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AbstractConcrete type information is invaluable for pro-gram optimization. The determination of concretetypes in object-oriented languages is a 
ow sensi-tive global data 
ow problem. It is made di�cultby dynamic dispatch (virtual function invocation)and �rst class functions (and selectors) { the veryprogram structures for whose optimization its re-sults are most critical. Previous work has shownthat constraint-based type inference systems canbe used to safely approximate concrete types [15],but their use can be expensive and their resultsimprecise.We present an incremental constraint-based typeinference which produces precise concrete type in-formation for a much larger class of programs atlower cost. Our algorithm extends the analysisin response to discovered imprecisions, guiding theanalysis' e�ort to where it is most productive. Thisproduces precise information at a cost proportionalto the type complexity of the program. Many pro-grams untypable by previous approaches or prac-tically untypable due to computational expense,can be precisely analyzed by our new algorithm.Performance results, precision, and running time,are reported for a number of concurrent object-oriented programs. These results con�rm the algo-rithm's precision and e�ciency.

1 IntroductionType information is of central importance for en-abling e�cient implementations of high-level lan-guages. It can be derived from explicit program-mer declarations or via type inference, analysis ofprogram structure. It can be used to assist pro-grammers to detect errors, reason about programoperation, and in some cases, to optimize the im-plementation. However, traditional type inferencesystems infer principal or most general types, en-suring that the program is a legal composition ofdata types and their operations. While a great dealof progress has been made with respect to the in-ference of this type information [13, 14, 4], moreprecise information is required for optimization ofobject-oriented languages. For example, the mostgeneral type of a max function would take any twocomparable objects and produce a comparable ob-ject result. Thus, a principal typing would ensurethat the argument types matched each other andthe return type. However, this level of informationis inadequate for optimization since optimizing themax operation for integers (32 bits), complex num-bers (64 bits), bignums (many bits), though theyare all numbers, requires di�erent transformations.Concrete types distinguish implementations ofdata types and discriminate the actual classes orphysical data layouts which occur in a program.Thus concrete type inference can provide the lowerlevel and more speci�c information which is essen-tial for program optimization. For example, in thecase of max, concrete type information would dis-1



tinguish calls on the basis of the implementationtypes of the arguments, allowing each to be op-timized appropriately. Concrete type informationenables optimizations which traditional type infor-mation cannot.While object-oriented languages can ease thetask of programming, they make optimization moredi�cult. Increased use of polymorphism both inmodern languages and programming practice de-crease the likelihood that type declarations com-bined with principal types will provide useful con-crete type information. This is primarily be-cause polymorphism leverages programming e�ortby sharing code over a number of uses, confoundingconcrete type information.Concrete type inference in object-oriented lan-guages is both especially critical for e�ciency andespecially di�cult to obtain. Object-oriented lan-guages use type-dependent dispatch pervasively, soconcrete type information is essential to derivingaccurate control 
ow { a prerequisite to virtually allprogram analysis and optimization. However, thepresence of type-dependent dispatch means thatthe control 
ow, type inference, and data 
ow prob-lems are coupled. Previous work [15] formulatedthe concrete type inference problem as a mono-tonic solution of a constraint network, solving allthree problems simultaneously. However, it hasdrawbacks: 1) it does not type many common pro-gram structures, and 2) its logical extension to suchstructures has space and time complexity exponen-tial in program type structure.Our concrete type inference algorithm extendsprecision incrementally where needed, consequen-tially producing more precise type informationwhile requiring less computation. Our algorithmexploits a shallow analysis of the type informationto guide the extension of e�ort into program re-gions where imprecise results were obtained. Theextension discriminates the control and data 
owpaths that caused imprecisions and reanalyzes theprogram. The process iterates until precise typeinformation is obtained. The key to making theanalysis e�cient is the use of entry sets and con-tainer sets which collect similar 
ow histories to-

gether, reducing the cost of 
ow-sensitive analy-sis. Our analysis produces an interprocedural callgraph in which functions and methods have beencloned (virtually) to eliminate polymorphism. Thisgraph can be used to generate an implementationin which dynamically dispatched calls are staticallybound or to do further analysis with more precisecontrol 
ow information.Extensible precision and e�cient 
ow sensitiveanalysis allow our algorithm to precisely typedeeply polymorphic structures. Examples of theseinclude nested procedures and data structures, andrecursive versions of each. Such polymorphic struc-tures cannot be practically typed by schemes suchas [15].The major contributions of this paper are:1. A concrete type inference algorithm whichcan type many previously untypable object-oriented programs.2. An e�cient algorithm which uses resourcesproportional to program type complexity toobtain precise information.3. An empirical evaluation of the incrementaltype inference algorithm using a collectionof concurrent object-oriented programs whichsubstantiates the increased precision and prac-ticality of the algorithm.The basis of our algorithm is a labeling schemewhich allows type variables to be distinguishingbased on the dynamic program structure. Thisscheme is 
exible, allowing appropriate levels ofprecision and summary in di�erent parts of theprogram. Splitting for precision and summariza-tion for e�ciency are the critical issues addressedby labels. This extensible precision allows our al-gorithm to precisely type programs with arbitrarilydeep polymorphic structures. The empirical evalu-ation substantiates the existence of deep polymor-phic structures, and the e�ectiveness and practi-cality of the algorithm.The remainder of the paper is organized as fol-lows. Section 2 covers background material, nota-2



tion and constraint-based type inference. In Sec-tion 3, we introduce our type inference algorithm.Subsequently, in Section 4, we illustrate some usesof the resulting information. Section 5 discussesour implementation of the incremental inferencetechniques and reports results for a number of pro-grams, some as large as 2,000 lines. Discussion ofour results and a summary of related work can befound in Section 6, and the paper is summarizedin Section 7.2 Background2.1 Project ContextThe type inference algorithm was developed as partof the Illinois Concert System. However, the al-gorithm is general and can be directly applied toa wide range of languages. The goal of the Con-cert System is to develop portable e�cient imple-mentations of concurrent object-oriented languageson parallel machines. This work includes a vari-ety of research in program analysis, optimizationand runtime techniques.1 At present, the Concertsystem compiles the Concurrent Aggregates (CA)language [9, 10], a dynamically typed concurrentobject-oriented language with single inheritance aswell as �rst class selectors, continuations, and mes-sages for execution on the Thinking Machines CM5[21]. All program examples are written in Concur-rent Aggregates.2.2 PolymorphismWe di�erentiate data polymorphism and func-tional polymorphism. Data polymorphism includespolymorphic variables and polymorphic contain-ers: objects in which an instance variable maycontain other objects of more than one concretetype. Functional polymorphism refers to functionswhich can operate on arguments with a variety oftypes. Examples of both appear in Figures 1 and1The Illinois Concert System including this type infer-ence system is available from http://www-csag.cs.uiuc.edu.Interested parties can contact achien@cs.uiuc.edu for moreinformation.

(function rootclass max (i j)(if (> i j) (reply i)(reply j)))(sequential(max 1 2) ;; 1a(max 1.0 2.0)) ;; 1bFigure 1: Polymorphic Function2. We de�ne level of polymorphism as the depthof the polymorphic reference path or polymorphicfunction call path for data and functional poly-morphism, respectively. An e�ective type inferencesystem should produce accurate results in the pres-ence of the many levels of polymorphism found inreal application programs.(class A a (parameters i)(initial (set_a self i)))(method A geta () (reply a))(sequential(geta (new A 1)) ;; 2a(geta (new A 1.0))) ;; 2bFigure 2: Polymorphic Container2.3 Constraint-Based Type InferenceConstraint-based type inference techniques con-struct a constraint network whose solution is thedesired type information. Generally, the networknodes are type variables and the directed edgesare constraints. Constraints are induced by data
ow, the creation of objects, and the use of vari-ables. Type variables take on values which are setsof concrete types, and the solution for each variableis bounded by constraints from below and above.For example, when an object of type C is created,the type of the variable to which it is assigned mustbe of at least of type fCg, so a constraint is formedfor that type variable. Using [[v]] to denote the typeof variable v the basic constraints for creation andassignment are:x = new C �! [[x]] � fCgx = y �! [[x]] � [[y]]3



These basic constraints re
ect local data 
ow. Inaddition, there are connecting constraints along theedges of the interprocedural call graph which re
ectglobal data 
ow. Each method invocation gener-ates constraints between the actual arguments (ai)and formal parameters (pi) of the method. The re-turn value is also constrained in an analogous fash-ion. An example constraint graph and its solutionare shown in Figure 3. In equational form, the con-necting constraints for an invocation are:x selector a0 a1:::an �! 8c 2 [[x]]:method c :: selector p0 p1:::pn:8i � n:[[pi]] � [[ai]]Solving the system of constraints is achievedby maintaining a work pile of invocations (inter-procedural edges) which are processed by �ndingthe target method or function and applying lo-cal (intraprocedural) and connecting (interproce-dural) constraints. These constraints are solved bypropagating the changes through all connected con-straints. A nice exposition of the basic constrainttechnique is given in [16].Values must be propagated through the con-straints eagerly because of the coupling betweentypes and control 
ow. The concrete type of thetarget of a message send determines the possi-ble 
ow of control at that send through type-dependent dispatch. The algorithm uses the cur-rent solution to approximate the possible interpro-cedural control 
ow, putting invocation paths onthe work pile as they are discovered. This worksas long as the value of each type variable increasesmonotonically. Figure 3 illustrates the instantia-tion of an interprocedural constraint. When theconstraint for statement 1b (Figure 1) to the func-tion max is created, the variable i can be a floatas well as an integer, inducing the creation of anedge from the statement (> i j) to the > methodfor 
oats.2.4 Imprecision and Type VariablesWhen the analysis has determined that a variablemay only be of one concrete type, it knows it has

precise information.2 We say that an imprecisionoccurs when the constraint network admits a solu-tion with a number of concrete types. At run time,variables in the program text refer to objects of dif-ferent concrete types in di�erent situations. Impre-cisions result from the summarization of these runtime variables in the dynamic program executionby the static constraint network structure. Thus,the key to resolving imprecisions is to discriminate(avoid summarizing) such variables. The inferencealgorithm creates a type variable for each set of runtime variables it wishes to distinguish. Thus sepa-rate type variables, each subject to a di�erent setof constraints, can discriminate di�erent uses of asingle variable in the program text.(function rootclass leq (i j)(reply (or (eq i j) (< i j))))(function rootclass max (i j)(if (leq i j) (reply j) ;; 3a(reply i)))(concurrent(if (or (max 1.1 1.2) ;; 3b(max 1 1)) ;; 3c...Figure 4: Multi-level Polymorphic FunctionThe critical issue for both precision and e�ciencyis when to use additional type variables for greaterresolution. In order to handle polymorphic func-tions, others have proposed creating separate typevariables for each call site at which the functioncontaining the variable was invoked. Similarly, sep-arate type variables would be created for the con-tents of polymorphic containers based on the pointat which the object was created, its creation point.Unfortunately, this single level of discrimination isinsu�cient to infer precise types within commonprogram structures such as polymorphic librarieswith multi-level call trees, functions which createand initialize container objects, and polymorphiccontainers of polymorphic containers (see Figures 42Those variables which are truly polymorphic will be im-precise under all analyses.4
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Type Dependent DispatchFigure 3: Constraint Graph Example for Figure 1and 5 for illustrations of these cases).(class A a (parameters i)(initial (set_a self i)))(class B b (parameters i)(initial (set_b self i)))(function rootclass createB (i)(reply (new B (* i i))))(let ((v1 (new A (createB 1)))(v2 (new A (createB 1.0))))...Figure 5: Multi-level Polymorphic ContainerExtension in the obvious manner, increasing thelevel of discrimination to some �xed level k, incursa cost exponential in k, and despite that does notensure a precise typing. Our incremental type in-ference algorithm not only types such multi-levelpolymorphic program structures, it does so e�-ciently, allocating e�ort only where necessary. Thisalgorithm is described in detail in the next sec-tion. A detailed empirical comparison with otherapproaches is given in Section 5.3 Incremental Type InferencePrecise and e�cient type inference can be achievedby incrementally extending precision, focusing ondetected imprecisions. This allows the typing ofprograms with arbitrarily complex type structureat a cost proportional to the complexity of that

structure. Thus, program sections with simple typestructures are typed quickly, and the algorithmconcentrates e�ort in program sections with com-plex type structure; the result is an e�cient typeinference algorithm.The incremental algorithm proceeds as follows.First, a fast analysis is done using the basicconstraint-based algorithm (since it allocates a sin-gle type variable for each variable appearing stat-ically in the program text, we call this the staticalgorithm). Second, the constraint network is ana-lyzed for imprecisions, and extended locally in thearea of the imprecision. This extension invalidatesa portion of the solution which is then recomputed.The process of extension and recomputation is re-peated until the algorithm determines that no morebene�t may be gained. Extension and inferencecannot go on simultaneously because the solutionmust increase monotonically. Modi�cation of a de-veloping constraint network could leave the solu-tion in an state inconsistent with the network.Since precision must be extended locally for thealgorithm to be both e�cient and precise, we usean extensible labeling scheme for type variables.These labels are extended in the area an impreci-sion occurred by tracing the imprecision from thecon
uence point (the place where two smaller typescombine to form a larger union type) back to itssource and then increasing precision along the en-tire path from source to con
uence.The labeling scheme for type variables is de-5



scribed in Sections 3.1{3.2, and the mechanisms forextending precision are described in Sections 3.3{3.4. Section 3.5 deals with the issue of recursiveprocedures and data structures.3.1 Type Variables: Sets of Run TimeVariablesType variables are used to distinguish di�erent usesof a variable in the program text. As a result, theycorrespond directly to the precision of inference.Our type inference algorithm creates type variablesand labels them to discriminate the run time in-stances of a program variable. This discriminationproduces precise type inference. In this section,we �rst discuss run time variables and then showhow to summarize them with type variables, thusensuring a �nite analysis.For each textual program variable there may be anumber of run time variables which are generatedby the execution of the program. Distinguishingthese run time variables is critical for precise 
ow-sensitive analysis. For example, in Figure 1 thefunction max is called in two di�erent environments(1a and 1b) with arguments of type integer andfloat respectively. Recording this 
ow sensitiveinformation for max requires two sets of type vari-ables: i1a,j1a and i1b,j1b for the textual variablesi,j. We label (discriminate) run time variables bytheir execution environment (e.g. for a stack allo-cated variable, the call path which resulted in itsallocation). In this case, the type variables can bedistinguished by one level of their execution envi-ronments (call points 1a and 1b).The call path is su�cient to discriminate func-tional polymorphism but not data polymorphism.In object-oriented languages, the state of the objecton which a method is invoked is also part of the ex-ecution environment; the value of an instance vari-able can determine the return type of the method,as illustrated in Figure 2. In this case, the returntype of geta depends on the type of a in the targetobject. To discriminate these cases we also labeltype variables with the creation point of the objectwhich contains them: a2a and a2b.

The resulting labeling scheme can be summa-rized as follows:TypeV ariable = ProgramV ariableEnvironmentEnvironment = CallPoint � CreationPoint jEnvironment0CallPoint = CallStatement � EnvironmentCreationPoint = CreationStatement � EnvironmentA type variable is a program variable labeledwith an environment. The environment is de-termined by the statement and environment inwhich the method was called, and the statementand environment where the target object was cre-ated. The recursion in the de�nition ends withthe initial environment where the program began(Environment0).3.2 Entry and Creation SetsSince programs may contain a potentially in�nitenumber of run time variables, any �nite analysismust approximate these with a �nite set of typevariables. The choice of how to summarize is crit-ical to the precision and e�ciency of the type in-ference since the nodes of the constraint networkare type variables, and the value of a node is theunion of the concrete types of the set of run timevariables it represents. We group execution envi-ronments and creation points into entry sets at theentry of methods and creation sets for each objectallocation point. Type variables are now labeledwith these sets inducing partitions on the run timevariables.Entry sets summarize collections of calling envi-ronments. Each entry set is a collection of interpro-cedural call graph edges incident on the method orfunction. Distinct type variables are maintained foreach entry set (as in Figure 6), providing 
ow sensi-tive analysis. Because each entry set may summa-rize the information from a number of interproce-dural edges, type information for each edge withinthe entry set is intermingled. This summarizationenables the algorithm to be e�cient since the sum-marized variables are only analyzed once for all theedges in the set.6
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ow values: concrete types and cre-ation points. That is, for each variable, it records

the estimated type of that variable, and the placeswhere the objects it contains may have been cre-ated (creation sets in our algorithm). These values
ow forward in the data 
ow graph. Our algorithmalso maintains the set of selectors or function point-ers which each variable may contain since, like thetype of a variable, these may in
uence control 
ow.Imprecision any of these three values can result inan imprecision in type, and require extension ofthe analysis. There is an additional type of data
ow value which refers to paths through the net-work itself, but we will defer discussion of it toSection 3.4.2. Some of the algorithm portions de-scribed in the following section can operate on morethan one of these data 
ow values and are thereforeparameterized by the function V alue.3.4 SplittingSplitting divides entry and creation sets, allocatingadditional inference e�ort and increasing the pre-cision of analysis. Each split introduces more typevariables, potentially eliminating imprecisions fromthe inferred types. Choosing the best set to split isimportant because splitting at the wrong place orchoosing partitions that are too small wastes e�ort.On the other hand, choosing partitions that are notsmall enough can incur additional iterations of thetype inference algorithm.Splitting an entry set (function splitting) dividesits edges over a number of smaller entry sets. Split-ting a creation set (container splitting) likewise di-7
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: {integer,float}return return 1: {integer} return 2Figure 7: Function Splitting for integers and 
oats.vides the creation points of the original creation setover a number of smaller creation sets. While somepolymorphic functions can be handled by eagerlysplitting entry sets, eager splitting of creation setsis not e�ective for polymorphic containers. This isbecause the decision to split a creation set must bemade at the creation point. However, the neces-sity of the split cannot be known until the instancevariables are actually used, generally much later inthe analysis. A full discussion involves heuristicsand termination issues which are beyond the scopeof this paper. Our implementation includes eagersplitting, and interested readers are referred to [17]for more information. We discuss non-eager func-tion and container splitting in the following sec-tions.3.4.1 Function SplittingFunction splitting partitions an entry set, separat-ing the type inference for the execution environ-ments in each partition. Our algorithm �nds theentry sets that must be split to resolve a particularimprecision, then splits them. Identifying the ap-propriate entry sets involves tracing back throughthe constraint network from the imprecision to itsprimary source. Typically, this is a con
uence oftype information (a meet a ^ b where a; b 6= ; anda 6= b). Splitting entry sets between the con
uenceand the imprecision is su�cient to eliminate theimprecision.In the following paragraphs, we describe theidenti�cation of type con
uences and entry setswhich must be split in detail. First, we de�ne the

functions FlowV ars(tv) and BackV ars(tv) on theconstraint network:FlowVars(tv) Given a type variable tv returnthose type variables tv0 which have direct con-straints Type(tv) � Type(tv0).BackVars(tv) Similar to FlowV ars but withType(tv) � Type(tv0).These functions are used to follow constraintsback to the sources of the imprecision.ConfV ar(tv;V alue) = ( ftvg if 9b 2 BackV ars(tv)^V alue(tv) 6= V alue(b); otherwiseConfV ars(tv; V alue) = ConfV ar(tv) [fb j b 2 BackV ars(tv)^ConfV ars(b; V alue)gTo �nd the sources of an imprecision in tv, we�nd the type variables at con
uences involvingsome portion of V alue(tv). ConfV ar(tv; V alue)indicates that the type variable tv is a con
u-ence point with respect to V alue(tv), and thus apossible source of the imprecision. The functionConfV ars(tv; V alue(tv)) �nds all type variableswhich are at con
uences contributing to the �nalimprecision.Imprecision can also arise from interprocedu-ral control 
ow ambiguity due to imprecision inthe selector or the type of the target at a mes-sage send. With such imprecisions, we trace backthrough the constraint network to �nd the con
u-ences which cause the imprecision. Also, impre-cision in the creation set of the target of a mes-sage can result in imprecision in instance variables8



within the method. We extend ConfV ars(tv; im)to ConfV ars0(tv; im) to handles these three cases.ConfV ars0(tv; V alue) = ConfV ars(tv; V alue) [ftv00 j tv0 2 ConfV ars(tv; V alue) ^((tv0 is an argument or return variable of send) ^(tv00 2 ConfV ars0(TargetOfSend(send); T ype) _tv00 2 ConfV ars0(TargetOfSend(send); CreationSets) _tv00 2 ConfV ars0(SelectorOfSend(send); Selectors))The three occurrences of ConfVars' on the bot-tom trace back imprecisions in target type, creationsets, and the message selectors respectively. Thisidenti�es all causes of an imprecisions which can beresolved with function splitting.Figure 7 illustrates function splitting involvingthe max function from Figure 1. At the left, theactual arguments for the formal parameters i andj coming from max 1 2 and max 1.0 2.0 have dif-ferent concrete types, so there is a type con
uence.The imprecision manifests itself in the imprecisereturn type finteger,floatg, when it is clear thatthe return type for the �rst call is integer andfor the second call it is float. Splitting the entryset introduces two sets of type variables i1,j1 andi2,j2, eliminating the con
uence and producing aprecise typing.3.4.2 Container SplittingContainer splitting partitions creation sets, sepa-rating the type information for the creation pointsin each partition. Container splitting is necessarywhen there is an imprecision in type at an instancevariable. Partitioning the creation points allowsa more precise typing for the objects representedby each partition, reducing imprecisions caused bydata polymorphism. The term container splittingis used because we must split the type informationfor the object which \contains" a polymorphic ref-erence.Figure 8 is an example of container splittingbased on the program example in Figure 2. On theleft, the two creation points, (new A 1) and (newA 1.0) are part of the same creation set. As such,they constrain the value of the instance variable a

and consequentially the return type of geta to beinteger or float. Splitting the creation set dis-criminates the two cases, allowing a function split-ting on geta to produce a precise typing of getafor both cases.Container splitting is more complex than func-tion splitting because the point of con
uence (theinstance variable) is linked to the creation pointsby data 
ow, not control 
ow. As a result, the cre-ation set which must be split may be distant fromthe imprecision. Thus splitting the creation set isnot enough, we must ensure the additional discrim-ination introduced by the splitting is maintained tothe point of the imprecision.Container splitting involves four basic opera-tions.1. Identifying the assignments to the instancevariable which give rise to the imprecision.2. Identifying the paths from the origin(s) of thecreation set to the methods containing the as-signments.3. Ensuring a container set split will increasediscrimination at the imprecision by splittingalong these paths.4. Resolving the imprecision via container setsplitting.Container splitting addresses type imprecisionfor instance variables, so the �rst step is to iden-tify the assignments which produce the impreci-sion. These are con
icting assignments to the sameinstance variable of objects from the same creationset. After we have the assignments, we �nd data
ow paths from the creation points in the creationset to the assignments. These paths must propa-gate any discrimination we introduce by containersplitting, or we will fail to re�ne the imprecision.We ensure this discrimination will be preservedalong the data 
ow paths by splitting functions andcontainers where necessary. With paths in hand,we resolve the assignments into di�erent creationsets by splitting the container sets. This overallalgorithm is what we term container splitting.9
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Figure 8: Container splitting for imprecision at a.Identifying the Assignments First we �nd thetype variables which carry the imprecise informa-tion to the instance variable with the functionAssignSets(v; V alue). As before, it is parameter-ized with the function V alue which can be any im-precise data 
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the objects whose instance variables were assignedfrom as a portion of V alue(v) . Then we computethe path between these objects and their creationpoints. A new creation set would have to take thispath in order split the instance variable v for theassignment set as and eliminate the imprecision.CPath(as) = Closure(BackV ars; ContainingV ars(as))ContainingV ars(as) = fc j c = Target(e) ^e 2 Edges(es); es 2 EntrySet(v) ^ v 2 asgWe compute the path CPath(as) back to the cre-ation point for the variables in the set as by takingthe closure of BackV ars over the set of contain-ers. The function ContainingV ars(as) �nds thetype variables which represent the containers of in-stance variables assigned from the elements of as.It uses EntrySet(v) which returns the entry setwhich determines v,3 and Edges(es) which returnsthe interprocedural call graph edges summarizedby the entry set es. The Target(e) of edge e is thetype variable on which the method was invoked.The path CPath(as) is that which would betaken by a new creation set whose existence wouldeliminate the portion of the imprecision V alue(as)(see Figure 9) This path must be distinct fromthe other paths computed for each element ofAssignSets(v; V alue) because the union meet ofthe CreationSets(v) data 
ow value would makeit impossible to separate out the uses of the new3Each type variable is determined by its environment,and that environment is determined by an entry set.10



1 : {integer} 1.0 : {float}
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es1 es2
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es1 = 8c x es0 x cs1

es2 = 8d x es0 x cs1
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es2
value  : {integer} value  : {float}

a    : {integer,float}

self  : {cs1}

x   : {cs1} y   : {cs1}

self  : {cs1}

cs1 es2

es0es2 es2

es1 es1 es0

es0 es0 es0 es1 es0

Container Split Equations

es2

AssignSets(a      , Type) = {{value       },{value      }}

CPath({value      }) = { self      , x      }

CPath({value      }) = { self      , y       }

Splittable(x      ,{x      ,y       },{self      , x     , self      , y       }) = TRUE

es1

es0

cs1 = { (8a x es0), (8b x es0)}

(method A set_a (value)
  (set! a value)
  (reply a))

(let ((x (new A))  ; 8a 
      (y (new A))) ; 8b
  (set_a x 1)       ; 8c
  (set_a y 1.0))   ; 8d Figure 9: Example of Container Splitting Equationscreation set. Since the appearance of a type vari-able on more than one of these paths representsa secondary imprecision, for each type variable weneed to know the subset paths in which it is con-tained.TvCPaths(tv; ps) = fcpath j cpath 2 ps; tv 2 cpathgAllCPaths(v; V alue) = fcpath j cpath = CPath(as) ^as 2 AssignSets(v; V alue)gWe de�ne the function TvCPaths(tv; ps) to rep-resent the subset of the paths ps which containstv. For example, given all the paths which carryan imprecision of a particular V alue at a par-ticular variable v, the set going through tv isTvCPaths(tv; AllCPaths(v; V alue).Ensuring Discrimination Using the paths de-termined above, the next step is to determinewhere con
uences of the potential creation setsrepresented by these paths occur. This is theadditional type of data 
ow value which we dis-cussed above, imprecisions in which we must de-tect and eliminate. We can extend our de�nitionof ConfV ar to include imprecisions in these po-tential creation set paths:ConfV ar0(tv;V alue) = ( ftvg if 9b 2 V ars(tv;V alue) ^V alue(tv) 6= V alue(b); otherwiseThe new ConfV ar0 uses the V ars(tv; V alue)function which is either BackV ars(tv) as beforeor FlowV ars(tv) when V alue refers to the paths

themselves. Since the paths are separate at theimprecision and converge at the instance variable,they can be thought of as 
owing backward in thedata 
ow graph. AssignSet requires a analogouschange, and the rest of the algorithm is identical.The type variables which are ConfV ar0s forthese paths need to be split, either by splittingthe entry sets of the enclosing functions (for nor-mal type variables) or by splitting the creation set(for instance variables) before we can split the cre-ation set for which cp is a creation point. As withfunction splitting, it is important to consider thosevariables which might indirectly contribute to theimprecision by way of another imprecision.Resolving the Imprecision The last step is theactual splitting of creation sets. When two or morepaths do not share any type variables, then the cre-ation set can be split. A new creation set is createdfor each path or set of paths which do not sharetype variables. Figure 9 provides an example ofusing these equations to determine that a creationset can be split. The new creation set will causethe instance variable at the point of the impreci-sion to split thus removing the imprecision. We willuse the type variable which describes the result ofan object creation statement cp to stand in for thecreation point at those statements.ps = AllCPaths(v; V alue)cps = fcp j cp 2 cpath ^ cpath 2 ps ^CreationResult(cp)gSplittable(cp; cps; ps) = 8cp0 2 cps ^cp0 6= cp ^ TvCPaths(cp; ps) 6 \ TvCPaths(cp0 ; ps)11



We will use ps, the set of all type variableson any path between the imprecision and a cre-ation point, and cps, the set of all type vari-ables resulting from a creation statement as in-dicated by CreationResult(cp). The functionSplittable(cp; cps; ps) then determines if a creationset with creation points cps can be split, creating anew creation set containing cp (a member of cps).This is the case when no type variables occur onboth the path between cp and the imprecision andthe path between any other creation point cp0 incps and the imprecision. Since the paths 
ow back-ward in the data 
ow graph with a union meet,TvCPaths(cp; ps) summarizes the TvCPaths forall type variables between cp and the imprecision.Hence, when the intersection of TvCPaths(cp; ps)and all other TvCPaths(cp0; ps) is empty, a newcreation set containing cp can be split from thatcontaining cps.Once we have both removed all of the interven-ing con
uence points between the creation pointsand the imprecision point and have split the cre-ation set, the instance variable at the imprecisionpoint will be split. The new type variables for theinstance variable will each have portions of the orig-inal data 
ow value, eliminating the con
uence andconsequently the imprecision.3.5 RecursionRecursion in functions or data requires careful han-dling to ensure that our algorithm terminates anddoes so with precise type information. Splittingsome recursive functions is required to type poly-morphic recursive functions precisely. However,splitting them in all cases where precision may beincreased can lead to non-termination. We distin-guish three types of recursion: 1) recursive datastructures (container recursion), 2) function recur-sion, and 3) function-creation recursion. The �rstcase is the easiest. Creation sets are only split whenthe algorithm can �nd a distinct path for the newcreation set, ensuring that an imprecision will beeliminated. Recursion is bounded in the path �nd-ing algorithm by determining paths only once for

each creation point.For the other cases, we prevent non-terminationby identifying edges which are part of recursivecycles. After each iteration and before splitting,we identify the strongly connected components(SCCs) in the graph where nodes are the entry andcreation sets and arcs are 1) interprocedural callsfrom entry set to entry set, 2) creation set to theenvironment they determine (which uniquely deter-mine an entry set) and 3) entry sets to the creationsets, one of whose creation points they determine.The SCCs in this graph contain the sets of entrysets that are recursive or that create an object onwhich they are then invoked. Edges between entrysets in the same SCC are not split. In addition,splitting edges which point to recursive cycles canalso lead to in�nite execution as it may successively\peel" recursive cycles. Thus, these edges are alsoprohibited from splitting beyond a constant level.Note that allowing edges entering the cycle to splitto a constant level is enough to enable typing of re-cursive structures with a period less than or equalto the constant. These techniques are discussed indetail in [17].3.6 Safety, Termination and ComplexityThe basic constraint-based type inference algo-rithm is safe because it enforces the program's data
ow and invocation type constraints [15]. Since theincremental algorithm does not change the valuesof the constraint network, but only re�nes the anal-ysis by partitioning and applying the constraintsmore precisely it is also safe. This remains true solong as the connecting constraints represent a con-servative approximation of the interprocedural callgraph, which the algorithm also ensures. A moredetailed discussion of these issues can be found in[17].Termination is ensured because there is only �-nite unfolding of a program without recursion andrecursion is blocked beyond a constant level (seeSection 3.5). While the complexity of the algorithmis bound by the �nite number of type variables, thisnumber is exponential if the level of polymorphism12



in a program grows linearly in program size. Inpractice we do not expect and have not found suchprograms. In fact, our measurements show thatthe level of polymorphism in programs increasesrelatively slowly with program size.4 UseThis analysis produces a wealth of informationabout type information, data and control 
ow. Inthe Concert System this information is used forglobal constant propagation, removing unreachablemethods (tree shaking), and cloning as well as fordebugging and the insertion of type checks. We willcover cloning and inserting type checks in greaterdetail.4.1 CloningCloning makes new copies of a method for di�er-ent invocation contexts, such as the concrete typesof its arguments. This information is then used di-rectly to optimize the cloned method as well as anydependent calls. The resulting implementation canleverage a few dynamic dispatches to execute largetracts code with few if any dynamic dispatches. Ofcourse, these tracts are now candidates for a varietyof classical optimizations.The organization of the type inference resultsare particularly well-suited for eliminating dynamicdispatches, as they contain entry sets which indi-cate productive clones of methods. By using theseentry sets to direct code replication, we can con-trol replication, and direct it to where it will dothe most good. The Concert compiler producesmethod clones using entry sets as discussed in [17].4.2 Type CheckingFor statically typed languages, type checking canbe done before type inference, so we know that allmessages and functions will resolve legally duringtype inference. For dynamically typed languages,we have no such guarantee. However, the resultsof concrete type inference can ensure the absenceof run time type errors allowing the compiler to

remove type checks or to alert the programmer topossible program errors.After each type inference iteration has completedwe determine where the typing is not adequatelyprecise to ensure that no run time type errors willoccur. These points of imprecision occur where anytype variable, a target of a message send, includestypes which fail to support any or all of the selec-tors which may be sent to it. By applying func-tion and container splitting to these imprecisions,we type check the program. For programs whichdo not type check, we can use the same informa-tion to insert run time type checks. The Concertcompiler reports the insertion of type checks to theuser as warnings which often indicate programmingerrors.45 Implementation and Empiri-cal ResultsWe have implemented the incremental type infer-ence algorithm and tested it on more than 35,000lines of Concurrent Aggregates (CA) programs.The implementation is fully integrated into thecompiler and complete; no language features wereexcluded. In this section, we present excerpts fromour empirical studies; a concise table appears inthe appendix, with a complete report in [17].Our test suite spans a range of program sizes be-tween 40 and 2000 lines. The ion program simu-lates the 
ow of ions across a biological membrane.network simulates a queueing network. circuit isan analog circuit simulator. pic is a particle-in-cellcode. The man program computes the Mandel-brot set using a dynamic algorithm. tsp solves thetraveling salesman problem. The mmult programmultiplies integer and 
oating point matrices us-ing a polymorphic library. poly evaluates integerand 
oating point polynomials. test is a syntheticcode designed to test the algorithm's e�ectiveness.All programs were compiled with the standard CAprologue (240 lines of code).4This enables safe debugging of programs written in adevelopment mode since type inference with type checks13



Algorithm Progs Progs Type AverageTyped Failed Checks Secondsprecise 9 0 0 199palsberg 3 6 99 150static 0 9 718 34Figure 10: Precision of Type Inference AlgorithmsWe implemented three di�erent algorithms:static with one type variable per program vari-able, palsberg with one level of constant functionand container splitting, and precise which is ouralgorithm. Figure 10 shows that static was fast,but unable to type even simple programs. pals-berg fared little better, typing only three of nineprograms. In contrast, precise was able to type allthe programs. Furthermore, the type informationproduced by precise eliminated the need for anyrun time type checks while palsberg and staticrequired many in the �nal code. All run times givenare for our CMU Common Lisp/PCL implementa-tion on a Sparc10/31.Figure 11 shows that our algorithm not only pro-duces better type information, it generally does sofaster. In two of the three cases, where both pre-cise and palsberg were able to type the program,the precise algorithm was much faster. The rea-son for this is that precise focuses its e�ort onregions of the program where it is productive. Ofcourse, when precise returned greater type infor-mation, it often required much longer run times.Not only does precise produce precise typings,the entry set and container set mechanisms producea concise typing.5 That is, the incremental type in-ference algorithm does not unnecessarily split typevariables. This is especially important when theresult of type inference is used with cloning toeliminate dynamic dispatches. The \conciseness"of a precise typing reduces the number of clonesrequired to produce output code without dynamicdispatches. In Figure 12 we see that if we pro-catches all run time type errors.5One measure of this is the number of type variables re-quired (see appendix).

Program Lines palsberg Time precise/Typed? Sec. palsbergion 1934 NO 714 1.2circuit 1247 NO 290 2.1pic 759 NO 363 2.5tsp 500 NO 56 1.4mmult 139 NO 78 3.5test 39 NO 15 5.1network 1799 YES 234 .65mandel 642 YES 25 .42poly 41 YES 18 2.2Figure 11: E�ciency of Type Inference Algorithmsduced new clones for the type variables requiredby the algorithm, precise would produce a pro-gram with between 1.5 and 2.5 as many methodswhile eliminating almost all dynamic dispatches.This is much better than the palsberg typing (notprecise), even ignoring the fact that run time typechecks are still required. Using the palsberg typ-ing would produce a 2.5 - 4 times code expansionbut eliminate many fewer dynamic dispatches. Thenumber of dynamic dispatches eliminated and theactual e�ect on code size using a more e�cient al-gorithm is covered in detail in [17].
co

d
e 

si
ze

0

0.5

1

1.5

2

2.5

3

3.5

4

io
n

n
e

tw
o

rk

ci
rc

u
t

p
ic

m
an

de
l

ts
p

PRECISE

PALSBERGFigure 12: Clones per Method by Algorithm6 Discussion and Related WorkWhile in general, the static typing of all programswhich will not produce run time type errors is unde-14



cidable, the precise algorithm was able to type allof our application programs. The empirical studiesindicate that our incremental type inference algo-rithm signi�cantly extends the range of programbehaviors that can be typed. However, there aresome possible program structures which will re-quire run time type checks, even with our improvedalgorithm. These include: 1) programs which storea variety of types in a single array, 2) programswhich build variant records and compute the tags,and 3) programs which reuse storage to store dif-ferent types (such as a program and its garbagecollector).The use of non-standard abstract semantic in-terpretation for type recovery in Scheme by OlinShivers [19] provides a good basis for this and otherwork on practical type inference. In particular, theideas of a call context cache to approximate inter-procedural data 
ow and the re
ow semantics toenable incremental improvements in the solutionforeshadow this work.Iterative type analysis and message splitting us-ing run time testing are conceptually similar tech-niques developed in the SELF compiler [6, 7, 8]. It-erative type analysis uses structures similar to en-try sets, but never attempted to accurately typean entire program. Instead it recovers informationfrom small regions. Run time tests are used to se-lect optimized code sequences when a particular al-ternative is considered likely. We expect that thesetechniques and virtually all other optimization ofobject-oriented languages will bene�t greatly fromthe precise type information generated by our im-proved inference techniques.Type inference in object-oriented languages inparticular has been studied for many years [20, 12].Constraint-based type inference is described byPalsberg and Schwartzbach in [16, 15]. Their ap-proach was limited to a single level of discrimina-tion and motivated our e�orts to develop an ex-tendible inference approach. Recently Agesen hasextended the basic one level approach to handle thefeatures of SELF [22] (see [1]). However, the prob-lems with precision and cost inherent in a singlepass approach are tackled by exploiting specialized

knowledge about the SELF language [2].The soft typing system of Cartwright and Fagan[5] extends a Hindley-Milner style type inference tosupport union and recursive types as well as inserttype checks. To this Aiken, Wimmers, and Lak-shman [3] add conditional and intersection typesenabling the incorporation of 
ow sensitive infor-mation. However, these systems are for languageswhich are purely functional where the question oftypes involving assignment does not arise and ex-tensions to imperative languages are not fully de-veloped. Lastly, our algorithm shares some featuresof the closure analysis and binding time analysisphases used in self-applicative partial evaluators[18], again for purely functional languages.7 Summary and Future WorkWe have developed and implemented an algo-rithm for precise concrete type inference in object-oriented languages. This algorithm uses entry setsand creation sets to incrementally extend preci-sion and direct type inference e�ort to where itis fruitful. These techniques make e�cient infer-ence of concrete types in programs with many levelsof polymorphism in functions and data structurespractical.We have implemented these techniques in theIllinois Concert compiler and have used them toinfer concrete types on a number of programs.These programs contain �rst class selectors, con-tinuations, and messages and are written in thedynamically typed concurrent object-oriented lan-guage Concurrent Aggregates. Our empirical re-sults indicate that the incremental type inferencealgorithm is viable, practical, and productive. Notonly is the resulting concrete type information pre-cise, the run time of the algorithm is reasonable foruse in an optimizing compiler.Our compiler currently uses the type informationwith cloning to eliminate dynamic dispatch, inlinefunctions and methods, unbox variables, as well asfor interprocedural constant propagation and lo-cality approximation. In the future we will alsoexplore more e�cient implementations of the type15
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Program Lines Passes Type Edges Entry Typed? Checks Im TimeVars Setspreciseion 1934 5 50779 3470 760 YES 0 0 713.70network 1799 3 29090 2228 730 YES 0 31 234.15circuit 1247 6 34505 1801 430 YES 0 7 289.52pic 759 6 40284 2128 357 YES 0 0 363.18mandel 642 1 17257 1011 442 YES 0 0 25.48tsp 500 3 10290 627 207 YES 0 0 56.24mmult 139 7 11518 543 147 YES 0 0 78.35poly 41 4 3819 234 90 YES 0 0 18.12test 39 7 1581 130 76 YES 0 0 15.11palsbergion 1934 1 115800 7098 2817 NO 19 264 577.51network 1799 1 73864 6018 2296 YES 0 87 357.47circuit 1247 1 49849 2646 1097 NO 44 679 136.03pic 759 1 48420 2783 1068 NO 28 196 144.16mandel 642 1 26280 1442 562 YES 0 0 60.78tsp 500 1 18203 1150 472 NO 2 31 40.78mmult 139 1 10928 595 216 NO 4 104 22.36poly 41 1 4233 250 137 YES 0 0 8.25test 39 1 1353 123 100 NO 2 0 2.94staticion 1934 1 34729 3380 396 NO 260 1096 131.16network 1799 1 18874 1804 407 NO 132 926 58.77circuit 1247 1 15491 976 190 NO 111 405 28.93pic 759 1 16065 1300 180 NO 119 390 37.68mandel 642 1 8755 760 116 NO 59 524 16.52tsp 500 1 7006 571 130 NO 27 225 15.79mmult 139 1 3842 231 61 NO 4 89 7.60poly 41 1 1848 138 48 NO 4 55 3.84test 39 1 1001 108 44 NO 2 19 2.92Table 1: Raw Results for Three Type Inference Algorithms[18] Bernhard Rytz and Marc Gengler. A polyvari-ant binding time analysis. Technical ReportYALEU/DCS/RR-909, Yale University, Depart-ment of Computer Science, 1992. Proceedings ofthe 1992 ACM Symposium on Partial Evaluationand Semantics-Based Program Manipulation.[19] Olin Shivers. Topics in Advanced Language Imple-mentation, chapter Data-Flow Analysis and TypeRecovery in Scheme, pages 47{88. MIT Press,Cambridge, MA, 1991.[20] Norihisa Suzuki. Inferring types in Smalltalk. InEighth Symposium on Principles of ProgrammingLanguages, pages 187{199, January 1981.[21] Thinking Machines Corporation, Cambridge, Mas-sachusetts. CM-5 Technical Summary, October1991.[22] David Ungar and Randall B. Smith. Self: Thepower of simplicity. In Proceedings of OOPSLA'87, pages 227{41. ACM SIGPLAN, ACM Press,1987.
A Experimental ResultsTable 1 contains raw data from our tests. ThePasses column indicates how many passes were re-quired for each algorithm to terminate. Type Varsis the number of type variables created by each al-gorithm. Edges is the number of interproceduralcall graph edges and Entry Sets is the number of(virtual) method clones created by each algorithm.For static this is the number of methods used bythe programs. Checks is the number of type checksrequired by each algorithm to ensure that no un-detected run time type errors occur. A program isTyped? when it requires no run time type checks.Im is the number of imprecise type variables re-maining after the algorithms terminate. Time isreported in seconds.17


