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AbstractConcrete type information is invaluable for program optimization. The determina-tion of concrete types is, in general, a 
ow sensitive global data 
ow problem. As aresult, its solution is hampered by the very program structures for whose optimizationits results are most critical: dynamic dispatch (as in object-oriented programs) and �rstclass functions (including function pointers). Constraint based type inference systemsare an e�ective way of safely approximating concrete types, but their use can be ex-pensive and their results imprecise. We present an incremental constraint based typeinference technique for extending the analysis in response to discovered imprecisions.This technique infers concrete types to high precision with a cost proportional to theinformation obtained. Performance results, precision and running time, are reportedfor a number of concurrent object-oriented programs.1 IntroductionStrongly typed languages with type declarations and/or type inference systems enable pro-grams to be statically type checked. Static type checking ensures there will be no runtimetype errors, and can also assist programmers in �nding bugs early in the development pro-cess. Such type declarations can sometimes aid program optimization, providing enoughinformation to determine what speci�c data structures will be used at run time. However,modern languages and development practices include greater use of polymorphism or dec-larations which are parameterized over a range of concrete data types. As a result, in mostcases, type declarations do not give the compiler all of the type information desirable forprogram optimization.In languages with polymorphism, such as object-oriented languages, a program variablehas values of distinct concrete types over the course of one program run or even acrossdi�erent program runs. These concrete or implementation types (the objects or functionsas they occur at run time) should be distinguished from the principle or most general typeswhich describes legal uses of a objects or functions. While a great deal of progress hasbeen made with respect to the inference of type information [12, 13, 4], these inferencetechniques compute principle types, not concrete types. Concrete types can be used tosupport program optimization; while principle types are used primarily for reasoning aboutthe type correctness of programs. Concrete types provide information about data structures1



and control 
ow, providing a basis for traditional optimizations such as inlining and registerallocation as well as optimizations such as static binding and unboxing.Though separate compilation is essential for extremely large programs, it is clear thatseparating compilation units inhibits compiler analysis and optimization. If the compilercannot determine the exact structure of data, functions and methods, it cannot optimizethe code using them. This constraint is particularly severe in object-oriented languageswhere polymorphic libraries are common. In particular, concrete type information dependson program data 
ow, so concrete type inference in general requires global 
ow analysis.1We present a type inference algorithm based on global data 
ow analysis. Because of thelinkage between type information and control 
ow and data 
ow caused by type-dependentdispatch, our algorithm uses and updates an incremental global data 
ow approximation ateach step of type inference. This approach allows us to simultaneously solve the type and
ow constraints.Cast in a data 
ow framework, the problem of concrete type inference is characterizedby the framework D =< FG;L;F > where the 
ow graph FG =< N;E; root > nodes (N)correspond to program statements, the edges (E) correspond to an approximation of globalcontrol 
ow. The elements of the lattice (L) are sets of tuples of a variable and a set ofconcrete types. The meet operator (c = a^b) constructs c, the set of tuples of variables andthe union of concrete types for each variable in a and b. The transfer functions F describethe local constraints induced by the program statements.In this context, the major contributions of this paper are:1. A labeling scheme for type variables based on the dynamic program structure whichsupports 
ow-sensitive analysis (Section 3.1). The scheme is 
exible, supporting ap-propriate levels of precision in di�erent parts of the dynamic program structure.2. A type inference algorithm which is incrementally extendible to arbitrary precision(Section 3). This algorithm incrementally extends the global control 
ow approxima-tion (E) and the dependent type variable labels.3. Vital techniques for an e�cient implementation of the incremental type inferencealgorithm, entry sets and container sets (Section 3.3), which limit and direct analy-sis e�ort to dynamic program structures where greater precision is required. Thesetechniques dramatically reduce the cost of analysis by sharing inference informationamong similar cases.4. An empirical evaluation of the incremental inference techniques using a collection ofconcurrent object-oriented programs. The evaluation shows that not only is precisetype inference possible, but its cost is practical for an optimizing compiler.5. A framework which enables type inference for languages with �rst class functions andcontinuations (Section 4).The structure of the remainder of the paper is as follows. First, Section 2 covers back-ground material, discussing notation, the basic idea behind constraint-based type inference,1For instance, if a new piece of code assigns an object of type A0 (a subtype of B) to a variable of typeB which previously was only assigned variables of type A (another subtype of B), all code which uses thevariable is a�ected. 2



and limitations of previous approaches. In Section 3, we introduce our incremental typeinference technique which extends the precision of analysis in response to a program's typecomplexity. Subsequently in Section 4, we describe the framework in which the incremen-tal analysis occurs which makes it practical for real programs. Section 5 discusses ourimplementation of the incremental inference techniques and reports results for a numberof programs, some as large as 2,000 lines. Use of the type information is touched on inSection 6. Related work is brie
y surveyed in Section 7 and the paper is summarized inSection 8.2 BackgroundMost type checking and inference techniques [12, 4] determine types bottom up, using thetypes of subexpressions to form the types of expressions and �nally the type of the program.At each point, a closed form for the program fragment signature is computed. This processstrives to describe the type of the program fragment in all environments and then to verifythat the type is legal in the environments where the fragment occurs.2 Thus the goal ofthese techniques is to �nd the most general type. For instance, assuming that < is in theinterface of OrderedObject, such a type system might determine that the function maxin Figure 1 can be applied to two objects of any subtype of OrderedObject which mightinclude all the numeric classes, strings, and other user-de�ned data types.function i max: jif i > j thenreturn ielsereturn jmainf (1 max: 2)f (1.0 max: 3.0)Figure 1: Polymorphic Function
class Avar imethod i: argii = argireturn selfmethod freturn imainf ((new A) i: 1)f ((new A) i: 1.0)Figure 2: Polymorphic ContainerModern programming practice and object-oriented programming in particular encouragethe use of large libraries of reusable components with deep subtype hierarchies, only aportion of which may be used at any point in the program. This makes program optimizationdi�cult since compilers typically require speci�c information in order to transform theprogram. Optimizations like inlining, static binding and unboxing work only if a variable canbe resolved to a single concrete type. Thus, in contrast to the general types of other typingtechniques, our goal is to �nd speci�c type information. To enable such optimizations, wehave implemented a concrete type inference algorithm in the Illinois Concert compiler [6].For the sample code shown in Figure 1 this algorithm determines that max is called onlyon integers from the expression (f (1 max: 2)) and 
oats from the expression (f (1.0max: 3.0)), enabling the max and > functions to be specialized and inlined.2Type systems like those of Pascal and C++ simply verify the programmers declaration for the fragment,modulo automatic coercion, against the environment.3



We will initially consider inference in the context of strongly typed languages, andthen extend the algorithm to detect run time type errors in dynamically typed languages.Program examples in the running text will be in a syntax derived from [14]. The targetlanguage of our implementation and in which the benchmarks are written is the dynamicallytyped concurrent object-oriented language Concurrent Aggregates [7, 8] which includes �rstclass selectors, messages and continuations. The algorithm is very general and can beapplied easily to a wide range of languages.Before we begin, let us clarify some terms. We di�erentiate two types of polymorphism:data and functional. Data polymorphism includes polymorphic variables and polymorphiccontainers: objects in which an instance variable may contain other objects of more than oneconcrete type. Functional polymorphism refers to functions which can operate on argumentswith a variety of types. Examples of both appear in Figures 1 and 2. We de�ne levelsof polymorphism as the depth of the polymorphic function call path and depth of thepolymorphic reference path for functional and data polymorphism respectively. E�ectiveinference requires the ability to handle the many levels of polymorphism found in realapplications without losing accuracy or requiring unreasonable computational resources.2.1 Constraint Based Type InferenceDirect implementation of the global data 
ow framework outlined in Section 1 would beine�cient because the transfer functions are more closely associated with variables thanstatements. In [9], the construction of sparse data 
ow evaluation graphs is proposed. Theidea is to remove data 
ow nodes whose transfer functions are identity and to forward theresults of the others directly to the nodes which use them. In terms of the type inferenceproblem, we de�ne the sparse 
ow graph FG0 =< N 0; E 0; root > with the nodes as theprogram variables and the edges as assignments between them. With this model in mindthe problem can be viewed as the construction and solution of a constraint network, wherethe constraints are just the edges of the sparse 
ow graph. These constraints describe thetype relations between program variables and constants.The algorithm maintains a work pile of invocations (interprocedural edges) which areprocessed by �nding the target method or function, and applying local constraints (in-traprocedural) and connecting constraints (interprocedural). These constraints are solvedby propagation where changes in the input of a node triggers recomputation of the outputso as to maintain a continuously updated solution [15].x = newC �! [[x]] � fCgx = y �! [[x = y]] � [[y]];[[x]] � [[y]]Figure 3: Basic Local Constraints x selector a0 a1:::an �!(8c 2 [[x]]:(c selector p0 p1:::pn8i � n:[[pi]] � [[ai]]))Figure 4: Basic Connecting ConstraintsThe basic local constraints re
ect local data 
ow and special statements which createobjects of known type, denoted by C (see Figure 3). The basic connecting constraintsre
ect global data 
ow along the edges of the interprocedural call graph, connecting theactual arguments (ai) and formal parameters (pi) as in Figure 4. An example constraint4
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Inferred ResultFigure 5: Constraint Graph Examplegraph and its solution are shown in Figure 5. Complicating construction of the constraintsystem is the interaction between types and control 
ow vis a vis type-dependent dispatch.The concrete types of the target of a message send determine the possible 
ow of controlat each invocation site. Therefore, the current value of the constraint system is used tocontinually approximate interprocedural control 
ow. This works only if the value of eachvariable increases monotonically.2.2 ImprecisionImprecisions in the inferred concrete type information are di�erences between runtime be-havior and the behavior predicted by the inference system. At run time, static variables(variables in the program text) are instantiated as dynamic variables (in the running pro-gram). These dynamic variables may be used in many di�erent situations, holding valuesof di�erent types for example. To avoid imprecisions, an inference algorithm must sepa-rate the dynamic variable instances to distinguish di�erent situations. Each set of dynamicvariables separated out by the inference algorithm is called a type variable. This is becausefor the purposes of the type inference all of the dynamic variables in that set are subject tothe same type constraints.function i leq: jreturn i <= jfunction i max: jif (i leq: j) thenreturn jelsereturn imainif (1.1 max: 1.2) or(1 max: 1) then...Figure 6: Multi-level PolymorphicFunctions

class Avar bclass Bvar ifunction createB: ivarreturn (new B) i: ivarfunction createA: bvarreturn (new A) b: bvarmaina1 = createA: (createB: 1)a2 = createA: (createB: 1.0)Figure 7: Multi-level PolymorphicContainersIn order to handle polymorphic functions, the type inference algorithm in [15] createsseparate type variables for each call site at which the function containing the variable wasinvoked. Likewise, separate type variables are created for the contents of polymorphiccontainers based on the point at which the dynamic instance of the container was created,its creation point. Unfortunately, this single level of discrimination (caller versus caller and5



caller's caller) is insu�cient to precisely infer types within common program structures: i)polymorphic libraries with multi-level call trees, ii) functions which create and initializecontainer objects, and iii) polymorphic containers of polymorphic containers (see Figures 6and 7 for an illustration of these cases). However, increasing the level of discrimination tosome �xed level k incurs a cost exponential in k as well as limiting the potential precisionof the analysis.3 Incremental InferenceOur solution to the limitations of the approaches described above is to incrementally extendthe precision of type inference in response to detected complexities in the type structureof the program. This approach allows us to type programs with arbitrarily complex typestructure with the cost of extended analysis incurred only for programs which require itfor optimization. In this section, we describe the critical problems and our solutions forincremental and e�cient inference.As was clear from the last section, we cannot a�ord to globally increase the level ofdiscrimination, so we must extend it dynamically. For this we require a way to identify thepoints at which to extend precision and a way to represent this selectively increased preci-sion. Maintaining reasonable cost requires identifying a minimal set of extension points andusing a representation which minimizes redundancy. The representation we will use is anextensible labeling scheme for type variables and is explained in Section 3.1. The generalmechanism used to extend the labels is described in Section 3.3. A simple eager exten-sion technique is covered in Section 3.3.1. Imprecision can result from either polymorphicfunctions or polymorphic containers. Discovery and extension for speci�c imprecisions isdescribed in Sections 3.3.2 and 3.3.3 for functions and containers respectively.At �rst it might seem that extension and inference could go on simultaneously. How-ever, increasing the level of discrimination dynamically is complicated by the fact that thesolution must increase monotonically. That is, the type estimate for each variable mustonly become greater (less restrictive) with time since the structure of the constraint systemitself is based on the developing solution. As a result, naive modi�cation of a developingconstraint network could leave the solution in an state inconsistent with the network. Onthe other hand, because of the interdependencies between type information and control
ow, invalidating portions of the solution can invalidate other portions of the network andso on, making such modi�cations costly.Thus, our overall algorithm �rst infers program types, then if necessary extends thenetwork, increasing the power of discrimination in those areas where it is needed. Afterthe network has been extended, the solution is cleared and recomputed. This process isapplied iteratively until the algorithm determines that no extensions can improve precisionor a desired level of accuracy is attained. We term one cycle of constraint solution andextension an iteration.3.1 Type VariablesFor each program variable there is a potentially in�nite set of run time variables which aregenerated by the execution of the program. To name these dynamically created variables,6



we label program variables by their execution environment. For example, in Figure 1the function f is invoked in two di�erent environments with arguments of type integer and
oating point respectively. In object-oriented languages, the state of the target is alsopart of the execution environment. This is because the value of an instance variable candetermine the return type of a method, as in Figure 2 where the return type of methodf depends on the value of i, part of the object state. Thus, variables are labeled withinvocation site and object state information.More formally, for each program variable v we de�ne a set of dynamic variables D(v)as: Ei = P � C � Ei�1C = EE = [i EiD(v) = fve j e 2 EgWhere Ei denotes an execution environment and is composed of an invocation point(P ), a creation point (C) and an enclosing environment. Invocation points capture theinvocation environment and creation points capture the object state part of an executionenvironment. A creation point in turn is just the point in the program, the executionenvironment, where the object was created. E0 denotes a distinguished initial environmentwhere program execution began.Since there are potentially an in�nite number of dynamic variables in a program, a real-istic analysis must partition them, grouping those which are of the same type and assigninga type variable for each group. The nodes of the constraint network then correspond tothese partitions, and the value of a node (type variable) is the union of the concrete typesof the partition's dynamic variables. Unfortunately, since we do not know the type of eachdynamic variable a priori, we do not know how best to group them. In addition, once a par-tition has been constructed and used in the network solution it is di�cult if not impossibleto determine the values of subpartitions. The incremental analysis therefore repartitionsthe variable instances between iterations.
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3.2 Entry and Creation SetsSince constructing partitions for each variable individually would be complex and expensive,we construct partitions for the execution environments. These in turn induce partitions overthe variable instances. For every method, we maintain a collection of entry sets. Entry setsgroup execution environments by collecting edges of the interprocedural call graph incidenton the method or function. The execution environment represented by an entry set is thenall the environments that arrive along those edges of the call graph. A distinct set of typevariables for the program variables in the method is generated for each entry set. As aresult, separate type information is maintained for each entry set. An example of entry setscan be found in Figure 8.Partitions of creation points are constructed similarly and called creation sets. As de-�ned above, creation points are simply the program point and execution environment wherethe object was created. Creation points are used to distinguish groups of objects of the sameclass by the place where they are created at run time, and are propagated through the net-work in much the same manner as concrete types.To simplify the exposition, in this paper we assume that an entry set is associated withonly one creation set, so a type variable is uniquely determined by just the program variableand the entry set. The algorithm ensures this by construction.Previously we labeled type variables with an invocation point, creation point, and anenclosing environment; however, introducing entry and creation sets changes this labelling.Instead of speci�c points, we simply label a variable by an entry set. This entry set in turndetermines the creation set and a set of enclosing (calling) entry-sets. This substitution isthe critical element in achieving e�cient analysis. More formally, since an entry set groupstogether a set of invocation environments, D(v; es) for variable v and entry set es representsall dynamic variables:D(v; es) = fve j e 2 Env(es)gEnv(es) = fe� e0 j e 2 Edges(es); e0 2 Env(Source(e))g)Edges returns the interprocedural call graph edges in an entry set or group of entry sets.An edge consists of an invocation point and the entry set from which the edge originated.Source returns this entry set which is at the source of the edge. The initial entry set E0has no edges.3.3 SplittingSplitting is used to partition entry and creation sets in order to improve analysis precision.Each split introduces more type variables, potentially eliminating imprecisions from theinferred types. Choosing the right place to split and the right partitions is important becausesplitting at the wrong place or choosing partitions that are too small wastes inference e�ort.On the other hand, choosing partitions that are not small enough can incur additionaliterations of the type inference algorithm.Splitting can be applied to both entry and creation sets in analogous fashion. Splittingan entry set divides its edges over a number of smaller entry sets. Splitting a creation setlikewise divides the creation points of the original creation set over a number of smaller8



creation sets. If the set to be split contains only one edge or creation point, the imprecisionoriginated at a higher level, and the surrounding environment must be split �rst.While the ultimate goal of splitting is to eliminate imprecisions in type, imprecisionsof other kinds at one variable can cause imprecisions in type at another variable. Theseimprecisions can be of any of the data 
ow quantities described in Section 4 or anotherquantity which describes the paths which a type variable is along. This last will be describedin detail in Section 3.3.3. Some of the algorithm portions in the section can operate on morethan one of these quantities and are parameterized by the function V alue which accessesthe appropriate one for the argument type variable.In the subsequent parts of this section we consider several di�erent types of splitting.First, we discuss eager splitting which applies in some special cases. Subsequently wediscuss function splitting and container splitting which address imprecisions arising frompolymorphic functions and containers respectively.3.3.1 Eager SplittingEager splitting detects imprecisions as they are about to occur and splits entry sets imme-diately. The objective of eager splitting is to reduce the overall run time of the algorithm byexploiting partial information. In general, identifying incompatible edges requires solvingthe entire constraint network, but sometimes incompatibility can be detected much earlier.Speci�cally, if two invocation edges to a method have invocation arguments in the sameposition of di�erent types (or another data 
ow quantity), these edges are incompatible.This is because the edges produce constraints which result in a con
uence of information(a meet a^ b where a; b 6= ; and a 6= b). Eager splitting exploits this situation splitting theinformation immediately (within the same iteration), creating a new entry set for the edgethat would cause the con
uence.Adding the new edge to an existing entry set would be preferable, so the algorithmbelow is used. For simplicity we will use the function V alue which represents the value ofa type variable with respect to a data 
ow quantity (e.g. concrete types: Type or creationsets: Creators). In an implementation, for edges to be compatible they must be so atall data 
ow values. First, we �nd the compatible entry sets CompatES(e); those whichcontain only compatible edges. If there is one or more, we select the �rst one arbitrarily. Ifno compatible entry sets exist, we create a new entry set. The function ArgOf(e; a) simply�nds the argument of e corresponding to a.CompatES(e) = fes j es 2 EntrySets(Method(e)); 8e0 2 Edges(es);CompatibleEdges?(e; e0)gCompatibleEdges?(e; e0) = 8a 2 Args(e); a0 = ArgOf(e0; a);V alue(a) = ; _ V alue(a0) = ; _ V alue(a) = V alue(a0)ES(e) = (CompatES = ;) ? NewES; First(CompatES(e))Figure 9: Finding a Compatible Entry SetEager splitting can handle some polymorphic functions in a single iteration, but it is9



not e�ective for polymorphic containers (splitting creation sets). This is because decision tosplit a creation set must be made at the creation point.3 However, the necessity of the splitcannot be known until the instance variables are actually used. This is generally much laterin the analysis. In contrast, eager splitting sometimes works for entry sets because edges topolymorphic functions may have some information about their argument types when theyare instantiated.3.3.2 Function SplittingFunction splitting reduces imprecisions due to polymorphic functions. Basically, functionsplitting partitions an entry set, allowing a more precise typing of the function for eachentry set. Function splitting is generally applied to entry sets which contain incompatibleedges { those responsible for introducing imprecision in the type inference.All the entry sets for which splitting will directly increase precision can be found byapplying the CompatibleEdges? function (see Figure 9) pairwise to all edges in each entrysets. However, for e�ciency reasons we may wish to �nd those entry sets which are thecause of particular imprecisions. This will also help us illustrate techniques which we willuse for splitting of creation sets.Our algorithm identi�es the entry sets that must be split to resolve a particular im-precision in the constraint network by �nding the sources of the imprecision. The primarysources of an imprecision are the type variables at con
uence of subsets of the impreci-sion. Since imprecision is the unwanted mixing of information, if these type variables canbe split, the mixing might not occur and the imprecision might be eliminated. To �nd thecon
uences, we follow the constraint network from the imprecise variable back to con
uencepoints. For convenience, we de�ne the following functions on the constraint network:FlowVars(tv) Given a type variable tv return those type variables tv0 which have directconstraints Type(tv) � Type(tv0). Intuitively, these are the variables along the pathof data 
ow.BackVars(tv) Similar to FlowV ars but with Type(tv) � Type(tv0).Using these functions, we follow the constraints back to �nd the primary source ofthe imprecision. More speci�cally, given a type variable tv and an imprecision im, we�nd those type variables which represent con
uences involving im or a subset of im. Thefunction FV (tv; im) is the full value including potential imprecisions. IsConfluence com-putes if the type variable is a con
uence point. ContinueTo is used to eliminate thosebackward edges which do not contain the imprecision, averting unnecessary work. Finally,ConfV ars0(tv; im) puts all of these together, following the constraints backward to allsources of the imprecision.FV (tv; im) = V alue(tv) [ imIsConfluence(tv; im) = 9b; b 2 BackV ars(tv); FV (tv; im)� V alue(b) 6= ;ContinueTo(tv; im) = fb j b 2 BackV ars(tv); V alue(b)\ img3We can split all creation points into separate creation sets, but not in an informed manner as with eagerfunction splitting. 10



ConfV ars0(tv; im) = IsConfluence(tv; im)[fb0 j b0 2 ContinueTo(tv; im); ConfV ars0(b; im\ V alue(b)))However, this only covers the primary cause of an imprecision. An imprecision can alsoarise if there is interprocedural control 
ow ambiguity (due to a secondary imprecision atthe target of method invocation) which causes a merger at arguments or return values. Thissituation is handled with a slight rede�nition of ConfV ars(tv; im)0:ConfV ars(tv; im) = ftv0 j tv0 2 ConfV ars0(tv; im)g [ ftv0 j tv00 2 ConfV ars(tv; im);((Arg?(tv0) _ ReturnV ar?(tv0)); targ = Target(SendStmt(tv0));V 2 AllV alues; tv00 2 ConfV ars(targ; V (targ)))g
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p1‘Figure 10: Function Splitting ExampleWe extend the old de�nition of ConfV ars to include all those variables which areConfV ars for imprecisions at the target of message sends for which the primary variableis an argument or return value. Since an imprecision in any of the data 
ow quantities inthe target may indirectly cause these imprecision, we use the set of functions AllV alues toindicate that we are looking for con
uences at any data 
ow value.4An example of function splitting is displayed in Figure 10 where the entry set associatedwith func3 is split. Actual arguments for the formal parameter a1 coming into func3 fromfunc1 and func2 have di�erent concrete types, so the edges are incompatible. Splitting theentry set prevents the con
uence of type information. The result is two type variables p1and p1' which have distinct types, and a more precise program typing.3.3.3 Container SplittingContainer splitting reduces imprecisions due to polymorphic containers. Basically, containersplitting partitions creation sets allowing a more precise typing for the objects representedby each set. Splitting containers is more complex then splitting functions since the point ofcon
uence (the instance variable) is separated from the cause (the creation point). However,as before, the basic idea is to follow paths in the constraint network to �nd sources of theimprecision and split them.4In addition, handling �rst class continuations requires that the function ReturnV ar? determine if thevariable is a Continued Value and the function SendStmt �nd the send statement for the continued value.11



There are two di�erent types of imprecisions which are of concern with respect to con-tainers: imprecisions in the normal data 
ow values and in the imprecisions in the pathswhich creation sets might take. Given a particular con
uence at an instance variable, therewill be two or more surrounding methods which assign the con
icting portions of the im-precision to the instance variable. These methods, in turn, are invoked on di�erent typevariables which are determined by the same creation set (hence the shared instance vari-able). By following the BackV ars from these `containing' type variables back to the sharedcreation point we can construct the paths which, if split, would allow us to eliminate theimprecision. The appearance of a type variable in more than one of these paths is thesecond type of imprecision.Container splitting involves three operations. First, we compute the paths from the typevariable containing5 the instance variable at the imprecision back to its creation points.These paths determine potential new partitions for the instance variable. Second, if thereis more than one creation point along separate paths, we split the creation set. Finally, wedetermine where con
uences occur for the paths.First we compute the paths from the containing type variables to the creation points.As before, we parameterize the algorithm with the function V alue(v) which can be anyimprecise quantity. In addition, we also parameterize the algorithm by the direction ofwhich the quantity 
ows using V ars which takes on the function values FlowV ars andBackV ars. For the normal data 
ow quantities, the value of V ars is BackV ars, but whenthe algorithm is applied recursively to the paths themselves, the value of V ars will beFlowV ars. We begin with a type variable, v, which corresponds to an instance variablewhich is at the point of an imprecision.ImBV (v) = fb j b 2 V ars(v); V alue(b) 6= V alue(v)gBackSets(vs) = First(vs) [BackSets(fv j v 2 vs; V alue(v) 6= V alue(First(vs))g)Bs = BackSets(ImBv(v))Containers(vs) = fc j c = Target(e); e 2 Edges(EntrySet(b)); b 2 vsgBL = fbl j bl = Closure(BackV ars; Containers(bs)); bs 2 BsgImBV (v) �nds the set of variables which carry the information which merged to causethe imprecision at v. For e�ciency we then form subsets of ImBV which carry identicalportions of the information using the function BackSets. The function Containers(vs)�nds the `containing' variable for each variable in a set. Finally we compute the paths backto the creation points by taking the closure of BackV ars over each set of containers.BL is then the set of paths from the creation points (the origin of the creation sets)to the source of the imprecision. The paths in BL are those that would be taken by thecreation sets whose existence would eliminate the imprecision. The appearance of a typevariable on more than one of these paths represents a secondary imprecision. Therefore, foreach type variable in BL we need to know the subset of BL in which it is contained. Wede�ne the function TvBl(tv; BL) to represent the subset of BL which contains tv.The second step is the actual splitting of creation sets. When two or more paths do notshare any type variables, then the creation set can be split. A new creation set is created5Given an instance variable, the containing type variables are those type variables which are the targetsof the dynamic dispatch for methods containing the instance variable. We are assuming a language withsingle dynamic dispatching. 12



for each path or set of paths which do not share type variables. These new creation setswill cause the instance variable at the point of the imprecision to split thus removing theimprecision. We will use the type variables which describe the result of an object creationstatements cps to stand in for the creation point at those statements.cps = fv j v 2 b; b 2 BL;CreationPoint(v)gTvBl(tv; BL) = fbl j bl 2 BL; tv 2 blgSplittable(cp; cps; BL) = fcp0 j cp0 2 cps; TvBl(cp; BL) 6 \ TvBl(cp0; BL)gThe last step is to determine where con
uences of the potential entry sets representedby the paths in BL occur. This is the second type of quantity which we alluded to above,imprecisions in which we must detect and eliminate in order to solve the type inferenceproblem.Beginning with a type variable at a creation point cp we compute PC, the path con
u-ences. The idea is the �nd those places where the paths that reached cp joined together.We use the function TvBl(v; bl) which returns the subset of bl containing v. We then searchforward along the constraint graph for those places where the size of TvBl(v; bl) decreases.bl = TvBl(cp; BL)FindPC(p; v; bl) = fx j ((x = p ^ TvBl(x; bl) 6= bl) ^ (TvBl(v; bl) 6= ;))_(x = FlowV ars(v) ^ x 2 FindPC(v; x; TvBl(v; bl)))PC = fpc j x 2 FlowV ars(s); pc 2 FindPC(cp; x; cps)gThe type variables PC need to be split, either by splitting the entry sets of the enclosingfunctions (for normal type variables) or by splitting the creation set (for instance variables)before we can split the creation set for which cp is a creation point. As with functionsplitting, it is important to consider those variables which might indirectly contribute tothe imprecision by way of another imprecision. We extend PC in the same manner asConfV ars0 was extended to ConfV ars before applying the algorithm recursively.Once we have both removed all of the intervening con
uence points between the creationpoints and the imprecision point and have split the creation set, the instance variable atthe imprecision point will split. The new type variables for the instance variable will eachhave a subset of what was the original imprecision, eliminating the imprecision.3.4 IterationAs discussed at the beginning of the section, the incremental inference algorithm re�nesits approximation of the program's type structure in a series of iterations. Each iterationextends e�ort into regions of the constraint network which contain imprecisions. Entry andcreation sets are split where appropriate and the a�ected portion of the network is clearedand the algorithm is rerun.The a�ected portion of the constraint network includes all type variables whose entryset which was modi�ed (split) or whose creation set was modi�ed (split).6 The network is6An implementation may split a set by moving some of the constituents to another set with compatibleconstituents, both of which are modi�ed. 13



cleared by removing the a�ected constraints and data 
ow values and those constraints andvalues dependent on them, but not the entry or creation sets. The edges are removed, buttheir correspondence with the entry sets is preserved, carrying the partitioning informationto the next iteration. In subsequent iterations, when an edge is made for which we haveremembered the entry set, that entry set is used as the target of the edge. In the same waythe creation sets for each creation point are remembered. When a creation point is made,we restore the remembered creation set.Typically, after a number of iterations, no more imprecisions will exist and the typeinference algorithm will terminate. In some cases, it may be preferable to terminate thealgorithm after a �xed number of iterations, inserting type checks in the generated codewhere imprecisions still exist. The termination and complexity of the algorithm is coveredin Section 4.2.4 Completing the AlgorithmThough we have described the general outline of a type inference algorithm, a completeconcrete type inference algorithm for a language containing �rst class functions and con-tinuations actually requires the simultaneous solution of three global data 
ow problems.These are:Concrete Type The implementation types which a variable may take on at run time.Creation Sets The creation points of objects a variable may refer to.Selector Values The selectors, closures or functions a variable may refer to.The values for each of the data 
ow problems travel along the global data 
ow approx-imation edges with union as the meet operator. The transfer functions include the basicconstraints as well as constraints induced by dynamic dispatch. As a re
ection of type-dependent dispatch, the transfer function for a formal parameter in the dynamic dispatchposition (the target of the message send) is constrained to pass only the values which couldcause the function to be invoked. In addition, it can only pass the creation set correspondingto the entry set of its partition.For Selector Values, anonymous function are given tokens, and closures are parame-terized by the variables they capture from the surrounding scope [16] allowing such variablesto be treated as arguments.In addition to the data 
ow problems, for each type variable there are several importantattributes which must be updated:Dependent Invocation Sites The invocation sites for which the type variable is in thedynamic dispatch or function position. This collects the dependent control 
ow infor-mation and is used to create new edges in the interprocedural call graph approximationon demand when the solutions for a type variable changes.Continued Values A type variable representative of the variable's value as a continuation.That is, it represents the values to which the variable is applied as a continuation.Since the value to which a continuation is applied is returned to the continuation's14



creation point, the data 
ow for Continued Values is backward with respect toinvocation data 
ow arcs. This is required to handle �rst class continuations.The overall algorithm then consists of a work pile of interprocedural call edges, a networkof data
ow constraints, the forward data 
ow problems: Concrete Type, Selector Valuesand Creation Sets and the backward data 
ow problem within Continued Values.4.1 Type CheckingFor statically typed languages, type checking is generally done before type inference, sowe know that all messages and functions will resolve legally during type inference. Fordynamically typed languages, we have no such guarantee. However, the results of concretetype inference can be used to ensure the absence of runtime type errors allowing the compilerto remove type checks or to alert the programmer to possible program errors.After type inference has been done, the only places where type error can occur is wheretype inference gives imprecise results. This is because there is a single solution of the typeconstraints everywhere a precise solution was found. Thus, for each imprecise type variablewe reexamine the connecting constraints. Any type variable, a target of a message send,which includes types which fail to support any or all of the reaching selectors must bechecked at runtime to ensure safety. In the current compiler these are reported to the useras warnings.4.2 Safety and ComplexityThe basic constraint-based type inference algorithm is safe because it enforces the program'sdata 
ow and invocation type constraints. Since the incremental algorithm does not changethe values of the constraint network, but re�nes the analysis by partitioning and applyingthe constraints more precisely (removing con
uences), it is also safe.Termination is ensured by avoiding in�nite recursive splitting of functions and contain-ers. Before splitting we determine if the function is recursive by checking the interproceduralcall graph approximation. If it is potentially recursive, the function is not split.7 The sametechnique is applied to creation sets. Since the number of type variable partitions is �nitethe algorithm will terminate.While the complexity of the algorithm is bound by the �nite number of type variables,this number is exponential if the level of polymorphism in a program grows linearly inprogram size. In practice we do not expect and have not found such programs. In fact, ourmeasurements show that the level of polymorphism in programs increases relatively slowlywith program size.5 ImplementationWe have implemented the incremental type inference algorithm as part of the Illinois Con-cert project. The Concert system includes a compiler and runtime for concurrent object-7A constant number of recursive calls can be split at each site without a�ecting termination, however ourimplementation allows only one recursive call. 15



oriented languages. The front end currently supports the language Concurrent Aggregates(CA) [7, 8], a dynamically typed concurrent object-oriented language with single inheritanceas well as �rst class selectors, continuations, and messages.We have tested the type inference system on more than 20,000 lines of CA code. Theresults on a variety of real and synthetic programs appear in Table 1. precise refers to ourincremental inference algorithm, palsberg refers to the inference algorithm in [14], andstatic refers to a basic constraint based inference which allocates exactly one type variableper static program variable.Program Lines P TVs Tot Cts Cts E ESs CPts CSs Im Im-N Secprecisemandel.ca 642 2 9695 12359 4618 617 183 24 24 0 0 44.52simple.ca 2035 5 43982 122508 21583 3428 782 71 71 445 0 903.21p-i-c.ca 759 11 37125 186223 16820 1692 355 34 34 65 0 793.22titest7.ca 35 4 1105 1679 403 96 60 11 11 0 0 7.42mmult.ca 139 3 9373 13691 5254 418 157 12 12 0 0 40.21poly.ca 41 3 2781 4043 1344 150 73 9 9 0 0 13.84tsp.ca 500 3 8631 15616 4898 558 189 15 15 141 0 55.02quicksort.ca 152 2 2411 2702 2702 169 59 7 7 0 0 10.66queens.ca 121 2 3256 4216 1694 232 82 9 9 0 0 13.15�t.ca 260 2 3283 4161 1573 234 80 8 8 0 0 13.05palsbergmandel.ca 642 1 21922 17940 17940 1301 767 27 25 0 0 64.60simple.ca 2035 1 88074 73503 73503 7096 2935 73 70 889 0 600.44p-i-c.ca 759 1 72164 67322 67322 4344 1191 43 25 405 310 261.61titest7.ca 35 1 917 635 635 85 75 9 9 9 9 2.47mmult.ca 139 1 9275 7719 7719 504 258 8 7 125 124 22.47poly.ca 41 1 3245 2462 2462 218 144 7 7 83 83 7.32tsp.ca 500 1 17422 14319 14319 1238 663 18 16 250 46 51.30quicksort.ca 152 1 7669 6150 6150 511 258 7 7 0 0 17.79queens.ca 121 1 6957 5427 5427 486 319 11 11 0 0 17.53�t.ca 260 1 8265 6485 6485 533 325 11 11 0 0 19.27staticmandel.ca 642 1 8535 8369 8369 860 119 24 19 606 488 25.50simple 2035 1 36862 40388 40388 5318 433 71 9 2921 2672 255.04p-i-c.ca 759 1 25989 25760 25760 2255 253 32 9 612 492 85.55titest7.ca 35 1 785 622 622 86 36 9 7 19 9 1.89mmult.ca 139 1 3577 3140 3140 216 57 7 5 89 74 7.47.ca 41 1 1669 1367 1367 125 44 7 5 55 43 3.6tsp.ca 500 1 7329 6793 6793 603 141 16 10 263 179 25.86quicksort.ca 152 1 2202 1881 1881 168 49 7 5 12 0 4.78queen.ca 121 1 3066 2695 2695 264 69 9 6 25 12 9.55�t.ca 260 1 3180 2718 2718 262 70 8 5 16 8 9.8Table 1: Results of Incremental Type InferenceThe man.ca program computes the Mandelbrot set using a dynamic algorithm. sim-ple.ca is the SIMPLE hydrodynamic simulation and p-i-c.ca is a particle-in-cell code.titest7.ca is a synthetic code designed to illustrate the algorithm's e�ectiveness and ap-pears in Appendix A. Themmult.ca programmultiplies integer and 
oating point matrixesusing a polymorphic library. poly.ca evaluates integer and 
oating point polynomials. Theprogram tsp.ca solves the traveling salesman problem. quicksort.ca implements the quick-sort algorithm. queens.ca solves the N-queens problem, and �t.ca computes a Fast FourierTransform using a butter
y network. All test cases were compiled with the standard CAprologue (240 lines of code) and are available along with the language manual [8] and the16



standard prologue from anonymous ftp.8The columns are de�ned as follows. P refers to the number of passes (iterations) whichthe algorithm required. This number is determined automatically by the algorithm whichterminates when it has determined that the best precision has been reached. TVs reportsthe number of type variables created by the algorithm. Our compiler translates the programinto a variation on Static Single Assignment form [10] which greatly increases this numberfor a given program. Tot Cts and Cts refer to the total constraints formed over all passesand the constraints in the �nal pass respectively. E and ESs refer to edges and entry setsrespectively, just as CPts and CSs refer to creation points and creation sets. Im refers tothe number of imprecisions (type variables with more than one possible type) and Im-Nrefers to the number of imprecisions if NULL is ignored (not counted as an imprecision).Using Im-N as a basis of judgement is justi�ed in part because the occurrence of NULL,while requiring a runtime check, does not prevent inlining and other optimizations and alsobecause uses of such variables are usually conditioned by tests which our algorithm doesnot as yet use to constrain types in the subsequent code.The problem size solved in any one pass can be seen in the columns labeled TVs, Cts,ESs and CSs, but the last three are especially indicative since some type variables areonly used in one pass. In many cases, precise required less work in a single pass thanpalsberg. This is because palsberg is doing a lot of redundant work. By reducing theoverhead of our implementation (by not verifying the entire network each pass) we shouldbe able to further reduce the total cost.The precision of the type inference solution is best characterized by the column Im-N.precise is able to determine precise type information for all the programs in the test suite.That is, the analysis was able to �nd a �nite static unfolding of the program which requiredno dynamic type dispatch. In contrast, both palsberg and static give signi�cant numbersof imprecisions.The implementation is approximately 2000 lines of Common Lisp/CLOS and the tim-ings are for CMU Common Lisp/PCL on a Sparc10/31. While the gross execution timesare large, they are not unreasonable for an optimizing compiler. Further, because of the rel-atively long run times for the static algorithm, we believe the long execution times re
ectine�ciency in the implementation, not fundamental limitations of the algorithm. Di�erentdata structures including constructing templates [14] or using a sparse evaluation graph toremove the replication caused by Static Single Assignment form [9] should reduce the grosstimes.6 UsesThere are many uses for type information both for compilation and program development.For example, the type information provides precise interprocedural control 
ow, an essentialprerequisite to virtually all traditional program analyses. It can also increase the availabilityof interprocedural constants.9 In this section, we �rst describe a use of the type inference in-formation to eliminate dynamic dispatches, then describe a more limited replication schemewhich may be more attractive in some cases.8At a.cs.uiuc.edu: /pub/csag.9For this, constants are considered subtypes (e.g. 1 is a subtype of Integer).17



The organization of the type inference results are particularly well-suited for the elim-ination of dynamic dispatches since it involves partial unfolding the program's dynamiccall graph. By using the entry sets to direct code replication, we can e�ciently control theamount of replication, increasing code size only when it is necessary. For each method in theprogram, we replicate the code for each entry set, connecting the entry edges accordingly.Within this new call graph we can statically bind all method invocations except those whosetarget has an imprecise type. If, as in our experiments, all of the types can be resolvedprecisely, all dynamic dispatch will be eliminated.In some cases, less code replication may be desirable. The basic replication scheme canbe extended to exploit \pass through" situations. In e�ect, this eliminates splitting along acall path where the type distinctions do not a�ect control 
ow, then resumes splitting at alater point, based on a single type-dependent dispatch. For example, if we use polymorphicmatrix library in a program with integers, 
oating point, double precision 
oating pointand complex numbers, we may only multiply matrices of like types. The basic replicationscheme would produce four sets of matrix multiplication functions, splitting the library fromtop to bottom. By \passing" the polymorphic matrices \through" the upper levels of thematrix library, the more limited replication scheme would only split the methods deeper inthe library, selecting amongst the split and optimized algorithm kernels based on the typeof a matrix argument.7 Related WorkType inference in object-oriented languages has been studied for many years [18, 11].Constraint-based type inference is described by Palsberg and Schwartzbach in [15, 14].The limitations of their algorithm to a single level of discrimination has motivated this re-search. Recently Agensen has extended the basic one level approach to handle the featuresof SELF [19] (see [1]). However, the problems with precision and cost inherent in a singlepass approach are tackled by exploiting specialized knowledge about SELF [2].The SELF compiler [5] employs a speculative optimization techniques based on runtimetests. These tests select an optimized code sequence from a small number of such sequencesspeculatively compiled. If the compiler can narrow the type of an expression to a few con-crete types, these techniques can be very e�ective. This and virtually all other optimizationof object-oriented languages will bene�t from the superior information generated by ourimproved type inference techniques.The constraint based type system of Aiken, Wimmers, and Lakshman [3], adds condi-tional types unions and intersections to an ML-style type inference allowing the incorpora-tion of 
ow sensitive information. Our algorithm also shares some features of the closureanalysis and binding time analysis phases used in self-applicative partial evaluators [17].However, both these systems are for languages which are purely functional where the ques-tion of types involving assignment does not arise. The extension of the former system toimperative languages is not fully developed.18



8 Summary and Future WorkWe have developed and implemented an algorithm for the incremental inference of concretetypes. This algorithm is based on novel techniques which direct type inference e�ort towhere it is fruitful. We have presented techniques for discriminating between critical runtime variables while minimizing redundant work and for extending the power of discrimi-nation incrementally. These techniques make it possible to e�ciently infer concrete typesin programs with deeply polymorphic libraries and data structures.We have implemented these techniques in the Illinois Concert compiler,10 and haveused them to infer concrete types in many programs. These programs contain �rst classselectors, continuations, and messages and are written in the dynamically typed concurrentobject-oriented language Concurrent Aggregates. Our empirical results indicate that theincremental type inference algorithm is viable, practical, and productive. Our compilercurrently uses the type information to inline and statically bind functions and methods,unbox variables and for interprocedural constant propagation. We are extending this toinclude speculative compilation (splitting), and the techniques discussed in Section 6.In the future, we intended to improve the e�ciency of our implementation. First, weare looking at ways of collecting creation points into creation sets e�ciently. Our currentimplementation can either split each creation point into a new creation set or split onlythose which cause imprecision. While the latter produces fewer creation sets and thereforeis potentially more e�cient, it increases the number of passes and so far it is slower for mostof our test cases (the reported statistics are for the former). Second, we wish to decreasethe cost of successive iterations by not verifying constraints unnecessarily. Finally, we arelooking at ways of summarizing the information for methods and functions. This wouldreduce the cost of splitting and successive iterations.9 AcknowledgementsWe would like to thank Vijay Karamcheti, Xingbin Zhang, Julian Dolby and Mahesh Sub-ramaniam for their work on the Concert System. We would also like to thank Tony Ng,Jesus Izaguirre and Doug Beeferman for writing CA applications and for putting up withthe early versions of the type inference implementation.The research described in this paper was supported in part by National Science Founda-tion grant CCR-9209336, O�ce of Naval Research grants N00014-92-J-1961 and N00014-93-1-1086, and National Aeronautics and Space Administration grant NAG 1-613. Additionalsupport has been provided by a generous special-purpose grant from the AT&T Foundation.References[1] O. Agensen, J. Palsberg, and M. Schwartzbach. Type inference of SELF: Analysis ofobjects with dynamic and multiple inheritance. In Proceedings of ECOOP '93, 1993.[2] Ole Agensen. Personal communication, 1993.10The Illinois Concert System including this type inference system is available. Interested parties cancontact achien@cs.uiuc.edu for more information. 19
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A Code for titest7.caThis code represents the various cases of polymorphism handled by the incremental typeinference algorithm. The class D has the polymorphic instance variable d which is assignedan instance of the class C with polymorphic instance variable c containing either an instanceof A or B. In addition, the method create::D allocates the instance of both D and C. Inorder to distinguish the two di�erent uses of c, we need to split the entry sets for methods:create::D, new:D, initial D:D, new::C, initial C::C, as well as the various accessormethods: d::D, set d::D, c::C, and set c::C. The creation sets for new::D and new::Cmust also be split.(class A a(parameters arg)(initial(set_a self arg)))(class B b(parameters arg)(initial(set_b self arg)))(class C c)(class D d(parameters arg)(initial(set_d self arg)))(method D create ()(let* ((c1 (new C))(d1 (new D c1)))(reply d1)))(method osystem initial_message ()(let* ((va (new A 1))(vb (new B 2))(vd1 (create D))(vd2 (create D)))(set_c (d vd1) va)(set_c (d vd2) vb)(let ((theA (c (d vd1)))(theB (c (d vd2))))(OUT (global console) (a theA))(OUT (global console) (b theB))(reply nil)))) 22


