.1In this paper, we focus on achieving e�cient se-quential execution of COOP languages. The largerproblem of achieving good parallel performance re-quires both generation of e�cient sequential codeand data locality. This latter issue is beyond thescope of this paper.2 We focus on the former issue,exploring the elimination of object-orientation andconcurrency control costs in the generated code.Concurrent object-oriented languages have been in-e�cient largely because they provide a uniformview of all program data. Even the best imple-mentations incur tens to hundreds of instructionsfor each method invocation [26, 47] due to the costof managing a distributed memory (method invoca-tions are location independent) and managing con-currency (locks). Furthermore, the high procedurecall frequency typical of object-oriented programsnot only magni�es the method invocation overhead,it also reduces the bene�ts of traditional optimiza-tions.The overhead of method invocations and con-currency control can be eliminated by aggressiveinlining, access region optimizations, and statecaching. All of these optimizations are based onexcellent (and generally precise) concrete type in-formation [38]. With this set of optimizations, ourCOOP implementation equals the e�ciency of thesequential language C on the Livermore Kernels,a demanding set of numerical benchmarks. While1We consider only languages that support object-levelconcurrency. For a discussion of the alternatives see Sec-tion 5.2We defer to the wealth of research in this area [30, 39,22, 36, 3].

the Livermore Kernels do not bene�t greatly fromobject-orientation, all the arrays in the COOP ver-sion of the kernels are implemented as concurrentobjects, and accessed via object method invocation.Thus to achieve e�ciency comparable to C, ourcompiler must eliminate virtually all of the over-head of concurrency control and object orientation.We believe the performance of our compiler notonly exceeds that of all other concurrent object-oriented implementations, but even surpasses manyother implementations of sequential object-orientedimplementations such as C++.The speci�c contributions of this work are:� Identifying the critical e�ciency issues inachieving sequential e�ciency in concurrentobject-oriented languages,� A combination and extension of program op-timizations which together produce sequen-tially e�cient COOP implementations, and� A demonstration of these techniques on theLivermore Kernels which provides empiricalevidence that COOP languages can be e�-cient.The remainder of this paper is organized as fol-lows. Section 2 describes the COOP programmingmodel, execution model, and compiler framework.Section 3 describes a su�cient set of transforma-tions to construct an e�cient implementation forCOOP programs. In Section 4, we report the re-sults of applying these transformations to the Liver-more Loops. Related work is discussed in Section 5,and we summarize the paper in Section 6.2 BackgroundWe describe the programming model, executionmodel, and the compiler framework. The mappingof the programming model to the execution modeldescribed here is largely conceptual; further infor-mation about our approach and actual implemen-tation of COOP can be found in [9, 30].2.1 Programming ModelThe programming model we assume is the syner-gistic union of Actors [1, 12, 21] and the object-oriented model [17]. Each object can act concur-rently to update its own state, create new objectsor invoke methods on other objects. An object pro-vides a set of abstract operations, of which onlyone may be active at a time. This allows objectsto control updates to their internal state. Methods(abstract operations) may invoke methods on sev-eral other objects concurrently, waiting on the re-sponses only when required by data ow or the pro-grammer. In this way, the programmer can safelyand conveniently compose larger parallel abstrac-tions and entire programs. A number of languagesshare this model [10, 26, 33, 46].

The programming model has three featureswhich contribute fundamentally to its programma-bility:� a shared name space,� dynamic thread creation, and� object level access control.A shared namespace allows programmers to sep-arate data layout and functional correctness. Dy-namic thread creation allows programmers to ex-press the natural concurrency of the application,leaving the system to map it to the underlyingmachine. Object-level access control provides abasic mutual exclusion mechanism which can beused to construct larger atomic operations or othersynchronization structures. When such exclusivemethods are invoked on the current object, self,they inherit any access privileges the caller mighthave, enabling recursion in exclusive methods.2.2 Execution ModelThe execution model is based on a set of single-threaded processing elements with local names-paces. Only objects local to a processing elementcan be accessed directly. The system synthesizesthe global namespace of the programming modelby detecting and mapping operations on remoteobjects into communication. The multithreadingin the programming model is achieved by multi-plexing the processing elements in software. Thus,each processing element can be viewed as a sequen-tial machine augmented with runtime primitivessupporting naming, locking, location, and concur-rency control. This model matches existing mas-sively parallel processors [42, 13], and we believe itis appropriate for the next generation machines aswell.
context
switches

processing element processing element

threadsObjectE

ObjectD
ObjectCObjectA

ObjectB

local messages
remote messagesFigure 1: Execution Model ExampleEach object has a global name, a lock to im-plement access control, and a queue for ready andsuspended contexts. Contexts are heap-allocatedactivation records which contain a thread's state.When a message is sent, a future is created to holdthe return value and a thread is started on the tar-get object. When the return value is required, thefuture is touched and the thread suspended untilthe value is present. Thus, the logical thread withinthe object may split then rejoin or seem to migratefrom processor to processor as in Figure 1.

Basic operations of the execution model suchas locking, queuing, and context switching are ex-pensive, but often can be optimized away. For ex-ample, a naive approach would create a new threadfor each method invocation, but an implementationcan execute several threads within their parent toimprove e�ciency. Thus the concurrency (relaxedserialization) supplied by the programmer can beexploited for parallel speedup, or discarded for se-quential e�ciency. The runtime exposes the fol-lowing operations:� LOCAL NAME converts a global object name toa local name or returns a failure value.� TAKE LOCKS, given a set of local names, at-tempts to acquire locks on all the correspond-ing objects and returns a success or failurevalue.� FREE LOCKS, given a set of local names onwhich locks have been acquired, releases thoselocks.� INVOKE invokes the speci�ed method, han-dling all cases (remote objects, locked objects,etc.).These primitives allow the compiler to test lo-cality and locks inline, opening the door for spec-ulative optimization. They also expose the basiccosts in the execution model, enabling many op-timizations including some described later in thispaper.2.3 Compiler FrameworkThe optimizations described in this paper havebeen implemented as part of the Concert compiler[9]. The intermediate form used in our compileris the Program Dependence Graph (PDG) [16] inStatic Single Assignment (SSA) [15] form. Usingthe intermediate form, the compiler performs con-crete type inference, global constant propagation,cloning, inlining and extension of access regions.Next, instance variables are converted to SSA, andconstant folding, common subexpression elimina-tion, and strength reduction are performed. In theback end, the Control Flow Graph (CFG) is recon-structed and the program is translated into Reg-ister Transfer Language (RTL). Context slots areallocated and cached in registers, and the RTL isconverted into C++, which we use as a portablemachine language.Properties of the intermediate form enable theoptimizations described in this paper. Using thePDG, the compiler can determine both the partialorder of execution as well as some total order onthe contained statements. We say that two accessregions (see Section 3.1) are adjacentwhen no otheraccess regions appear between them in the total or-der. A set of statements are between two statementswhen they are required to execute so by the partialorder. The SSA transformation changes variables

with storage locations into values. Since our mo-del does not allow arbitrary pointers, only instancevariables are associated with storage locations andeven these can be converted to SSA within accessregions. We say a statement is functional when itsexecution cannot result in the thread blocking, amessage being sent, a lock taken, or an update toa storage location.3 Program OptimizationsIn this section, we present three compiler transfor-mations which minimize concurrency overhead forsequential portions of COOP programs. Each opti-mization exploits information available at compiletime to reduce and eliminate runtime overhead. In-line substitution of methods eliminates method dis-patch overhead and enables intra-procedural opti-mizations. Access region expansion reduces local-ity and access control overhead. Context and ob-ject state caching exploit the memory hierarchy ofmodern microprocessors to reduce multi-threadingoverhead during sequential execution.for (l=1 ; l<=loop ; l++) {for (k=0 ; k<n ; k++) {x[k] = y[k+1] - y[k];}}Figure 2: C code for Livermore Loops Kernel 12Throughout, we use the Livermore Kernels asa benchmark for sequential e�ciency. Althoughthe Livermore Kernels do not bene�t greatly fromobject-oriented structure, they are well-known tobe a demanding test of a compiler's ability to gen-erate good sequential code. Even a single extramemory reference within the innermost loop cancause a major drop in performance. To illustratespeci�c optimizations, we use Livermore Kernel 12shown in Figure 2. The inner loop body containsthree array accesses. Because each array is an ob-ject in a pure object-oriented language,3 each arrayaccess involves a method invocation. Making theseinvocations each iteration, particularly in a COOPmodel, would incur substantial overhead comparedto a C implementation. As a running example, weshow how this overhead can be removed as a resultof the three optimizations.3.1 Inline SubstitutionInlining is crucial for �ne-grained COOP languagesbecause methods are small and general method in-vocation overhead is high, including procedure call,concurrency control, and even communication over-head. Without inlining, method invocation over-head can easily account for over 95% of a program's3Each array as a whole is an object. Distributed ar-rays are available through aggregates| a concurrent multi-access data abstraction.

execution time. In sequential languages, the mainrestraint on inlining is the increase in program size.For concurrent object-oriented languages, inliningis constrained by program size, access control, andlocality.A method invocation can be inlined only if thetarget object is local and can be accessed (any re-quired lock is available). Otherwise message pass-ing or queuing of the message is required. It is notalways possible to statically determine these prop-erties. As a result, we speculatively inline methodinvocations by testing the required properties atrun time using the inlining template shown in Fig-ure 3. The template applied to an invocation ofmethod at on the object X is shown. The runtimeprimitives CHECK LOCAL() and TAKE LOCKS() checkthe locality and take the object lock, respectively.Together they de�ne an access region under the truearm of the conditional where the object X is knownto be local and locked. Because the original methodinvocation is retained in the false arm as a fallback,the inlining template is safe for all method call sites.if(CHECK LOCAL(X)&& TAKE LOCKS(X)) runtime guardsinlined method body of at access region of XFREE LOCKS(X)elseINVOKE(at, X, i) fallback codeFigure 3: Inlining TemplateWhen locality or access control information isavailable at compile time, the inlining templateis specialized to eliminate the testing overhead oreliminate unreachable fallback code. For example,no locking is required for immutable objects, andinvocations on self require additional locking onlywhen the callee is an exclusivemethod but the callernon-exclusive. For other objects, the caller needonly take the object lock if the target method isexclusive. Similarly, the locality of the target ob-ject can be frequently guaranteed at compile-time,as well. Immutable objects and self are always lo-cal, and the locality of other types of target objectscan be estimated using object creation points andthe interprocedural call graph.The inlining template enables inlining at allmethod call sites where suitable type informationfor the target object is available.4 To guide inliningdecisions, we use simple heuristics based on staticcall frequency estimators [44], the size of both thecaller and the callee method, and the inline depth.Our experience shows that the simple heuristicscombined with compile-time specialization of theinlining template reduces method invocation over-head signi�cantly without excessive code size orcompile time. For instance, full optimization ofKernel 12 results in approximately a 50% increasein compile time, 35% decrease in the object codesize, and 50% decrease in the the backend C++compilation time.4We perform global concrete type analysis andcustomization[38, 6] to bind methods statically in the pres-

test: y

invoke: y

entry fallback

test: y

read: y invoke: y

entry fallback entry fallback

test: x

loop

loop

write: x invoke: x

T

T T T

T T TF F F

read: y

ACCESS
REGIONFigure 4: The PDG of Kernel 12 After InliningAn important result of inlining is the creation ofaccess regions which de�ne a portion of the programin which the two properties, locality and access, aresatis�ed. Subsequent optimizations build on andleverage o� these properties to achieve sequentiale�ciency. For example, the PDG of the Kernel12 after inlining (Figure 4) shows an inner loopbody consisting of three access regions created bythe inlining of the three array accesses. Within eachregion, a standard suite of sequential optimizationscan be applied.3.2 Expanding Access RegionsEntering the access regions introduced by specula-tive inlining requires runtime checks which can costten or more instructions. If access regions are smallor executed frequently the overhead can be severe(as in the loop of Figure 4). In order to reduce thisoverhead we expand the dynamic extent of accessregions. This not only reduces the runtime checkoverhead but also produces larger basic blocks forclassical optimizations. In this section, we considerthe general problem of expanding and merging ac-cess regions then describe two such optimizations,merging adjacent access regions and lifting accessregions above loops and conditionals.Aspects of the programming and execution mo-del inuence these optimizations. Since controlow is structured, the PDG forms a tree of prop-erly nested statements. The access regions are alsoproperly nested, with the locks being acquired andreleased at the same nesting level. As a result, wecan compose access region expansion optimizationsfrom two steps: 1) moving statements into a regionand 2) creating an empty region with a particu-lar set of runtime tests. Note that the statementsmoved in may include conditionals or loop heads di-rectly above the region, expanding the region to in-clude higher levels of the statement nesting. Lastly,execution is non-preemptive with only the runtimecontext switching, so we need only consider localinteractions between runtime primitives.ence of type-dependent dispatch and inheritance.

3.2.1 CorrectnessAccess-region expanding optimizations must pre-serve the semantics implied by the original methodinvocations. This includes preserving the localityand access control properties as well as mutual ex-clusion of any statements moved into a new re-gion. In addition, we must ensure that neither mov-ing statements nor creating new regions introducesdeadlock. These properties are most convenientlydiscussed within the concurrent systems frameworkof critical regions [20], monitors [5] and deadlockprevention [23].Moving Statements into a RegionWhen moving statements into a region, we dif-ferentiate three cases: functional statements (Sec-tion 2.3), statements which access storage (non-SSA variables), and potentially blocking runtimeprimitives. Statements which are functional do notcall the runtime nor modify storage so they cannota�ect the locality or access properties of a region.Hence, they can be moved safely into any region.All exclusive storage accesses are conditioned bytests for locality and access control by the program-ming model. If a storage access is moved into theregion the tests for the destination region must sub-sume the tests for the storage access. Furthermore,if storage accesses for the same object from two dis-tinct regions are moved into the region, they mustoccur in whole, before or after each other, ensuringlocally the mutual exclusion that the programmingmodel guarantees [20]. Together these conditionsare su�cient to ensure the exclusion properties ofthe programming model are preserved.Potentially blocking runtime primitives cannotbe moved into regions unless it can be proven that aresource cycle will not result. This is because block-ing operations can give rise to non-local resourcedeadlock [23]. In the absence of global dependenceanalysis, correctness can be assured conservativelyby preventing such statements from being movedinto access regions.Creating New RegionsCreating an access region containing no statements,but with arbitrary runtime tests, does not changethe program providing that no deadlocks are in-troduced. New deadlocks can only arise if newdependences between locks are introduced. Dead-lock can be prevented by obtaining all requiredlocks atomically; that is, all must be availabile forany to be acquired and the entire operation mustbe executed non-preemptively. Our multi-lockingruntime primitive provides this atomicity, avoidingany lock ordering (and thereby avoiding any newlock dependences).5 Thus, new regions can be cre-5Note, that this is not an expensive operation in ourmodel since all objects in multi-locking operation will belocal.

ated without introducing deadlocks. Subsequently,statements can be moved into the region subject tothe constraints above.The fallback code used when the tests fail mustbe completely general. For any combination oftests, the fallback code must correctly handle thesituation where any of the component tests wouldhave succeeded.
read: y

entry fallback

loop

loop

read: y
invoke: y
invoke: y
invoke: xwrite: x

T F

T

T

test: y, xFigure 5: Kernel 12 After Merge3.2.2 Merging Adjacent Access Re-gionsMerging adjacent access regions combines the run-time checks for two access regions and merges theircode bodies. Merging consists of several steps.First, we create a new region with the combined en-trance criteria. Then, using the partial order of ex-ecution from the PDG, we identify the code whichmust execute between the two regions and move itinto both the entry and fallback branches of the ac-cess test. Finally, we move the entry and fallbackcode from the original regions into their respectivebranches of the new region.The combined entrance criteria represent theconjunction of the checks for the original regions.If the new checks attempt to acquire the lock on asingle object twice, the attempt will fail, preservingthe mutual exclusion property. However, if at com-pile time we know two objects are really the same,we can take out a single lock and ensure mutual ex-clusion by sequencing the operations from the tworegions so that they do not interleave. This must-alias determination need only be conservative sincethe fallback code is completely general.Note that this approach aggressively merges ad-jacent regions, so that the optimized path is onlybe executed when all locks can be acquired at once.Since the cost of blocking on a failure to acquirea lock is large, this optimization extracts high e�-ciency from the optimized path at a relatively smallincrease in cost along the unoptimized path. Theresult of these transformations on the program in

Figure 4 appears in Figure 5. All three of the condi-tionals have been merged into a single test and twobranches, an optimized path and a fallback path.
T

invoke: y
invoke: y
invoke: x

fallback

loop

loop

T

T

F

read: y

loop

loop

read: y
write: x

entry

T

T

test: y, x

Figure 6: Kernel 12 After Hoist3.2.3 Lifting Access RegionsLifting access regions higher in the PDG can im-prove code e�ciency by enabling runtime testingoverhead to be removed from loop bodies. In or-der to ensure correctness, we proceed stepwise asfollows. Using a bottom up traversal of the PDG(essentially the program block structure), we at-tempt to merge adjacent access regions until onlyone remains within the control dependence region.We then attempt to place the remaining statementswithin the single access region. If this succeeds weare prepared to lift the regions.There are only two types of control structuresin our intermediate representation: while loops andconditionals. For while loops, the situation is sim-ple. If the control dependence region under theloop is entirely contained in a single access region,the loop header can be moved into the access re-gion. The result is that the access region is liftedover the loop. The same situation holds for singlearmed conditionals.if(CHECK_LOCAL(x) && CHECK_LOCAL(y)&& TAKE_LOCKS(x,y))for (l=1 ; l<=loop ; l++)for (k=0 ; k<n ; k++)x[k] = y[k+1] - y[k];FREE_LOCKS(x,y);else {for (l=1 ; l<=loop ; l++)for (k=0 ; k<n ; k++) {t1 = INVOKE(at, y, k+1);t2 = INVOKE(at, y, k);INVOKE(putat, x, t1 - t2);}}Figure 7: Example Compiler Output After Liftingon Kernel 12Conditionals with two arms require that the tworegions be merged and lifted simultaneously. The

logical steps required to show correctness are: �rst,break the conditional into two one armed condition-als, one with the negation of the original condition.Then, lift the access regions above these condition-als as above. Next, merge the two resulting accessregions. Finally, merge the two one armed condi-tionals to reconstruct the original conditional.After inlining and access region expansion, thecode within a function or method consists of re-gions of optimized sequential code. If the programspends the majority of its time in these regions itwill be nearly as e�cient as a sequential unipro-cessor implementation. For example, applying thistransformations to our example produces the struc-ture shown in Figure 6. When both x and y arelocal, this �rst loop nest is identical to a sequen-tial program. An example of the code which ourcompiler might generate appears in Figure 7.3.3 Caching Object and ContextStatesCaching both local temporaries (context state) andheap-allocated objects (object state) in registers isrequired to obtain sequential e�ciency. We accom-plish this by re�ning standard register allocationtechniques to account for the multithreaded execu-tion model and object level access control.3.3.1 Caching Context StateCaching context state in a multithreaded executionmodel is complicated by the possibility of contextswitching due to synchronization. Because registervalues are not preserved across context switches,the register allocator must guarantee that whena context switch occurs at a touch, the cachedstate is saved before the thread yields control. Itis also crucial to minimize unnecessary state savingwhen the thread does not context switch since theamount of register-cached state can be large andtouches frequent.save values in S � L to the contextTOUCH BEGIN(Full,future slot,...)save values in S \ L to the contextCONTEXT SWITCHRestart: load values in S \ L into registersFull: TOUCH ENDload values in L� S into registersFigure 8: Lazy State Saving at a TouchTo minimize unnecessary overhead, we save andload register cached state lazily by exploiting theruntime test which determines the context switch.Figure 8 shows our touch template, assuming S andL are the set of values saved and loaded respec-tively at a context switch. The runtime primitiveTOUCH BEGIN tests the state of the futures. If all

futures have values, the code branches to the la-bel Fullwithout blocking; otherwise execution fallsthrough, saving the shared values in S\L and yield-ing control at CONTEXT SWITCH.When the thread re-sumes after a context switch, control returns to thelabel Restart and immediately restores the sharedvalues in S \ L into registers.
... = x ... = x

x = ...

T Fguards
save(x)

restore(x)Figure 9: Control ow graph of three access regionsmerged, with three touches (shaded boxes) in thefallback code.The possibility of context switching also a�ectsthe choice of live ranges[11] | throughout whicha value is either cached and maintained in a reg-ister or kept in memory. Low probabilities ofcontext switching favor live ranges extending overtouches; high probabilities favor live ranges delim-ited by touches, treating touches as function callsin a caller-saved linkage convention. The extensiveuse of speculative inlining eliminates suspensionpoints inside access regions and increase the like-lihood of context switching for suspension points inthe fallback code. Therefore, we choose to delimitlive ranges by touches and apply a heuristic thatcaches each live range whose value is accessed atleast twice. For example, Figure 9 shows the re-sulting control ow graph after speculative inliningand merging of access regions at three call sites.Separate live ranges of x delimited by touches al-low x to be cached throughout the access region(left) and avoid unnecessary reloading overhead inthe fallback code (right).3.3.2 Caching Object StateWe exploit access regions to cache object state inregisters safely. Within an access region, the ob-ject's state is protected by its lock, preventing ac-cesses by other threads. Thus we can safely cachethis state in temporary variables, eliminating mem-ory accesses and requiring only a single update atthe end of the access region or before any subse-quent method invocation.For example, Figure 10 shows two possiblecode sequences for a loop nest traversing a two-dimensional array. The two-dimensional array isconstructed from a one-dimensional array with the

// Code sequence without object state cachingif(CHECK_LOCAL(a) && TAKE_LOCKS(a))for(i = 0; i < n; i++)for(j = 0; j < n; j++)... = a[a.dimension * i + j]; //a[i][j]FREE_LOCKS(a);else...// Code sequence with object state cachingif(CHECK_LOCAL(a) && TAKE_LOCKS(a))temp = a.dimension;for(i = 0; i < n; i++)for(j = 0; j < n; j++)... = a[temp * i + j]; //a[i][j]FREE_LOCKS(a);else...Figure 10: Comparing two output sequences, onewith object state caching (bottom) and one without(top).instance variable dimension of the object a beingused for index linearization. The bottom code usesthe properties of access regions to cache dimensionin a local temporary temp, potentially saving amemory reference in the innermost loop and en-abling other optimizations such as strength reduc-tion. Another advantage of the COOP model isthat objects cannot be aliased within the regionsince an exclusive lock is acquired for each objectat run time. In e�ect, the object level access con-trol serves as a form of non-aliasing declaration,enabling loads and stores to be moved freely withinthe access region and making the COOP version po-tentially more e�cient than a sequential languageversion.4 ResultsTo demonstrate the e�ectiveness of these transfor-mation, we compare the performance of our concur-rent object-oriented system to a low-level sequen-tial language, C [31]. For the comparison, we usethe Livermore Loops, a set of numerical kernels [35]used to measure computation rates for CPU-limitedcomputational structures. All reported numbersare for the third workload of the Livermore ker-nels at single precision run on a Sparcstation II.The COOP execution times were collected with theUNIX time facility using high iteration counts, andare accurate to within a few percent.In order to actually test a COOP programmingstyle, we translated the FORTRAN code in a natu-ral object-oriented style. Multi-dimensional arrayswere created by subclassing a single dimensionalarray and using methods to linearize the indexingoperations. Since our COOP language does nothave pointers, the programmer cannot bypass theencapsulation of the arrays as is typically done inC++ programs to obtain e�ciency. We compare

Kerne l

M
F

L
O

P
S

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

COOP

C

Figure 11: Performance on Livermore Loopsour COOP system's performance against the nativeC version of the Livermore kernels compiled by theGNU C/C++ compiler.6 This is the same com-piler used by our COOP system as a backend, min-imizing di�erences in low-level optimizations likeinstruction selection and scheduling.
M

F
L

O
P

S

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

non inl ine extend hoist cache al l CFigure 13: Cumulative E�ect of Optimizations onKernel 12To illustrate the e�ect of each optimization weapplied each in turn to Kernel 12, and present theperformance numbers in Figure 13. Each addi-tional optimization produced a signi�cant increasein performance. With only traditional optimiza-tions, none, achieved only several kiloFLOPS. Ap-plying speculative inlining produced an eighteen-fold performance increase, as show by inline. Ex-panding regions by merging increased performanceby another 60% while adding lifting access regionsbrought this to 440%. Caching of context valuesas in cache resulted in 4.5 times performance im-provement, coming close to C's performance. The6We used the highest level of optimization and identicalcompiler options for all of our measurements.

remaining performance gap was traced to our back-end C/C++ compiler being unable in some cases todo common optimizations on the somewhat unnat-ural code output by our compiler. We implementedthese optimizations in our COOP compiler, and the�nal results all include the resulting 40% increasein performance, essentially matching the native Cimplementation and nearly 500 times better thanthat achieved by none.Figure 11 contains performance results for allof the Livermore Loops. The performance of theCOOP code is quite close to that of the native Ccode. Essentially all of the object-orientation over-head and concurrency control overhead has beeneliminated. Note that this performance exceedsthat which would be delivered by most C++ com-pilers on code written in an object-oriented style.For example, we measured the performance of tworepresentative Livermore kernels in C++ using theGNU C++ compiler. Kernel 12, using virtual func-tions to access elements in a one-dimensional array,achieves 0.42 MFLOPS | less than a third of theCOOP or the C performance. Kernel 21, whichoperates on two-dimensional arrays achieves 0.32MFLOPS and even by using non-virtual functions,achieves only 0.45 MFLOPS | less than one �fthof the COOP or C performance.In Figure 12 we report the performance of theCOOP implementations relative to the C imple-mentations ((COOP-C)/C). Of the 24 kernels, ourCOOP implementation was more than 20% fasteron �ve, the C implementation was more than 20%faster on six, and the remaining thirteen were es-sentially the same. For the codes where the C com-piler gave superior performance, these di�erenceswere traced to special purpose array manipulationoptimizations in the native C compiler and de�-

Kerne l

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4

Kerne lKerne l

- 1 0 0

- 8 0

- 6 0

- 4 0

- 2 0

0

2 0

4 0

6 0

8 0

1 0 0

%

P
e

rf
o

rm
a

n
c

e
 D

if
fe

re
n

c
e

Kerne lFigure 12: Performance Di�erence ((COOP-C)/C)ciencies in our strength reduction optimization (ituses extra registers and does not work for opera-tions under conditionals in loops as in Kernel 15).In cases where the COOP system was faster, themajor factor was our ability to apply some opti-mizations where the C compiler was unable to. Themain point of these results is that the COOP mo-del can be essentially as e�cient at a sequential Cprogramming model. Any di�erences that remainare purely in the purview of traditional low leveloptimization.5 Related WorkThe �ne-grained approach to COOP has been stud-ied extensively [33]. In particular, ABCL [45, 46,47] and Concurrent Smalltalk (CST) [25, 26] wereinstrumental in helping de�ne the programmingand implementation models described here. How-ever, their focus was not on extensive compile-time inter-object transformations. A variety ofother parallel object-oriented systems pursue theapproach of relying on an underlying sequential lan-guage for e�ciency [4, 8, 18, 29, 32, 40].Our work also draws on developments in boththe sequential and parallel compiler community.While most of our techniques are familiar ones, wehave adapted them signi�cantly to the COOP mo-del. Many researchers have studied inlining for se-quential languages [2, 28, 34]; however, their mainconcern is di�erent from our focus on concurrencyand locality. Our inlining techniques are most sim-ilar to the ones used in the SELF compiler [6, 7, 24]in their requirement for accurate type informationand customization to enable inlining, speculativeoptimizations, and the insertion of runtime checksto condition optimized code. Our inlining heuris-

tics are a combination of static frequency estima-tion [44] and the commonly used size constraints.One unique aspect of our inlining transformationsis the creation of access regions and the aggressiveexploitation of access region properties by subse-quent optimizations.The lifting of access region is conceptually sim-ilar to moving loops across procedure boundariesand lifting and blocking of communication in par-allel Fortran [19, 22]. In our case, the possibility ofdeadlock requires atomic primitives and more ex-tensive analysis. Our register allocation scheme isbased on that of Chow and Hennessy [11], adaptedfor lazy state saving. The problem of register allo-cation in the presence of synchronization points hasbeen studied in dataow models [14, 41, 43], but themodel is slightly di�erent. For instance, TAM hasmany threads per context, whereas our executionmodel has only single thread per context, makinglocal analysis around the touches su�cient. Thenon-aliasing property of an access region's objectsinside the region achieves runtime disambiguationsof objects. Previous work [27, 37] on runtime dis-ambiguation focuses on memory accesses at the in-struction level.6 Summary and Future WorkWe have shown that it is possible to produce e�-cient implementations from high-level COOP lan-guages, dispelling the myth that such a program-ming model is inherently ine�cient. Using a de-manding set of numerical benchmarks, the Liv-ermore Kernels, we have demonstrated that ourconcurrent object-oriented programming model canachieve good sequential performance. This sequen-tial e�ciency forms an important basis for high ab-

solute performance through hardware parallelism.However, it is only half of the solution. The ef-fectiveness of the optimizations depends the databeing available (local and not currently in use).Work is underway on both static analyses [39] andruntime techniques [30] to enable the system to en-sure availability and thus apply the optimizationsin a more informed manner, with the goal of freeingthe programmer from the burden of data and taskplacement.We have presented a simple programming modeland implementation model for a pure concurrentobject-oriented language which includes a sharedglobal namespace, dynamic thread creation and ob-ject level access control and shown it can be ef-�cient. Our continuing research is directed to-ward developing additional optimization for arrayand pointer based data structures through data lay-out, program analysis and transformation and run-time migration techniques. We are optimistic thatthrough the development of such techniques con-current object-oriented programming can enable ef-�cient, portable parallel programming.7 AcknowledgementsWe thank Julian Dolby for his help porting the Liv-ermore Kernels and also Vijay Karamcheti and Ma-hesh Subramaniam for discussions and work on theConcert System. We also thank the reviewers fortheir valuable comments.The research described in this paper was sup-ported in part by National Science Foundationgrant CCR-9209336, O�ce of Naval Researchgrants N00014-92-J-1961 and N00014-93-1-1086,and National Aeronautics and Space Administra-tion grant NAG 1-613. Additional support has beenprovided by a generous special-purpose grant fromthe AT&T Foundation.References[1] Gul Agha. Actors: A Model of Concurrent Com-putation in Distributed Systems. MIT Press, Cam-bridge, MA, 1986.[2] Randy Allen and Steve Johnson. Compiling C forvectorization, parallelization, and inline expansion.In Proceedings of the 1988 ACM SIGPLAN Con-ference on Programming Language Design and Im-plementation, pages 241{249, June 1988.[3] J. Bennett, J. B. Carter, and Willy Zwaenepoel.Munin: Distributed shared memory based on type-speci�c memory coherence. In Proceedings of theSecond ACM SIGPLAN Symposium on the Prin-ciples and Practice of Parallel Programming, 1990.[4] B.N. Bershad, E.D. Lazowska, and H.M. Levy.Presto: A system for object-oriented parallel pro-gramming. Software | Practice and Experience,18(8):713{732, August 1988.[5] C. A. R. Hoare. Monitors: An operating systemstructuring concept. Communications of the Asso-ciation for Computing Machinery, 17(10):547{557,1974.

[6] C. Chambers and D. Ungar. Customization:Optimizing compiler technology for Self, adynamically-typed object-oriented programminglanguage. In Proceedings of SIGPLAN Conferenceon Programming Language Design and Implemen-tation, pages 146{60, 1989.[7] C. Chambers and D. Ungar. Iterative type analysisand extended message splitting. In Proceedings ofthe SIGPLAN Conference on Programming Lan-guage Design and Implementation, pages 150{60,1990.[8] K. Mani Chandy and Carl Kesselman. Composi-tional C++: Compositional parallel programming.In Proceedings of the Fifth Workshop on Compil-ers and Languages for Parallel Computing, NewHaven, Connecticut, 1992. YALEU/DCS/RR-915,Springer-Verlag Lecture Notes in Computer Sci-ence, 1993.[9] Andrew Chien, Vijay Karamcheti, and JohnPlevyak. The concert system { compiler andruntime support for e�cient �ne-grained concur-rent object-oriented programs. Technical ReportUIUCDCS-R-93-1815, Department of ComputerScience, University of Illinois, Urbana, Illinois,June 1993.[10] Andrew A. Chien, Vijay Karamcheti, JohnPlevyak, and Xingbin Zhang. Concurrent aggre-gates language report 2.0. Available via anony-mous ftp from cs.uiuc.edu in /pub/csag or fromhttp://www-csag.cs.uiuc.edu/, September 1993.[11] Frederick C. Chow and John L. Hennessy. Thepriority-based coloring approach to register allo-cation. ACM Transactions on Programming Lan-guages and Systems, 12(4):501{536, October 1990.[12] William D. Clinger. Foundations of actor seman-tics. Technical Report AI-TR-633, MIT Arti�cialIntelligence Laboratory, 1981.[13] Cray Research, Inc., Eagan, Minnesota 55121.CRAY T3D Software Overview Technical Note,1992.[14] David Culler, Anurag Sah, Klaus Erik Schauser,Thorsten von Eicken, and John Wawrzynek. Fine-grain parallelism with minimal hardware support:A compiler-controlled threaded abstract machine.In Proceedings of the Fourth International Con-ference on Architectural Support for ProgrammingLanguages an Operating Systems, pages 164{75,1991.[15] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, andF. Zadeck. An e�cient method of computing staticsingle assignment form and the control dependencegraph. ACM Transactions on Programming Lan-guages and Systems, 13(4):451{490, October 1991.[16] Jeanne Ferrante, Karl J. Ottenstein, and Joe D.Warren. The program dependence graph andits use in optimization. ACM Transactions onProgramming Laguages and Systems, 9(3):319{49,July 1987.[17] Adele Goldberg and David Robertson. Smalltalk-80: The language and its implementation.Addison-Wesley, 1985.[18] A. Grimshaw. Easy-to-use object-oriented par-allel processing with Mentat. IEEE Computer,5(26):39{51, May 1993.[19] Mary W. Hall, Ken Kennedy, and Kathryn S.McKinley. Interprocedural transformations for par-allel code generation. In Proceedings of the 4th An-nual Conference on High-Performance Computing

(Supercomputing '91), pages 424{434, November1991.[20] P. Brinch Hansen. Structured multiprogramming.Communications of the ACM, 15(7):574{590, July1972.[21] C. Hewitt and H. Baker. Actors and continuousfunctionals. In Proceedings of the IFIP Work-ing Conference on Formal Description of Program-ming Concepts, pages 367{87, August 1977.[22] Seema Hiranandani, Ken Kennedy, and Chau-WenTseng. Compiler optimizations for FORTRAN Don MIMD distributed-memorymachines. Commu-nications of the ACM, August 1992.[23] Richard C. Holt. Some deadlock properties ofcomputer systems. ACM Computing Surveys,4(3):179{196, Sept 1972.[24] Urs H�olzle and David Ungar. Optimizingdynamically-dispatched calls with run-time typefeedback. In Proceedings of the 1994 ACM SIG-PLAN Conference on Programming Language De-sign and Implementation, pages 326{336, June1994.[25] W. Horwat, A. Chien, and W. Dally. Experiencewith CST: Programming and implementation. InProceedings of the SIGPLAN Conference on Pro-gramming Language Design and Implementation,pages 101{9. ACM SIGPLAN, ACM Press, 1989.[26] Waldemar Horwat. Concurrent Smalltalk on themessage-driven processor. Master's thesis, Mas-sachusetts Institute of Technology, Cambridge,Massachusetts, June 1989.[27] Andrew S. Huang, Gert Slavenburg, and John PaulShen. Toward a dataow/von neumann hybridarchitecture. In Proceedings of the InternationalSymposium on Computer Architecture, pages 200{210, April 1994.[28] Wen-meiW. Hwu and Pohua P. Chang. Inline func-tion expansion for compiling C programs. In Pro-ceedings of the 1989 ACM SIGPLAN Conferenceon Programming Language Design and Implemen-tation, pages 246{257, June 1989.[29] L. V. Kale and Sanjeev Krishnan. CHARM++: Aportable concurrent object oriented system basedon C++. In Proceedings of OOPSLA'93, 1993.[30] Vijay Karamcheti and Andrew Chien. Concert{ e�cient runtime support for concurrent object-oriented programming languages on stock hard-ware. In Proceedings of Supercomputing'93, 1993.[31] Brian W. Kernighan and Dennis M. Ritchie. TheC Programming Language. Prentice-Hall, Inc., En-glewood Cli�s, New Jersey, 1978.[32] J. Lee and D. Gannon. Object oriented parallelprogramming. In Proceedings of the ACM/IEEEConference on Supercomputing. IEEE ComputerSociety Press, 1991.[33] Henry Lieberman. Concurrent object oriented pro-gramming in ACT 1. In Aki Yonezawa and MarioTokoro, editors, Object-Oriented Concurrent Pro-gramming, pages 9{36. MIT Press, 1987.[34] Scott McFarling. Procedure merging with instruc-tion caches. In Proceedings of the 1991 ACM SIG-PLAN Conference on Programming Language De-sign and Implementation, pages 71{79, June 1991.

[35] F. H. McMahon. The Livermore Fortran kernels: acomputer test of the numerical performance range.Technical report UCRL-53745, Lawerence Liver-more National Laboratory, Livermore, California,1986.[36] Stephan Murer, Jerome A. Feldman, Chu-CheowLim, and Martina-Maria Seidel. pSather: Layeredextensions to an object-oriented language for e�-cient parallel computation. Technical Report TR-93-028, International Computer Science Institute,Berkeley, Calif., December 1993. (2nd revised edi-tion).[37] A. Nicolau. Run-time disambiguation: Copingwith statically unpredictable dependencies. IEEETransactions on Computers, 38(5):663{678, May1989.[38] John Plevyak and Andrew A. Chien. Precise con-crete type inferenceof object-orientedprograms. InProceedings of OOPSLA, 1994.[39] John Plevyak, Vijay Karamcheti, and AndrewChien. Analysis of dynamic structures for e�-cient parallel execution. In Proceedings of the SixthWorkshop for Languages and Compilers for Par-allel Machines, August 1993.[40] R. J. Smith, II. Experimental systems kit �nalproject report. Technical Report ACT-ESP-077-91,Microelectronics and ComputerTechnologyCorpo-ration (MCC), Austin, Texas., 1991.[41] S. Sakai, Y. Yamaguchi, K. Hiraki, Y. Kodama,and T. Yuba. An architecture of a dataow sin-gle chip processor. In International Symposium onComputer Architecture, 1989.[42] Thinking Machines Corporation, 245 First Street,Cambridge, MA 02154-1264. The Connection Ma-chine CM-5 Technical Summary, October 1991.[43] K. Traub. Implementation of Non-Strict Func-tional Languages. ResearchMonographs in Paralleland Distributed Computing. MIT Press, 1991.[44] Tim A. Wagner, Vance Maverick, Susan L. Gra-ham, and Michael A. Harrison. Accurate static es-timators for program optimization. In Proceedingsof the ACM SIGPLAN Conference on Program-ming Language Design and Implementation, pages85{96, Orlando, Florida USA, June 1994.[45] Y. Yokote and M. Tokoro. Concurrent program-ming in ConcurrentSmalltalk. In Aki Yonezawaand Mario Tokoro, editors, Object-Oriented Con-current Programming, pages 129{158. MIT Press,1987.[46] Akinori Yonezawa, editor. ABCL: An Object-Oriented Concurrent System. MIT Press, 1990.ISBN 0-262-24029-7.[47] Akinori Yonezawa, Satoshi Matsuoka, MasahiroYasugi, and Kenjiro Taura. Implementing concur-rent object-oriented languages on multicomputers.IEEE Parallel and Distributed Technology, pages49{61, May 1993.

