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1 IntroductionIrregular and dynamic problems are challenging to express and program e�ciently on distributedmemory machines. They often do not �t into data parallel programming models, and messagepassing requires the programmer to deal explicitly with the complexities of data placement, address-ability and concurrency control. Fine-grained concurrent languages which provide a shared namespace, implicit synchronization and implicit concurrency control can dramatically simplify the pro-gramming of irregular applications. Such languages typically express computations as a collectionof light-weight threads executing local to the data they compute (the owner computes rule [19]).However, the cost of creating and synchronizing these threads can be high. Given a data layout1 wepropose an execution model which adapts to exploit runtime locality by merging threads, eliminatingunnecessary concurrency overhead.E�cient execution requires optimizing for both sequential e�ciency when all the required datais local, and for latency hiding and parallelism generation when it is not. To address both cases,our hybrid execution model combines �ne-grained parallel execution from heap-allocated contexts(threads) with larger grained sequential execution on the stack. Distinct versions of the code aregenerated and specialized for each role by the compiler. The program dynamically adapts to thelocation of data and available parallelism by speculatively executing sequentially and then fallingback to parallel execution. Thus, local, sequential portions of the program accrue the advantages offast synchronization, resource reclamation and better use of architectural features such as registerwindows, caches, and stack memory. Parallel portions use multiple threads executing from heapcontexts to mask latency and limit the cost of synchronization by reducing the amount of live datathat must be preserved during a context switch.This execution model is general and e�cient, integrating parallel and sequential code versions,and providing a hierarchy of calling schema and interfaces for the sequential versions with a rangeof features. The simplest schema is identical to a standard C function call while the most complexenables user de�ned communication and synchronization structures to be executed on the stack. Byexamining the call graph we automatically select the most e�cient schema for each portion of theprogram so that C e�ciency is achieved where possible.In addition, our implementation is portable; written entirely in C, it is not speci�c to the stackstructure on any particular machine. This execution model is used by the Illinois Concert system [5],a compiler and runtime which achieves e�cient execution of concurrent object-oriented programs.This system compiles ICC++, a parallel dialect of C++ [14], and Concurrent Aggregates (CA) [8]for execution on workstations, the TMC CM5 [31] and the Cray T3D [10] simply by recompilingand linking with a machine speci�c version of the runtime.We have evaluated the performance of the execution model for both sequential and parallelexecution on a suite of programs written by di�erent authors with a variety of programming styles.Our results on function-call intensive programs show that the hybrid execution model achievessequential e�ciency comparable to C programs. Additionally, measurements on the CM-5 andthe T3D for a regular application kernel (SOR) and two irregular application kernels (MD-Forceand EM3D) demonstrate that the hybrid model adapts well to a variety of data placement andsynchronization contexts, yielding 1.5 to 3 times better performance than a purely parallel scheme.In Section 2, we give the relevant background, describing irregular computational structures aswell as the basic programming and execution models. Section 3 presents our hybrid stack-heap1While data layout for such languages is an important issue and an area of much research [15], in this paper wefocus on e�cient execution with respect to a data placement.2



execution mechanism. The e�ectiveness of this mechanism is demonstrated on a number of �ne-grained concurrent programs in Section 4. Related work is discussed in Section 5, and we concludein Section 6.2 Background
Figure 1: Data (Object) Layout GraphIrregular and dynamic programs (such as molecular dynamics, particle simulations and adaptivemesh re�nement) have a data distribution which cannot, in general, be predicted statically. Inaddition, modern algorithms for such problems depend increasingly on sophisticated data structuresto achieve high e�ciency [2, 13, 4]. In this domain, a program implementation must adapt itselfto the irregular and even dynamic structure of the data (exploiting locality where available) toachieve high performance. This is particularly important when good data distributions are usedwhich clump parts of data structures together. Figures 1 and 2 show examples of the irregular dataand computation mappings that result.In Figure 1, a set of objects represent the program data, and the arcs between them the relation-ships between the objects. A good data layout (indicated by the boxes around co-located objects)places groups of tightly coupled objects on the same node. An e�cient computation over the datais shown in Figure 2. The tree of threads (activations) is distributed over the machine with portionsat the leaves executing on co-located objects. Note that such structures bene�t speci�cally fromspecialized sequential (those near the leaves) and parallel (those near the root) versions of code.

Figure 2: Distributed Computation StructureThe particular programming model we use is a �ne-grained concurrent object-oriented modelwhere each method invocation corresponds to a thread. Such a model provides programmerswith a number of powerful tools which simplify programming and enable the construction of cus-tomized communication and synchronization structures. These tools are implicit synchronization,3



�ne-grained concurrency, location independence, implicit locking, and �rst class continuations. Pro-grammers are encouraged to expose concurrency (non-binding parallelism) in both blocks of state-ments and loops. Implicit synchronization is provided via implicit futures [16], which synchronizelazily on a value or a set of values in the case of a parallel loop. Introducing the futures implicitlysolves the problem of future placement, but dramatically increases the density of futures over modelswhere they are inserted manually. Object references are location independent and locking is dictatedby data (class) de�nitions. As a result, both communication and lock operations are also implicit,increasing their frequency as well.
RPC

Reply

Send

Data Parallel Reactive ForwardFigure 3: Synchronization and Computation StructuresOur programming model supports a wide variety of synchronization and communication struc-tures including: synchronous (RPC), data (object) parallel, reactive and even custom communicationand synchronization structures constructed as convenient for the application. In addition, continu-ations (the right to determine a future) can be forwarded [21] to another call, passed as argumentsand stored in data structures. Graphical representations of these structures, all of which are sup-ported by the ICC++ and CA langauges, appear in Figure 3. The exibility of this programmingmodel enables the programmer to select the mechanismsmost appropriate for the application. Whileother execution models provide good performance for a particular structure, our hybrid executionmodel with its hierarchy of invocation schemas provides good sequential performance for all thesecommunication and synchronization structures by enabling them to be executed on the stack.The exible parallel-sequential execution model presented in this paper dynamically adapts forparallel or sequential execution and provides a hierarchy of calling schemas of increasingly powerand cost. This model is part of the Illinois Concert system [5, 7] which consists of a globallyoptimizing compiler [28] and runtime [23]. The compiler is capable of resolving interproceduralcontrol and data ow information [27] which enables the use of specialized calling conventions basedon the synchronization features required by the called method. The runtime provides a hierarchyof runtime primitives of increasing cost and complexity, enabling the compiler to select the moste�cient mechanism for a given circumstance.3 The Execution ModelThe goals of our execution model are to be e�cient, exible, portable, and to support di�erent datalayouts by adapting to the location of objects at runtime. Furthermore, while concurrent methodinvocations cannot be supported using stack allocation alone, for e�ciency purposes, stack-basedinvocations should be used whenever possible. In order to support these goals we have designed anexecution model which uses sequential and parallel versions of methods and four distinct invocationschema. These schemas range from cheap, simple and limited to general, complex and more ex-pensive. To avoid confusion, we refer to invocations in the concurrent object-oriented programmingmodel as method invocations and C calls as function calls.4



For each method, there are two versions: a version optimized for latency hiding and parallelismgeneration (which uses a heap context) and a version optimized for sequential execution (whichuses the stack). The heap based version is completely general being capable of handling remoteinvocations and suspension, but can be ine�cient when this generality is not required. The stackversion comes in three avors of increasing generality. These di�erent versions and avors usedi�erent calling conventions to handle synchronization, return values and reclaim activation records.Table 1 illustrates these cases.Case Basic OperationParallel Most general schema, all arguments/linkage through the heap;frame reclamation based on function terminationSequential Non-blocking Regular C call/returnMay-Block Regular call; check return code to either continuecomputation or peel stack frames to heapContinuation Extension of May-Block which enablesPassing forwarding on the stackTable 1: Invocation SchemasIn the remainder of this section, we describe how method invocations are mapped into C functioncalls. Because our compiler uses C as a portable machine language, these schemas correspond to theoutput of our compiler. First we will describe the heap-based parallel invocation mechanism, andthen the avors of stack-based invocation. Finally, in Section 3.3 we will describe proxy contextsand wrapper functions which are used to handle certain boundary cases.3.1 Parallel InvocationsThe parallel invocation schema is a conservative implementation of the general case, allocating theactivation record as well as passing all arguments and return values through the heap. Parallelinvocation create independent threads which store their state in the heap activation record. Bystoring inactive temporary values in the heap as well, we minimize the cost of suspension. Suspensionoccurs while waiting for:� The result of a remote invocation.� The result of a invocation on a locked object.� The result a blocking primitive (like I/O).� The result of an invocation which itself has suspended.Suspension and fall back from the stack invocation schemas are described below.The parallel version is optimized for concurrency generation and latency hiding. Invocations areissued in parallel, with the returns occurring in any order, and a set of futures are touched at onetime to avoid unnecessary restarts of the activation when not all of the needed values are available.Thus, concurrency is generated both across parallel calls and between caller and callee and latencyis masked by enabling several invocations from the same method to proceed concurrently. Figure 4shows a sample of code which issues several parallel calls and synchronizes on their return with asingle touch. 5



parallel function(...args...) finvoke method(fcn23,&location1,...);invoke method(fcn1,&location2,...);invoke method(fcn7,&location3,...);... continue heap execution ...if (!touch(location1,location2,location3,...)) fstore_state;suspend;g... use values in location1, location2, location3 ...g Figure 4: Code Structure for a Parallel Method Version3.2 Sequential InvocationsThere are three di�erent schema for sequential method versions, each requiring a di�erent callingconvention (see Figure 5). Because choosing the correct schema can depend on non-local (transitive)properties, our compiler performs a global ow analysis which conservatively determines the block-ing and continuation requirements of methods and uses that information to select the appropriateschema [27, 26]. Since only one sequential version of each method is generated, this classi�cation ofthe methods determines the calling convention which must be used when the method is invoked.Non-blocking return val = non blocking method( ... );May-block callee context = may block method(&return val,...);Continuation caller context = cont passing method(&return val,caller info,...)Passing Figure 5: Invocation Schema Calling InterfacesThe criteria for selection of the sequential method versions is as follows. If the compiler can provethat this method and all of its descendant calls cannot block, the Non-blocking version is used. Inthis case, the function return value can simply be used to convey the future value. When the compilercannot prove that blocking will not occur but the callee does not require a continuation, the May-block is used. In this case we optimistically assume the method will not block, and allocate anyrequired context lazily as described in Section 3.2.2. Finally, the Continuation Passing version isused if the callee may require the continuation of a future in the caller's as yet uncreated context. Inthis case we create both context and continuation lazily. Lazy creation of continuations is describedin Section 3.2.3.3.2.1 Non-blocking: Straight C CallWhen the compiler determines that a method will not block, a standard C call is used. Since thisinformation is determined by using the call graph, entire non-blocking subgraphs are executed withno overhead. Thus, those portions of the program which do not require the extra power of theprogramming model are not penalized. 6



3.2.2 May-block: Lazy Context Allocationcallee_context = may_block_method(&return_val,...);if (callee_context != NULL) { // fallback codecontext = create_context();callee_context->continuation = make_continuation(context[13]);save_state_to_heap(context);return context; // propagate blocking}
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Callee blocks: need to create linkage b/w caller and callee:
    1. create callee context (B) and return
    2. create caller context (A)
    3. store continuation in callee contextFigure 6: Calling schema for theMay-block case. The �gure on the left shows successful completion,while the �gure on the right shows the stack unwinding when the call cannot be completed.In the may-block case, the calling schema distinguishs the two outcomes { successful completionand a blocked method. If the callee runs to completion, a NULL value is returned, and the callerextracts the actual return value from return val, a pointer to which is passed in as an argument.If the method blocks, the callee context (which itself was just created) is returned. This is necessarybecause the linkage between caller and callee was implicit in the stack structure, and the caller mustinsert a continuation for the callee's return value into the callee context to preserve the linkage.Subsequently, the caller will, if necessary, create its own context, revert to the parallel methodversion, and return its context to its caller. Figure 6 shows an example of the calling schema for themay-block case.Using this mechanism, a sequence of may-block method invocations can run to completion on thestack, or unwind o� the stack and complete their execution in the heap. The fallback code createsthe callee's context, saves local state into it, and propagates the fall back by returning this contextto its caller which then sets up the linkage.3.2.3 Continuation Passing: Lazy Continuation CreationExplicit continuation passing can improve the composability of concurrent programs [33, 6]. How-ever, when continuation passing occurs, invocations on the stack are complicated because the calleemay want its continuation. If the call is being executed on the stack, the callee's continuation isimplicit. Since one of our goals is to execute forwarded invocations [20] on the stack, lazy allocationof the continuation is essential. As we shall see, allocation of a continuation also implies creation ofthe context in which the returned value will be stored.7



Context* root_method(...,return_val_ptr,...) {...caller_context = cont_passing_intermed(&return_val,make_caller_info(root_func),...);if (caller_context != NULL) {save_state_to_heap(caller_context);return caller_context; // propagate blocking}}Context* cont_passing_intermed(...,return_val_ptr,caller_info,...) {...caller_context = cont_passing_method(return_val_ptr,caller_info,...);return caller_context;}Context* cont_passing_method(...,return_val_ptr,caller_info,...) {...if ( can_return_value ) {*return_val_ptr = value;return NULL;} else { // need continuationcaller_context = create_context_from_caller_info(return_val_ptr,caller_info);my_context = create_context();my_context->continuation = make_continuation(caller_context, caller_info);save_state_to_heap(my_context);return caller_context;}}
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    4. save caller state to created context
    5. callee (eventually) returns value to callerFigure 7: Calling schema for Continuation Passing. root method (A) is the root of the continua-tion forwarding chain, cont passing intermed an intermediate function, and cont passing method(B) a function which either returns a value or requires its continuation.
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The continuation passing schema (see Figure 7) uses an additional parameter, caller info,which, along with the return ptr, encodes information necessary to determine what to do shouldthe continuation be needed. The caller info information is simply passed along to support localforwarding, but if a method tries to store the continuation or forward it o�-node, it must be created.caller info indicates whether the context containing the continuation's future has already beencreated, the context's size if it has not, the location of the return value within the context, andwhether the continuation was forwarded.The caller info is passed through the call chain, and if the continuation is not created (i.e.the continuation is not explicitly manipulated), the result can be passed on the stack throughreturn val ptr. The method which replies simply stores the result through return val ptr, andpasses NULL return values back to its caller. The caller of the �rst continuation-passing method(root of the forwarding chain), receives this NULL value and looks in return val for the result,thus executing the forwarded continuation completely on the stack.On the other hand, if the continuation is required, caller info is consulted. There are threecases which must be handled by the fallback code. First, if the continuation was initially forwarded,the context must already exist as must the continuation (which is always stored at a �xed locationin heap contexts). It is extracted by subtracting the return location o�set in caller info from thereturn val ptr, adding on the �xed location o�set and dereferencing. Second, if the context alreadyexists but not the continuation, the continuation is created for a new future at return val ptrwhichis at the return location o�set within that context. Finally, if the context does not exist, it is createdbased on the size information from caller info, and the continuation is created for a future at thereturn value o�set. The callee may now do whatever is desired with the continuation, �nally passingthe continuation's future's context back to its caller.3.3 Wrapper Functions and Proxy ContextsCalling the sequential versions of methods from the runtime or a di�erent schema method canrequire some impedance matching. For instance, when a message arrives at a node it contains acontinuation for the return value. If the appropriate stack-based schema is non-blocking, a wrapperfunction is used to pass the return value to this continuation. Wrapper functions take either a vectorof arguments or a communication bu�er and invoke the stack-based version of a method with theappropriate calling convention. In this manner, a remote message can be processed entirely on thestack, and if the continuation is forwarded, it may pass through several nodes, �nally respond to theinitial caller, all without allocating a heap context.Figure 8 illustrates how the wrapper functions invoke methods with di�erent calling conventionsfrom a communications bu�er. In the case of a non-blocking method, we verify that a value wasreturned (which will not be the case in a purely reactive computation) and if so pass it to thewaiting future by way of the continuation. Similarly for may-block, in addition to any value beingreturned, the continuation is placed in the callee's context in case the method suspends. Finally,for continuation passing, a proxy context is used along with a caller info which indicates thatthe context exists and that the continuation was forwarded. Thus, if the continuation is required itis extracted from the proxy context (see Section 3.2.3). The proxy context technique is also usedwhen an arbitrary continuation (perhaps one stored in a data structure) is passed by a user de�nedmethod to a function which requires a return val and caller info pair. This can occur withuser-de�ned synchronization structures like barriers.9



void non_blocking_msg_wrapper(Slot * buff) { // Non-blockingresult_val = non_blocking_method(buff[0],...)if (!EMPTY(result_val)) reply(buff[CONTINUATION],result_val);}void may_blocking_msg_wrapper(Slot * buff) { // May-blockSlot result_val = EMPTY_SLOT;Context * callee_context = may_block_method(&result_val,buff[0],...)if (!EMPTY(result_val)) reply(buff[CONTINUATION],result_val);if (callee_context != NULL) {callee_context->continuation = buff[CONTINUATION];}}void cont_passing_msg_wrapper(Slot * buff) { // Continuation PassingProxy proxy_context;proxy_context.return_val = EMPTY;proxy_context.continuation = buff[CONTINUATION];Caller_Info caller_info = PROXY_CALLER_INFO;Context * caller_context = cont_passing_method(&proxy_context.result_val,...)if (!EMPTY(proxy_context.result_val)) reply(buff[CONTINUATION],result_val);} Figure 8: Wrappers for Stack Version Execution by the Runtime3.4 SummaryWe have described a set of method versions and invocation schemas that support the execution ofmany method invocations in a very general programming model on the stack. Important aspectsof this system include customization for parallel or sequential execution, and the lazy allocation ofcontexts and continuations. The resulting scheme is e�cient, exible, portable and improves overallruntimes as discussed in the next section.4 Evaluation of Hybrid Execution ModelThis section presents a performance evaluation of the hybrid execution mechanisms. First, weexamine the base costs of the various calling schemas in terms of dynamic instruction counts. Second,we show the high sequential e�ciency achievable by the hybrid model by comparing the sequentialperformance of codes using our execution model (including forwarding) to the same programs writtenin C. Finally, we examine parallel performance by measuring the improvement over straight heap-based execution, demonstrating the ability of the execution model to adapt to di�erent data localitycharacteristics for both regular and irregular parallel codes. The experiments reported in this sectionwere all conducted in the context of the Illinois Concert System on SPARC workstations, the CM-5and the T3D. The T3D implementation is less mature and we expect the absolute performance toimprove.4.1 Base OverheadsTable 2 presents the cost of the sequential invocation mechanisms for various caller-callee sce-10



Call OverheadCalling schema for CalleeCalling schema Parallel Sequentialfor Caller NB MB CPParallel 130 0 6 8NB { 0 { {Seq. MB { 0 6 8CP { 0 6 8 Fallback OverheadCalling schema for CalleeCalling schema Parallel Sequentialfor Caller NB MB CPParallel { 0 8 8NB { 0 { {Seq. MB { 0 79 39CP { 0 140 100Table 2: Call and fallback overheads (at the caller) for di�erent caller-callee scenarios, expressed interms of SPARC instructions required in addition to a C function call. NB, MB and CP stand forNon-blocking, May-block and Continuation Passing sequential calling schemas respectively.narios as the overhead (in SPARC instructions) beyond the cost of a basic C function call2. Thereare two components to this overhead: the �rst (shown in the left table) corresponds to the situationwhen the sequential invocation completes on the stack, and the second (shown in the right table)indicates the additional fallback cost when the invocation must be unwound into the heap. Sequen-tial invocations which do not block have cost comparable to a basic C function call and an orderof magnitude less overhead than the parallel (heap-based) invocation (130 instructions). The 6{8additional instructions for sequential calls are due to additional invocation arguments, and passingthe return value through memory, rather than in a register.The fallback overheads vary from 8 { 140 instructions depending on the speci�c caller-calleescenario. The unwinding costs are di�erent for the di�erent caller and callee combinations becausethe di�erent schemas place the responsibility for heap context creation and state saving at di�erentplaces. These fallback overheads make explicit the tradeo� in using the sequential and parallelversions. The maximum fallback cost for any caller-callee pair is comparable to the basic heap-based invocation, so speculative execution using a sequential invocation �rst is cheaper in almost allcases. The same numbers also show that a sequential method version can incur substantial overheadif it blocks repeatedly incurring multiple fallbacks; thus, reverting to the parallel method after the�rst fallback is a good strategy, especially if several synchronizations are likely.4.2 Evaluation of Sequential PerformanceTable 3 presents the sequential performance of the hybrid mechanisms for a set of function-callintensive benchmark programs and compares it to equivalent C programs. Using the most exiblehybrid version (3 interfaces), all programs run signi�cantly faster than the heap-only versions andachieve close to the performance of a comparable C program.3 Several programs required all threeinterfaces to achieve comparable performance. The remaining overhead is due to parallelization.Seq-opt shows the performance when this overhead is eliminated.Since the generated executables can be run directly on parallel machines, they include paral-lelization overhead in the form of name translation, locality and concurrency checks; the cost ofwhich are discussed in [23]. These checks determine whether or not a invocation can complete im-mediately, and are used to suspend the caller and to speculatively inline [5] invocations on local and2On a SPARC with register windows, a C funtion call costs 5 instructions but it is more likely to be between 10-15instructions on other processors.3The relative performance of fib and tak is a result of the comparatively aggressive inlining of our compiler.11



Program Parallel Hybrid Parallel-Sequential Versions CDescription Version 1 interface 2 interfaces 3 interfaces Seq-opt Program�b(29) 13.12 1.01 0.95 0.70 0.69 1.10tak(18,12,6) 152.87 11.37 12.08 6.75 6.71 7.00qsort(10000) 2.90 0.25 0.28 0.23 0.23 0.16nqueens(8x8) 3.37 0.77 0.80 0.60 0.56 0.38list-traversal 1.34 1.05 0.81 0.81 0.81 0.78(128 elements) 1.17a 1.00a 0.87a 0.87aawithout forwarding optimization supported by Continuation-passing interface.Table 3: Sequential execution times (in seconds) using the hybrid mechanisms compared with timesfor a parallel-only and a comparable C program. The hybrid versions represent varying degrees ofexibility: 1 interface uses only the Continuation-passing interface, while 3 interfaces uses all threeinterfaces. Seq-opt is a version which eliminates parallelization overheads.unlocked objects. Since speculative inlining lowers the overall call frequency, it decreases the impactof our hybrid execution model. However, since it is required to obtain good performance from a�ne-grained model, we include speculative inlining as part of all our results.Comparing across the three hybrid versions demonstrates the bene�ts of a exible interface.Using a version which provides all three stack interfaces (i.e., the non-blocking, may-block andcontinuation-passing call schemas) improves performance by up to 30% as compared to when onlythe most general (continuation passing) interface is always used.4 It further shows that the hybridmechanisms can provide C-like performance when all data is locally accessible.4.3 Evaluation of Parallel PerformanceIn this section, we consider three application kernels to characterize the parallel performance ofthe hybrid mechanisms versus a straight heap-based execution, particularly looking at how theperformance varies with data locality. We �rst consider a regular code, SOR, showing that theperformance improvement using the hybrid mechanisms increases proportional to the amount ofdata locality. We then consider two irregular codes { MD-Force and EM3D, demonstrating theability of the hybrid mechanisms to adapt to available data locality in the presence of irregularcomputation and communication structures.4.3.1 Regular Parallel Code: SORSuccessive Over Relaxation (SOR) is an indirect method based on �nite di�erences for numericallysolving partial di�erential equations on a grid. Our algorithm evaluates the new value of a gridpoint according to a 5-point stencil and consists of two half-iterations: in the �rst half-iteration wecompute the new value for each grid point, and in the second half-iteration, we update the grid pointwith this computed value. To characterize the impact of data locality, we keep the grid size �xed(1024� 1024) and consider various block sizes for a block-cyclic distribution of the grid on an 8� 8grid of processors. These di�erent data layouts result in di�erent ratios of local to remote methodinvocations and correspond to di�ering amounts of data locality.4In some cases the performance using two interfaces is worse than that using only one interface: this anomalyarises from an improper alignment of invocation arguments causing them to be spilled to stack instead of being passedin registers. 12



Data Locality CM-5 Performance T3D PerformanceBlock Local vs Parallel Hybrid Parallel/ Parallel Hybrid) Parallel/Size Remote (secs) (secs) Hybrid (secs) (secs) Hybrid8� 8 0.083:1 135.58 136.85 0.991 48.99 43.50 1.12616� 16 1.167:1 97.16 88.15 1.102 46.77 28.66 1.63232� 32 3.333:1 83.47 52.15 1.601 43.46 20.70 2.09964� 64 7.667:1 60.33 32.43 1.860 34.94 14.97 2.334128� 128 16.333:1 45.80 19.89 2.303 28.46 12.00 2.372Table 4: Parallel execution times for SOR (1024�1024 grid, 100 iterations) on 64-node con�gurationsof the CM-5 and T3D. The performance of hybrid mechanisms is compared with a parallel-onlyversion for varying amounts of data locality (Block Size corresponds to a block-cyclic distribution ofthe grid, and Local vs Remote gives the ratio of local to remote method invocations for the layout).
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Figure 9: Hybrid mechanisms for the SOR code: heap contexts are only created on the perimeterof the block, all internal chunks execute on the stack.Table 4 shows the performance of the hybrid mechanisms on 64-node con�gurations of the CM-5and T3D for �ve choices of the block size. The hybrid mechanisms adapt to these di�erent layoutsimproving overall performance over a parallel-only version by up to 2.4 times. Figure 9 shows thereason for this improvement: in contrast to the straight heap-based parallel version where heapcontexts are created in each half-iteration for each grid element, using the hybrid versions, heapcontexts need only be created for the grid elements on the perimeter of the blocks assigned to theprocessor (shown shaded in the �gure). Computation on the internal elements can proceed on thestack (shown by clear boxes) and consequently incur signi�cantly reduced overhead.The results in Table 4 also show that the overall improvement from hybrid mechanisms is directlyproportional to the amount of data locality. The speedup of hybrid mechanisms over the parallelversion increases from �1:0 when the fraction of local invocations is 0.077 to �2:4 when the fractionof local invocations is 0.942.5 These speedup numbers are in the neighborhood of the theoreticalpeak values which are determined by the relative costs of useful work, invocation overhead and5For very low locality on the CM-5, the hybrid mechanisms perform worse than the straight heap based schemebecause of the large number of fallbacks. 13



remote communication. For example, factoring out the useful work in the 128 � 128 SOR blocklayout on the CM-5, the maximum possible speedup we can achieve is 2.63 given that on averagea remote invocation incurs 10 times the cost of a local heap invocation. Our measured value of 2.3comes close to this maximum.4.3.2 Irregular Parallel Code: MD-ForceMD-Force is the kernel of the nonbonded force computation phase of a molecular dynamics simu-lation of proteins [17]. The computation iterates over a set of atom pairs that are within a spatialcuto� radius. Each iteration updates the force �elds of neighboring atoms using their current coor-dinates, resulting in irregular data access patterns because of the spatial nature of data sharing. Ourimplementation reduces the communication demands of the kernel by locally caching the coordinatesof remote atoms and combining force increments.Data Locality CM-5 Performance T3D PerformanceData Local vs Parallel Hybrid Parallel/ Parallel Hybrid Parallel/Layout Remote (secs) (secs) Hybrid (secs) (secs) HybridRandom 0.38:1 10.71 10.41 1.03 3.94 3.82 1.03Block 6.05:1 1.46 1.02 1.43 1.32 0.87 1.52Table 5: Parallel execution times for MD-Force kernel (10503 atoms for 1 iteration) on 64-nodecon�gurations of the CM-5 and T3D. The performance of the hybrid mechanisms is compared witha parallel-only version for low-locality random and high-locality block distributions.Table 5 shows the performance of the MD-Force kernel using two data layouts. The random lay-out uniformly distributes atoms on the nodes, ignoring the spatial distribution of atoms. In contrast,the spatial layout adopts orthogonal recursive bisection to group together spatially proximate atoms.Our results show that the hybrid mechanisms improve performance over a parallel-only scheme evenfor applications with irregular computation and communication structures. Similar to the regularSOR kernel, the performance advantages increase with the amount of data locality. For the randomdistribution, because of poor locality the dominant contributor to the execution time is the com-munication overhead. Since communication costs remain unchanged by the choice of the invocationmechanisms, we only achieve a speedup of 1.03 in this case. On the other hand for the spatiallyblocked distribution, the hybrid mechanisms enable the computation to adapt dynamically to datalocality, yielding speedups of 1.43 on the CM-5 and 1.52 on the T3D. When run time checks deter-mine that both atoms of an atom pair are local, the computation is small and entirely speculativelyinlined. When an atom is found to be remote but its coordinates are in the cache, the computationis larger but completes entirely on the stack without incurring parallel invocation overhead. Other-wise, communication is required, and the stack invocation falls back to the parallel version to enablemultithreading for latency tolerance. Even for such invocations, the hybrid mechanisms provide aperformance improvement because of a better integration of the communication and computation|the target method can execute directly from the message handler. Thus, these remote invocationsavoid the overheads of context creation and thread scheduling which are otherwise present.4.3.3 Irregular Parallel Code: EM3DEM3D is an application kernel which models propagation of electromagnetic waves [11]. The datastructure is a graph containing nodes for the electric �eld and for the magnetic �eld with edgesbetween nodes of di�erent types. A simple linear function is computed at each node based on the14



values carried along the edges. Three versions of the EM3D code were prepared to evaluate theability of the hybrid model to adapt to di�erent communication and synchronization structures.Since they are intended to examine invocation mechanisms, elaborate blocking mechanisms werenot used. The �rst version, pull, reads values directly from remote nodes. The second version,push, writes values to the computing node, updating from the remote nodes each timestep. Finally,in the forward version, the updates were done by forwarding a single message through the nodesrequiring the update.Data Locality CM-5 Performance T3D PerformanceLocal vs Parallel Hybrid Parallel/ Parallel Hybrid Parallel/Algorithm Remote (secs) (secs) Hybrid (secs) (secs) HybridEM3D 0.0156:1 93.93 68.94 1.362 349.04 336.32 1.037pull 99:1 7.42 3.34 2.222 29.681 25.96 1.148EM3D 0.0156:1 543.73 145.36 3.741 494.85 473.59 1.045push 99:1 11.76 10.96 1.073 41.27 29.47 1.400EM3D 0.0156:1 180.40 181.6 0.993 602.41 433.65 1.389forward 99:1 18.86 15.53 1.214 112.79 39.41 2.262Table 6: Parallel execution times for EM3D (8192 nodes of degree 16 for 100 iterations) on a 64-nodeCM-5 and a 16-node T3D. The performance for three versions of the algorithm using the hybridmechanisms is compared with parallel-only versions for random node placement with low locality(0.0156:1) and placement with high locality (99:1).Table 6 describes the performance of the three versions of EM3D on a 64-node CM-5 and a16-node T3D. It shows that the hybrid scheme is capable of improving performance for di�erentcommunication and synchronization structures for both cases of high and low data locality. In thecase of low locality, e�ciency is increased because o�-node requests are handled directly from themessage bu�er, without requiring the allocation of a heap context. When locality is high, the hybridmechanism can also execute fully local portions of the computation entirely on the stack. The hybridmechanisms yield speedups ranging from unity to nearly four times, achieving superior performancein all but one case where the continuation passing schema is used with extremely low locality on theCM-5. In addition to the cost of fallback, this combination produces the worst case for our scheduleron the CM-5.Overall, the pull version provides the best absolute performance since it computes directly fromthe values it retrieves rather than using intermediate storage. The forward version requires longerupdate messages than push but fewer replies. On the CM-5 replies are inexpensive (a single packet),so the cost of forward's longer messages overwhelms the cost of the larger number of replies requiredby push. However, on the T3D the decrease in overall message count enables forward to performbetter than push for low locality. The CM-5 compiler performs better on the unstructured outputof our compiler than the T3D compiler. As a result, the cost of the additional operations requiredby push and forward has less of an impact on the T3D than messaging overhead. Thus, for highlocality, the hybrid mechanism is most bene�cial for pull on the CM-5 and for forward on the T3Dwhere local computation and messaging dominate respectively.5 Discussion and Related WorkWe have described a hybrid execution model for �ne-grained concurrent programs. While the mecha-nisms described in this paper were developed for concurrent object-oriented languages [20, 33] based15



on the Actor model [18, 9, 1], we believe they are applicable to other programming models that sup-port implicit synchronization and communication. In particular, this model is useful as a compilertarget. It has a portable implementation and provides a hierarchy of mechanisms of varying powerand cost supporting a wide range of communication and synchronization structures. Moreover, itcan adapt to runtime data layout reducing the penalty for imperfect compile time information, ir-regular computations and poor programmer data distribution. As the target for the Concert systemit supports both the ICC++ [14] and Concurrent Aggregates [8] languages.Several languages supporting explicit futures on shared-memory machines have focused on re-stricting concurrency for e�ciency [16, 24]. However, unlike our programming model where almostall values de�ne futures, futures occur less frequently in these systems, decreasing the importanceof their optimization. More recently, lazy task creation [25], leapfrogging [32] and other schemes[22, 3] have addressed load balancing problems resulting from serialization by stealing work frompreviously deferred stack frames. However, none of these approaches deals with locality constraintsarising from data placements and local address spaces on distributed memory machines.Several recent thread management systems have been targeted to distributed memory machines.Two of them, Olden [29] and Stacklets [12] use the same mechanism for work generation and com-munication. Furthermore, they require specialized calling conventions limiting their portability.StackThreads [30] used by ABCL/f has a portable implementation. However, this system also usesa single calling convention, and allocates futures separate from the context. Thus, an additionalmemory reference is required to touch futures. Also, its single version of each method cannot befully optimized for both parallel and sequential execution.While the portability of the current implementation of our hybrid execution model has manyadvantages (especially when considering the short lifespan of some parallel architectures), greatercontrol of code generation would enable additional optimizations. For example, directly managingregister spilling and the layout of temporaries in the parallel and sequential versions could reducethe cost of falling back from sequential to parallel computation. Furthermore, modifying the callingconvention to support a di�erent stack regimen and multiple return values would reduce the cost ofthe more general stack schemas. However, we do not expect these optimizations to alter the basicperformance trends.6 Conclusion and Future WorkWe have presented a exible and e�cient hybrid execution model for �ne-grained concurrent pro-grams. This model adapts to the locality and synchronization structure of the program at runtimeby using separate parallel and sequential code versions. In addition, it uses a hierarchy of callingschemas based on C function calls to achieve both high e�ciency and portability (no assembly codeis required). Performance results on function-call intensive programs show that the hybrid modelachieves the sequential e�ciency of C programs. Measurements on the CM-5 and T3D for one regular(SOR) and two irregular application programs (MD-Force and EM3D) demonstrate that the hybridmodel e�ectively adapts to available runtime locality, yielding 1.5 to 3 times better performancethan a purely parallel scheme.We are currently working on automating data layout, migration and selection of communicationand synchronization structures. Our current system requires the user to specify these aspects of thecomputation explicitly. By abstracting them at a higher level, we will be able to use the exibilityof our execution model to optimize the implementation with respect to the cost pro�le of the targetplatform. 16
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