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Abstract

Concrete type information is invaluable for program optimization. The determina-
tion of concrete types is, in general, a flow sensitive global data flow problem. As a
result, its solution is hampered by the very program structures for whose optimization
its results are most critical: dynamic dispatch (as in object-oriented programs) and first
class functions (including function pointers). Constraint based type inference systems
are an effective way of safely approximating concrete types, but their use can be ex-
pensive and their results imprecise. We present an incremental constraint based type
inference technique for extending the analysis in response to discovered imprecisions.
This technique infers concrete types to high precision with a cost proportional to the
information obtained. Performance results, precision and running time, are reported
for a number of concurrent object-oriented programs.

1 Introduction

Strongly typed languages with type declarations and/or type inference systems enable pro-
grams to be statically type checked. Static type checking ensures there will be no runtime
type errors, and can also assist programmers in finding bugs early in the development pro-
cess. Such type declarations can sometimes aid program optimization, providing enough
information to determine what specific data structures will be used at run time. However,
modern languages and development practices include greater use of polymorphism or dec-
larations which are parameterized over a range of concrete data types. As a result, in most
cases, type declarations do not give the compiler all of the type information desirable for
program optimization.

In languages with polymorphism, such as object-oriented languages, a program variable
has values of distinct concrete types over the course of one program run or even across
different program runs. These concrete or implementation types (the objects or functions
as they occur at run time) should be distinguished from the principle or most general types
which describes legal uses of a objects or functions. While a great deal of progress has
been made with respect to the inference of type information [12, 13, 4], these inference
techniques compute principle types, not concrete types. Concrete types can be used to
support program optimization; while principle types are used primarily for reasoning about
the type correctness of programs. Concrete types provide information about data structures



and control flow, providing a basis for traditional optimizations such as inlining and register
allocation as well as optimizations such as static binding and unboxing.

Though separate compilation is essential for extremely large programs, it is clear that
separating compilation units inhibits compiler analysis and optimization. If the compiler
cannot determine the exact structure of data, functions and methods, it cannot optimize
the code using them. This constraint is particularly severe in object-oriented languages
where polymorphic libraries are common. In particular, concrete type information depends
on program data flow, so concrete type inference in general requires global flow analysis.!

We present a type inference algorithm based on global data flow analysis. Because of the
linkage between type information and control flow and data flow caused by type-dependent
dispatch, our algorithm uses and updates an incremental global data flow approximation at
each step of type inference. This approach allows us to simultaneously solve the type and
flow constraints.

Cast in a data flow framework, the problem of concrete type inference is characterized
by the framework D =< F'G, L, F > where the flow graph FG' =< N, E,root > nodes (N )
correspond to program statements, the edges (E) correspond to an approximation of global
control flow. The elements of the lattice (L) are sets of tuples of a variable and a set of
concrete types. The meet operator (¢ = a Ab) constructs ¢, the set of tuples of variables and
the union of concrete types for each variable in @ and b. The transfer functions F describe
the local constraints induced by the program statements.

In this context, the major contributions of this paper are:

1. A labeling scheme for type variables based on the dynamic program structure which
supports flow-sensitive analysis (Section 3.1). The scheme is flexible, supporting ap-
propriate levels of precision in different parts of the dynamic program structure.

2. A type inference algorithm which is incrementally extendible to arbitrary precision
(Section 3). This algorithm incrementally extends the global control flow approxima-
tion (F) and the dependent type variable labels.

3. Vital techniques for an efficient implementation of the incremental type inference
algorithm, entry sets and container sets (Section 3.3), which limit and direct analy-
sis effort to dynamic program structures where greater precision is required. These
techniques dramatically reduce the cost of analysis by sharing inference information
among similar cases.

4. An empirical evaluation of the incremental inference techniques using a collection of
concurrent object-oriented programs. The evaluation shows that not only is precise
type inference possible, but its cost is practical for an optimizing compiler.

5. A framework which enables type inference for languages with first class functions and
continuations (Section 4).

The structure of the remainder of the paper is as follows. First, Section 2 covers back-
ground material, discussing notation, the basic idea behind constraint-based type inference,

!For instance, if a new piece of code assigns an object of type A’ (a subtype of B) to a variable of type
B which previously was only assigned variables of type A (another subtype of B), all code which uses the
variable is affected.



and limitations of previous approaches. In Section 3, we introduce our incremental type
inference technique which extends the precision of analysis in response to a program’s type
complexity. Subsequently in Section 4, we describe the framework in which the incremen-
tal analysis occurs which makes it practical for real programs. Section 5 discusses our
implementation of the incremental inference techniques and reports results for a number
of programs, some as large as 2,000 lines. Use of the type information is touched on in
Section 6. Related work is briefly surveyed in Section 7 and the paper is summarized in
Section 8.

2 Background

Most type checking and inference techniques [12, 4] determine types bottom up, using the
types of subexpressions to form the types of expressions and finally the type of the program.
At each point, a closed form for the program fragment signature is computed. This process
strives to describe the type of the program fragment in all environments and then to verify
that the type is legal in the environments where the fragment occurs.? Thus the goal of
these techniques is to find the most general type. For instance, assuming that < is in the
interface of OrderedObject, such a type system might determine that the function max
in Figure 1 can be applied to two objects of any subtype of OrderedObject which might
include all the numeric classes, strings, and other user-defined data types.

class A
var i
function i max: j method i: argi
if i > j then i = argi
return 1 return self
else method £
return j return 1
main main
f (1 max: 2) f ((new A) i: 1)
f (1.0 max: 3.0) f ((new A) i: 1.0)
Figure 1: Polymorphic Function Figure 2: Polymorphic Container

Modern programming practice and object-oriented programming in particular encourage
the use of large libraries of reusable components with deep subtype hierarchies, only a
portion of which may be used at any point in the program. This makes program optimization
difficult since compilers typically require specific information in order to transform the
program. Optimizations like inlining, static binding and unboxing work only if a variable can
be resolved to a single concrete type. Thus, in contrast to the general types of other typing
techniques, our goal is to find specific type information. To enable such optimizations, we
have implemented a concrete type inference algorithm in the Illinois Concert compiler [6].
For the sample code shown in Figure 1 this algorithm determines that max is called only
on integers from the expression (f (1 max: 2)) and floats from the expression (£ (1.0
max: 3.0)), enabling the max and > functions to be specialized and inlined.

2Type systems like those of Pascal and C++ simply verify the programmers declaration for the fragment,
modulo automatic coercion, against the environment.



We will initially consider inference in the context of strongly typed languages, and
then extend the algorithm to detect run time type errors in dynamically typed languages.
Program examples in the running text will be in a syntax derived from [14]. The target
language of our implementation and in which the benchmarks are written is the dynamically
typed concurrent object-oriented language Concurrent Aggregates [7, 8] which includes first
class selectors, messages and continuations. The algorithm is very general and can be
applied easily to a wide range of languages.

Before we begin, let us clarify some terms. We differentiate two types of polymorphism:
data and functional. Data polymorphism includes polymorphic variables and polymorphic
containers: objects in which an instance variable may contain other objects of more than one
concrete type. Functional polymorphism refers to functions which can operate on arguments
with a variety of types. FExamples of both appear in Figures 1 and 2. We define levels
of polymorphism as the depth of the polymorphic function call path and depth of the
polymorphic reference path for functional and data polymorphism respectively. Fffective
inference requires the ability to handle the many levels of polymorphism found in real
applications without losing accuracy or requiring unreasonable computational resources.

2.1 Constraint Based Type Inference

Direct implementation of the global data flow framework outlined in Section 1 would be
inefficient because the transfer functions are more closely associated with variables than
statements. In [9], the construction of sparse data flow evaluation graphs is proposed. The
idea is to remove data flow nodes whose transfer functions are identity and to forward the
results of the others directly to the nodes which use them. In terms of the type inference
problem, we define the sparse flow graph FG' =< N’, F’ root > with the nodes as the
program variables and the edges as assignments between them. With this model in mind
the problem can be viewed as the construction and solution of a constraint network, where
the constraints are just the edges of the sparse flow graph. These constraints describe the
type relations between program variables and constants.

The algorithm maintains a work pile of invocations (interprocedural edges) which are
processed by finding the target method or function, and applying local constraints (in-
traprocedural) and connecting constraints (interprocedural). These constraints are solved
by propagation where changes in the input of a node triggers recomputation of the output
so as to maintain a continuously updated solution [15].

z=newC — [z] 2{C} x selector ag ay...a, —
r=y — [z=vy]2I[y], (Ve € [2].(c selector pg p1...ps,
[2] 2 [¥] Vi < n.fpi] 2 [ai]))
Figure 3: Basic Local Constraints Figure 4: Basic Connecting Constraints

The basic local constraints reflect local data flow and special statements which create
objects of known type, denoted by C (see Figure 3). The basic connecting constraints
reflect global data flow along the edges of the interprocedural call graph, connecting the
actual arguments (a;) and formal parameters (p;) as in Figure 4. An example constraint
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Figure 5: Constraint Graph Example

graph and its solution are shown in Figure 5. Complicating construction of the constraint
system is the interaction between types and control flow vis a vis type-dependent dispatch.
The concrete types of the target of a message send determine the possible flow of control
at each invocation site. Therefore, the current value of the constraint system is used to
continually approximate interprocedural control flow. This works only if the value of each
variable increases monotonically.

2.2 Imprecision

Imprecisions in the inferred concrete type information are differences between runtime be-
havior and the behavior predicted by the inference system. At run time, static variables
(variables in the program text) are instantiated as dynamic variables (in the running pro-
gram). These dynamic variables may be used in many different situations, holding values
of different types for example. To avoid imprecisions, an inference algorithm must sepa-
rate the dynamic variable instances to distinguish different situations. Fach set of dynamic
variables separated out by the inference algorithm is called a type variable. This is because
for the purposes of the type inference all of the dynamic variables in that set are subject to
the same type constraints.

function i leq: j class A
return i <= j var b
function i max: j class B
if (i leq: j) then var 1
return j function createB: ivar
else return (new B) i: ivar
return i function createA: bvar
main return (new A) b: bvar
if (1.1 max: 1.2) or main
(1 max: 1) then al = createA: (createB: 1)
a2 = createlA: (createB: 1.0)
Figure 6: Multi-level Polymorphic Figure 7: Multi-level Polymorphic
Functions Containers

In order to handle polymorphic functions, the type inference algorithm in [15] creates
separate type variables for each call site at which the function containing the variable was
invoked. Likewise, separate type variables are created for the contents of polymorphic
containers based on the point at which the dynamic instance of the container was created,
its creation point. Unfortunately, this single level of discrimination (caller versus caller and



caller’s caller) is insufficient to precisely infer types within common program structures: i)
polymorphic libraries with multi-level call trees, i7) functions which create and initialize
container objects, and i) polymorphic containers of polymorphic containers (see Figures 6
and 7 for an illustration of these cases). However, increasing the level of discrimination to
some fixed level k incurs a cost exponential in k as well as limiting the potential precision
of the analysis.

3 Incremental Inference

Our solution to the limitations of the approaches described above is to incrementally extend
the precision of type inference in response to detected complexities in the type structure
of the program. This approach allows us to type programs with arbitrarily complex type
structure with the cost of extended analysis incurred only for programs which require it
for optimization. In this section, we describe the critical problems and our solutions for
incremental and efficient inference.

As was clear from the last section, we cannot afford to globally increase the level of
discrimination, so we must extend it dynamically. For this we require a way to identify the
points at which to extend precision and a way to represent this selectively increased preci-
sion. Maintaining reasonable cost requires identifying a minimal set of extension points and
using a representation which minimizes redundancy. The representation we will use is an
extensible labeling scheme for type variables and is explained in Section 3.1. The general
mechanism used to extend the labels is described in Section 3.3. A simple eager exten-
sion technique is covered in Section 3.3.1. Imprecision can result from either polymorphic
functions or polymorphic containers. Discovery and extension for specific imprecisions is
described in Sections 3.3.2 and 3.3.3 for functions and containers respectively.

At first it might seem that extension and inference could go on simultaneously. How-
ever, increasing the level of discrimination dynamically is complicated by the fact that the
solution must increase monotonically. That is, the type estimate for each variable must
only become greater (less restrictive) with time since the structure of the constraint system
itself is based on the developing solution. As a result, naive modification of a developing
constraint network could leave the solution in an state inconsistent with the network. On
the other hand, because of the interdependencies between type information and control
flow, invalidating portions of the solution can invalidate other portions of the network and
so on, making such modifications costly.

Thus, our overall algorithm first infers program types, then if necessary extends the
network, increasing the power of discrimination in those areas where it is needed. After
the network has been extended, the solution is cleared and recomputed. This process is
applied iteratively until the algorithm determines that no extensions can improve precision
or a desired level of accuracy is attained. We term one cycle of constraint solution and
extension an iteration.

3.1 Type Variables

For each program variable there is a potentially infinite set of run time variables which are
generated by the execution of the program. To name these dynamically created variables,



we label program variables by their execution environment. For example, in Figure 1
the function f is invoked in two different environments with arguments of type integer and
floating point respectively. In object-oriented languages, the state of the target is also
part of the execution environment. This is because the value of an instance variable can
determine the return type of a method, as in Figure 2 where the return type of method
f depends on the value of i, part of the object state. Thus, variables are labeled with
invocation site and object state information.

More formally, for each program variable v we define a set of dynamic variables D(v)
as:

EZ' = PXCXEZ'_l
C = F
E = |JE

D(w) = {v.|e€ E}

Where F; denotes an execution environment and is composed of an invocation point
(P), a creation point (C') and an enclosing environment. Invocation points capture the
invocation environment and creation points capture the object state part of an execution
environment. A creation point in turn is just the point in the program, the execution
environment, where the object was created. Fy denotes a distinguished initial environment
where program execution began.

Since there are potentially an infinite number of dynamic variables in a program, a real-
istic analysis must partition them, grouping those which are of the same type and assigning
a type variable for each group. The nodes of the constraint network then correspond to
these partitions, and the value of a node (type variable) is the union of the concrete types
of the partition’s dynamic variables. Unfortunately, since we do not know the type of each
dynamic variable a priori, we do not know how best to group them. In addition, once a par-
tition has been constructed and used in the network solution it is difficult if not impossible
to determine the values of subpartitions. The incremental analysis therefore repartitions
the variable instances between iterations.

| \\ / \ /
/
W /
‘ Entry Set ‘ ‘ Entry Set ‘
7

/
Entry Set for / e
. ZalC)
Call \
\
—— —
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Figure 8: Entry Sets Example



3.2 Entry and Creation Sets

Since constructing partitions for each variable individually would be complex and expensive,
we construct partitions for the execution environments. These in turn induce partitions over
the variable instances. For every method, we maintain a collection of entry sets. Entry sets
group execution environments by collecting edges of the interprocedural call graph incident
on the method or function. The execution environment represented by an entry set is then
all the environments that arrive along those edges of the call graph. A distinct set of type
variables for the program variables in the method is generated for each entry set. As a
result, separate type information is maintained for each entry set. An example of entry sets
can be found in Figure 8.

Partitions of creation points are constructed similarly and called creation sets. As de-
fined above, creation points are simply the program point and execution environment where
the object was created. Creation points are used to distinguish groups of objects of the same
class by the place where they are created at run time, and are propagated through the net-
work in much the same manner as concrete types.

To simplify the exposition, in this paper we assume that an entry set is associated with
only one creation set, so a type variable is uniquely determined by just the program variable
and the entry set. The algorithm ensures this by construction.

Previously we labeled type variables with an invocation point, creation point, and an
enclosing environment; however, introducing entry and creation sets changes this labelling.
Instead of specific points, we simply label a variable by an entry set. This entry set in turn
determines the creation set and a set of enclosing (calling) entry-sets. This substitution is
the critical element in achieving efficient analysis. More formally, since an entry set groups
together a set of invocation environments, D(v, es) for variable v and entry set es represents
all dynamic variables:

D(v,es) = {v.|e € Env(es)}
Env(es) = {ex €' |ee Edges(es),e’ € Env(Source(e))})

Fdges returns the interprocedural call graph edges in an entry set or group of entry sets.
An edge consists of an invocation point and the entry set from which the edge originated.
Source returns this entry set which is at the source of the edge. The initial entry set E°
has no edges.

3.3 Splitting

Splitting is used to partition entry and creation sets in order to improve analysis precision.
Each split introduces more type variables, potentially eliminating imprecisions from the
inferred types. Choosing the right place to split and the right partitions is important because
splitting at the wrong place or choosing partitions that are too small wastes inference effort.
On the other hand, choosing partitions that are not small enough can incur additional
iterations of the type inference algorithm.

Splitting can be applied to both entry and creation sets in analogous fashion. Splitting
an entry set divides its edges over a number of smaller entry sets. Splitting a creation set
likewise divides the creation points of the original creation set over a number of smaller



creation sets. If the set to be split contains only one edge or creation point, the imprecision
originated at a higher level, and the surrounding environment must be split first.

While the ultimate goal of splitting is to eliminate imprecisions in type, imprecisions
of other kinds at one variable can cause imprecisions in type at another variable. These
imprecisions can be of any of the data flow quantities described in Section 4 or another
quantity which describes the paths which a type variable is along. This last will be described
in detail in Section 3.3.3. Some of the algorithm portions in the section can operate on more
than one of these quantities and are parameterized by the function Value which accesses
the appropriate one for the argument type variable.

In the subsequent parts of this section we consider several different types of splitting.
First, we discuss eager splitting which applies in some special cases. Subsequently we
discuss function splitting and container splitting which address imprecisions arising from
polymorphic functions and containers respectively.

3.3.1 Eager Splitting

Eager splitting detects imprecisions as they are about to occur and splits entry sets imme-
diately. The objective of eager splitting is to reduce the overall run time of the algorithm by
exploiting partial information. In general, identifying incompatible edges requires solving
the entire constraint network, but sometimes incompatibility can be detected much earlier.
Specifically, if two invocation edges to a method have invocation arguments in the same
position of different types (or another data flow quantity), these edges are incompatible.
This is because the edges produce constraints which result in a confluence of information
(a meet a Ab where a,b # 0 and a # b). Eager splitting exploits this situation splitting the
information immediately (within the same iteration), creating a new entry set for the edge
that would cause the confluence.

Adding the new edge to an existing entry set would be preferable, so the algorithm
below is used. For simplicity we will use the function Value which represents the value of
a type variable with respect to a data flow quantity (e.g. concrete types: T'ype or creation
sets: Creators). In an implementation, for edges to be compatible they must be so at
all data flow values. First, we find the compatible entry sets CompatF S (e); those which
contain only compatible edges. If there is one or more, we select the first one arbitrarily. If
no compatible entry sets exist, we create a new entry set. The function ArgO f(e, a) simply
finds the argument of e corresponding to a.

CompatES(e) = {es|es € EntrySets(Method(e)),Ve' € Edges(es),
Compatible Edges?(e,e’)}
Compatible Edges?(e,e') = Va € Args(e),d = ArgOf(€,a),
Value(a) = 0V Value(a') = 0V Value(a) = Value(a')
ES(e) = (CompatES =0)? NewES, First(CompatES(e))

Figure 9: Finding a Compatible Entry Set

Eager splitting can handle some polymorphic functions in a single iteration, but it is



not effective for polymorphic containers (splitting creation sets). This is because decision to
split a creation set must be made at the creation point.> However, the necessity of the split
cannot be known until the instance variables are actually used. This is generally much later
in the analysis. In contrast, eager splitting sometimes works for entry sets because edges to
polymorphic functions may have some information about their argument types when they
are instantiated.

3.3.2 Function Splitting

Function splitting reduces imprecisions due to polymorphic functions. Basically, function
splitting partitions an entry set, allowing a more precise typing of the function for each
entry set. Function splitting is generally applied to entry sets which contain incompatible
edges — those responsible for introducing imprecision in the type inference.

All the entry sets for which splitting will directly increase precision can be found by
applying the Compatible Edges? function (see Figure 9) pairwise to all edges in each entry
sets. However, for efficiency reasons we may wish to find those entry sets which are the
cause of particular imprecisions. This will also help us illustrate techniques which we will
use for splitting of creation sets.

Our algorithm identifies the entry sets that must be split to resolve a particular im-
precision in the constraint network by finding the sources of the imprecision. The primary
sources of an imprecision are the type variables at confluence of subsets of the impreci-
sion. Since imprecision is the unwanted mixing of information, if these type variables can
be split, the mixing might not occur and the imprecision might be eliminated. To find the
confluences, we follow the constraint network from the imprecise variable back to confluence
points. For convenience, we define the following functions on the constraint network:

FlowVars(tv) Given a type variable tv return those type variables tv’ which have direct
constraints Type(tv) C Type(tv'). Intuitively, these are the variables along the path
of data flow.

BackVars(tv) Similar to FlowVars but with Type(tv) O Type(tv').

Using these functions, we follow the constraints back to find the primary source of
the imprecision. More specifically, given a type variable {v and an imprecision im, we
find those type variables which represent confluences involving ¢m or a subset of ¢m. The
function F'V (tv,im) is the full value including potential imprecisions. IsCon fluence com-
putes if the type variable is a confluence point. ContinueT o is used to eliminate those
backward edges which do not contain the imprecision, averting unnecessary work. Finally,
ConfVars'(tv,im) puts all of these together, following the constraints backward to all
sources of the imprecision.

FV(tv,im) = Value(tv)Uim
IsConfluence(tv,im) = 3b,b € BackVars(tv), FV(tv,im)— Value(b) # 0
ContinueTo(tv,im) = {b|b & BackVars(tv),Value(b)Nim}

FWe can split all creation points into separate creation sets, but not in an informed manner as with eager
function splitting.
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ConfVars'(tv,im) = IsConfluence(tv,im)U
{0 |V € ContinueTo(tv,im), ConfVars'(b,im N Value(b)))

However, this only covers the primary cause of an imprecision. An imprecision can also
arise if there is interprocedural control flow ambiguity (due to a secondary imprecision at
the target of method invocation) which causes a merger at arguments or return values. This
situation is handled with a slight redefinition of Con fVars(tv,im)"

ConfVars(tv,im) = {t' |’ € ConfVars'(tv,im)}U{tv' | tv" € ConfVars(tv,im),
((Arg?(tv") vV ReturnVar?(tv')), targ = Target(SendStmi(tv')),
V € AllValues,tv" € ConfVars(targ,V(targ)))}

Entry Set

Entry Set

Entry Set Entry Set

\ \
\
N A
\ \ /
* | ] o)/
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—_— / \
Data Flow \ /
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Figure 10: Function Splitting Example

We extend the old definition of ConfVars to include all those variables which are
ConfVars for imprecisions at the target of message sends for which the primary variable
is an argument or return value. Since an imprecision in any of the data flow quantities in
the target may indirectly cause these imprecision, we use the set of functions AllValues to
indicate that we are looking for confluences at any data flow value.*

An example of function splitting is displayed in Figure 10 where the entry set associated
with func3 is split. Actual arguments for the formal parameter a1l coming into func3 from
funcil and func2 have different concrete types, so the edges are incompatible. Splitting the
entry set prevents the confluence of type information. The result is two type variables p1
and p1’ which have distinct types, and a more precise program typing.

3.3.3 Container Splitting

Container splitting reduces imprecisions due to polymorphic containers. Basically, container
splitting partitions creation sets allowing a more precise typing for the objects represented
by each set. Splitting containers is more complex then splitting functions since the point of
confluence (the instance variable) is separated from the cause (the creation point). However,
as before, the basic idea is to follow paths in the constraint network to find sources of the
imprecision and split them.

*In addition, handling first class continuations requires that the function ReturnV ar? determine if the
variable is a Continued Value and the function SendStmt find the send statement for the continued value.
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There are two different types of imprecisions which are of concern with respect to con-
tainers: imprecisions in the normal data flow values and in the imprecisions in the paths
which creation sets might take. Given a particular confluence at an instance variable, there
will be two or more surrounding methods which assign the conflicting portions of the im-
precision to the instance variable. These methods, in turn, are invoked on different type
variables which are determined by the same creation set (hence the shared instance vari-
able). By following the BackV ars from these ‘containing’ type variables back to the shared
creation point we can construct the paths which, if split, would allow us to eliminate the
imprecision. The appearance of a type variable in more than one of these paths is the
second type of imprecision.

Container splitting involves three operations. First, we compute the paths from the type
variable containing® the instance variable at the imprecision back to its creation points.
These paths determine potential new partitions for the instance variable. Second, if there
is more than one creation point along separate paths, we split the creation set. Finally, we
determine where confluences occur for the paths.

First we compute the paths from the containing type variables to the creation points.
As before, we parameterize the algorithm with the function Value(v) which can be any
imprecise quantity. In addition, we also parameterize the algorithm by the direction of
which the quantity flows using Vars which takes on the function values FlowVars and
BackVars. For the normal data flow quantities, the value of Vars is BackVars, but when
the algorithm is applied recursively to the paths themselves, the value of Vars will be
FlowVars. We begin with a type variable, v, which corresponds to an instance variable
which is at the point of an imprecision.

ImBV(v) = {b|be Vars(v), Value(b) # Value(v)}
BackSets(vs) = First(vs)U BackSets({v | v € vs, Value(v) # Value(First(vs))})
Bs = BackSets(ImBv(v))
Containers(vs) = {c|c=Target(e),e € Edges(EntrySet(b)),b e vs}
BL = {bl|bl = Closure(BackVars,Containers(bs)),bs € Bs}

ImBV (v) finds the set of variables which carry the information which merged to cause
the imprecision at v. For efficiency we then form subsets of ImBV which carry identical
portions of the information using the function BackSets. The function Containers(vs)
finds the ‘containing’ variable for each variable in a set. Finally we compute the paths back
to the creation points by taking the closure of BackV ars over each set of containers.

BL is then the set of paths from the creation points (the origin of the creation sets)
to the source of the imprecision. The paths in BL are those that would be taken by the
creation sets whose existence would eliminate the imprecision. The appearance of a type
variable on more than one of these paths represents a secondary imprecision. Therefore, for
each type variable in BL we need to know the subset of BL in which it is contained. We
define the function TwBI(tv, BL) to represent the subset of BL which contains tv.

The second step is the actual splitting of creation sets. When two or more paths do not
share any type variables, then the creation set can be split. A new creation set is created

®QGiven an instance variable, the containing type variables are those type variables which are the targets
of the dynamic dispatch for methods containing the instance variable. We are assuming a language with
single dynamic dispatching.
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for each path or set of paths which do not share type variables. These new creation sets
will cause the instance variable at the point of the imprecision to split thus removing the
imprecision. We will use the type variables which describe the result of an object creation
statements cps to stand in for the creation point at those statements.

eps {v|veb,be BL,CreationPoint(v)}
TvBl(tv, BL) {bl | bl € BL,tv € bl}
Splittable(cp,cps, BL) = {cp'| cp’ € eps, TvBl(cp, BL) A TvBl(cp’, BL)}

The last step is to determine where confluences of the potential entry sets represented
by the paths in BL occur. This is the second type of quantity which we alluded to above,
imprecisions in which we must detect and eliminate in order to solve the type inference
problem.

Beginning with a type variable at a creation point ¢p we compute PC', the path conflu-
ences. The idea is the find those places where the paths that reached ¢p joined together.
We use the function TvBl(v, bl) which returns the subset of b/ containing v. We then search
forward along the constraint graph for those places where the size of TvBl(v, bl) decreases.

bl = TvBl(cp,BL)
FindPC(p,v,bl) {z | (& = pATvBl(z,bl) # bl) A (TvBl(v,bl) # 0))
V(z = FlowVars(v) ANz € FindPC(v,z,TvBl(v,bl)))
{pc| z € FlowVars(s),pc € FindPC(cp,x,cps)}

PC

The type variables PC need to be split, either by splitting the entry sets of the enclosing
functions (for normal type variables) or by splitting the creation set (for instance variables)
before we can split the creation set for which ¢p is a creation point. As with function
splitting, it is important to consider those variables which might indirectly contribute to
the imprecision by way of another imprecision. We extend PC in the same manner as
ConfVars was extended to ConfVars before applying the algorithm recursively.

Once we have both removed all of the intervening confluence points between the creation
points and the imprecision point and have split the creation set, the instance variable at
the imprecision point will split. The new type variables for the instance variable will each
have a subset of what was the original imprecision, eliminating the imprecision.

3.4 Iteration

As discussed at the beginning of the section, the incremental inference algorithm refines
its approximation of the program’s type structure in a series of iterations. Fach iteration
extends effort into regions of the constraint network which contain imprecisions. Entry and
creation sets are split where appropriate and the affected portion of the network is cleared
and the algorithm is rerun.

The affected portion of the constraint network includes all type variables whose entry
set which was modified (split) or whose creation set was modified (split).® The network is

5An implementation may split a set by moving some of the constituents to another set with compatible
constituents, both of which are modified.
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cleared by removing the affected constraints and data flow values and those constraints and
values dependent on them, but not the entry or creation sets. The edges are removed, but
their correspondence with the entry sets is preserved, carrying the partitioning information
to the next iteration. In subsequent iterations, when an edge is made for which we have
remembered the entry set, that entry set is used as the target of the edge. In the same way
the creation sets for each creation point are remembered. When a creation point is made,
we restore the remembered creation set.

Typically, after a number of iterations, no more imprecisions will exist and the type
inference algorithm will terminate. In some cases, it may be preferable to terminate the
algorithm after a fixed number of iterations, inserting type checks in the generated code
where imprecisions still exist. The termination and complexity of the algorithm is covered
in Section 4.2.

4 Completing the Algorithm

Though we have described the general outline of a type inference algorithm, a complete
concrete type inference algorithm for a language containing first class functions and con-
tinuations actually requires the simultaneous solution of three global data flow problems.
These are:

Concrete Type The implementation types which a variable may take on at run time.
Creation Sets The creation points of objects a variable may refer to.

Selector Values The selectors, closures or functions a variable may refer to.

The values for each of the data flow problems travel along the global data flow approx-
imation edges with union as the meet operator. The transfer functions include the basic
constraints as well as constraints induced by dynamic dispatch. As a reflection of type-
dependent dispatch, the transfer function for a formal parameter in the dynamic dispatch
position (the target of the message send) is constrained to pass only the values which could
cause the function to be invoked. In addition, it can only pass the creation set corresponding
to the entry set of its partition.

For Selector Values, anonymous function are given tokens, and closures are parame-
terized by the variables they capture from the surrounding scope [16] allowing such variables
to be treated as arguments.

In addition to the data flow problems, for each type variable there are several important
attributes which must be updated:

Dependent Invocation Sites The invocation sites for which the type variable is in the
dynamic dispatch or function position. This collects the dependent control flow infor-
mation and is used to create new edges in the interprocedural call graph approximation
on demand when the solutions for a type variable changes.

Continued Values A type variable representative of the variable’s value as a continuation.
That is, it represents the values to which the variable is applied as a continuation.
Since the value to which a continuation is applied is returned to the continuation’s
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creation point, the data flow for Continued Values is backward with respect to
invocation data flow arcs. This is required to handle first class continuations.

The overall algorithm then consists of a work pile of interprocedural call edges, a network
of dataflow constraints, the forward data flow problems: Concrete Type, Selector Values
and Creation Sets and the backward data flow problem within Continued Values.

4.1 Type Checking

For statically typed languages, type checking is generally done before type inference, so
we know that all messages and functions will resolve legally during type inference. For
dynamically typed languages, we have no such guarantee. However, the results of concrete
type inference can be used to ensure the absence of runtime type errors allowing the compiler
to remove type checks or to alert the programmer to possible program errors.

After type inference has been done, the only places where type error can occur is where
type inference gives imprecise results. This is because there is a single solution of the type
constraints everywhere a precise solution was found. Thus, for each imprecise type variable
we reexamine the connecting constraints. Any type variable, a target of a message send,
which includes types which fail to support any or all of the reaching selectors must be
checked at runtime to ensure safety. In the current compiler these are reported to the user
as warnings.

4.2 Safety and Complexity

The basic constraint-based type inference algorithm is safe because it enforces the program’s
data flow and invocation type constraints. Since the incremental algorithm does not change
the values of the constraint network, but refines the analysis by partitioning and applying
the constraints more precisely (removing confluences), it is also safe.

Termination is ensured by avoiding infinite recursive splitting of functions and contain-
ers. Before splitting we determine if the function is recursive by checking the interprocedural
call graph approximation. If it is potentially recursive, the function is not split.” The same
technique is applied to creation sets. Since the number of type variable partitions is finite
the algorithm will terminate.

While the complexity of the algorithm is bound by the finite number of type variables,
this number is exponential if the level of polymorphism in a program grows linearly in
program size. In practice we do not expect and have not found such programs. In fact, our
measurements show that the level of polymorphism in programs increases relatively slowly
with program size.

5 Implementation

We have implemented the incremental type inference algorithm as part of the Illinois Con-
cert project. The Concert system includes a compiler and runtime for concurrent object-

TA constant number of recursive calls can be split at each site without affecting termination, however our
implementation allows only one recursive call.
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oriented languages. The front end currently supports the language Concurrent Aggregates
(CA) 7, 8], adynamically typed concurrent object-oriented language with single inheritance
as well as first class selectors, continuations, and messages.

We have tested the type inference system on more than 20,000 lines of CA code. The
results on a variety of real and synthetic programs appear in Table 1. PRECISE refers to our
incremental inference algorithm, PALSBERG refers to the inference algorithm in [14], and
SsTATIC refers to a basic constraint based inference which allocates exactly one type variable
per static program variable.

| Program | Lines | P | TVs | Tot Cts | Cts | E | ESs | CPts | CSs | Im | Im-N | Sec |
PRECISE
mandel.ca 642 2 9695 12359 4618 617 183 24 24 0 0 44.52
simple.ca 2035 5 | 43982 122508 | 21583 | 3428 782 71 71 445 0 | 903.21
p-i-c.ca 759 | 11 37125 186223 | 16820 | 1692 355 34 34 65 0 | 793.22
titest7.ca 35 4 1105 1679 403 96 60 11 11 0 0 7.42
mmult.ca 139 3 9373 13691 5254 418 157 12 12 0 0 40.21
poly.ca 41 3 2781 4043 1344 150 73 9 9 0 0 13.84
tsp.ca 500 3 8631 15616 4898 558 189 15 15 141 0 55.02
quicksort.ca 152 2 2411 2702 2702 169 59 7 7 0 0 10.66
queens.ca 121 2 3256 4216 1694 232 82 9 9 0 0 13.15
fft.ca 260 2 3283 4161 1573 234 80 8 8 0 0 13.05
PALSBERG
mandel.ca 642 1 21922 17940 | 17940 | 1301 767 27 25 0 0 64.60
simple.ca 2035 1 88074 73503 | 73503 | 7096 | 2935 73 70 889 0 | 600.44
p-i-c.ca 759 1 72164 67322 | 67322 | 4344 | 1191 43 25 405 310 | 261.61
titest7.ca 35 1 917 635 635 85 75 9 9 9 9 2.47
mmult.ca 139 1 9275 7719 7719 504 258 8 7 125 124 22.47
poly.ca 41 1 3245 2462 2462 218 144 7 7 83 83 7.32
tsp.ca 500 1 17422 14319 | 14319 | 1238 663 18 16 250 46 51.30
quicksort.ca 152 1 7669 6150 6150 511 258 7 7 0 0 17.79
queens.ca 121 1 6957 5427 5427 486 319 11 11 0 0 17.53
fft.ca 260 1 8265 6485 6485 533 325 11 11 0 0 19.27
STATIC
mandel.ca 642 1 8535 8369 8369 860 119 24 19 606 488 25.50
simple 2035 1 36862 40388 | 40388 | 5318 433 71 9 | 2921 2672 | 255.04
p-i-c.ca 759 1 25989 25760 | 25760 | 2255 253 32 9 612 492 85.55
titest7.ca 35 1 785 622 622 86 36 9 7 19 9 1.89
mmult.ca 139 1 3577 3140 3140 216 57 7 5 89 74 7.47
.ca 41 1 1669 1367 1367 125 44 7 5 55 43 3.6
tsp.ca 500 1 7329 6793 6793 603 141 16 10 263 179 25.86
quicksort.ca 152 1 2202 1881 1881 168 49 7 5 12 0 4.78
queen.ca 121 1 3066 2695 2695 264 69 9 6 25 12 9.55
fft.ca 260 1 3180 2718 2718 262 70 8 5 16 8 9.8

Table 1: Results of Incremental Type Inference

The man.ca program computes the Mandelbrot set using a dynamic algorithm. sim-
ple.ca is the SIMPLE hydrodynamic simulation and p-i-c.ca is a particle-in-cell code.
titest7.ca is a synthetic code designed to illustrate the algorithm’s effectiveness and ap-
pears in Appendix A. The mmult.ca program multiplies integer and floating point matrixes
using a polymorphic library. poly.ca evaluates integer and floating point polynomials. The
program tsp.ca solves the traveling salesman problem. quicksort.ca implements the quick-
sort algorithm. queens.ca solves the N-queens problem, and fft.ca computes a Fast Fourier
Transform using a butterfly network. All test cases were compiled with the standard CA
prologue (240 lines of code) and are available along with the language manual [8] and the
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standard prologue from anonymous ftp.®

The columns are defined as follows. P refers to the number of passes (iterations) which
the algorithm required. This number is determined automatically by the algorithm which
terminates when it has determined that the best precision has been reached. TVs reports
the number of type variables created by the algorithm. Our compiler translates the program
into a variation on Static Single Assignment form [10] which greatly increases this number
for a given program. Tot Cts and Cts refer to the total constraints formed over all passes
and the constraints in the final pass respectively. E and ESs refer to edges and entry sets
respectively, just as CPts and CSs refer to creation points and creation sets. Im refers to
the number of imprecisions (type variables with more than one possible type) and Im-N
refers to the number of imprecisions if NULL is ignored (not counted as an imprecision).
Using Im-IN as a basis of judgement is justified in part because the occurrence of NULL,
while requiring a runtime check, does not prevent inlining and other optimizations and also
because uses of such variables are usually conditioned by tests which our algorithm does
not as yet use to constrain types in the subsequent code.

The problem size solved in any one pass can be seen in the columns labeled TVs, Cts,
ESs and CSs, but the last three are especially indicative since some type variables are
only used in one pass. In many cases, PRECISE required less work in a single pass than
PALSBERG. This is because PALSBERG is doing a lot of redundant work. By reducing the
overhead of our implementation (by not verifying the entire network each pass) we should
be able to further reduce the total cost.

The precision of the type inference solution is best characterized by the column Im-N.
PRECISE is able to determine precise type information for all the programs in the test suite.
That is, the analysis was able to find a finite static unfolding of the program which required
no dynamic type dispatch. In contrast, both PALSBERG and STATIC give significant numbers
of imprecisions.

The implementation is approximately 2000 lines of Common Lisp/CLOS and the tim-
ings are for CMU Common Lisp/PCL on a Sparcl0/31. While the gross execution times
are large, they are not unreasonable for an optimizing compiler. Further, because of the rel-
atively long run times for the STATIC algorithm, we believe the long execution times reflect
inefficiency in the implementation, not fundamental limitations of the algorithm. Different
data structures including constructing templates [14] or using a sparse evaluation graph to
remove the replication caused by Static Single Assignment form [9] should reduce the gross
times.

6 Uses

There are many uses for type information both for compilation and program development.
For example, the type information provides precise interprocedural control flow, an essential
prerequisite to virtually all traditional program analyses. It can also increase the availability
of interprocedural constants.” In this section, we first describe a use of the type inference in-
formation to eliminate dynamic dispatches, then describe a more limited replication scheme
which may be more attractive in some cases.

8 At a.cs.uiuc.edu: /pub/csag.
°For this, constants are considered subtypes (e.g. 1 is a subtype of Integer).
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The organization of the type inference results are particularly well-suited for the elim-
ination of dynamic dispatches since it involves partial unfolding the program’s dynamic
call graph. By using the entry sets to direct code replication, we can efficiently control the
amount of replication, increasing code size only when it is necessary. For each method in the
program, we replicate the code for each entry set, connecting the entry edges accordingly.
Within this new call graph we can statically bind all method invocations except those whose
target has an imprecise type. If, as in our experiments, all of the types can be resolved
precisely, all dynamic dispatch will be eliminated.

In some cases, less code replication may be desirable. The basic replication scheme can
be extended to exploit “pass through” situations. In effect, this eliminates splitting along a
call path where the type distinctions do not affect control flow, then resumes splitting at a
later point, based on a single type-dependent dispatch. For example, if we use polymorphic
matrix library in a program with integers, floating point, double precision floating point
and complex numbers, we may only multiply matrices of like types. The basic replication
scheme would produce four sets of matrix multiplication functions, splitting the library from
top to bottom. By “passing” the polymorphic matrices “through” the upper levels of the
matrix library, the more limited replication scheme would only split the methods deeper in
the library, selecting amongst the split and optimized algorithm kernels based on the type
of a matrix argument.

7 Related Work

Type inference in object-oriented languages has been studied for many years [18, 11].
Constraint-based type inference is described by Palsberg and Schwartzbach in [15, 14].
The limitations of their algorithm to a single level of discrimination has motivated this re-
search. Recently Agensen has extended the basic one level approach to handle the features
of SELF [19] (see [1]). However, the problems with precision and cost inherent in a single
pass approach are tackled by exploiting specialized knowledge about SELF [2].

The SELF compiler [5] employs a speculative optimization techniques based on runtime
tests. These tests select an optimized code sequence from a small number of such sequences
speculatively compiled. If the compiler can narrow the type of an expression to a few con-
crete types, these techniques can be very effective. This and virtually all other optimization
of object-oriented languages will benefit from the superior information generated by our
improved type inference techniques.

The constraint based type system of Aiken, Wimmers, and Lakshman [3], adds condi-
tional types unions and intersections to an ML-style type inference allowing the incorpora-
tion of flow sensitive information. Our algorithm also shares some features of the closure
analysis and binding time analysis phases used in self-applicative partial evaluators [17].
However, both these systems are for languages which are purely functional where the ques-
tion of types involving assignment does not arise. The extension of the former system to
imperative languages is not fully developed.
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8 Summary and Future Work

We have developed and implemented an algorithm for the incremental inference of concrete
types. This algorithm is based on novel techniques which direct type inference effort to
where it is fruitful. We have presented techniques for discriminating between critical run
time variables while minimizing redundant work and for extending the power of discrimi-
nation incrementally. These techniques make it possible to efficiently infer concrete types
in programs with deeply polymorphic libraries and data structures.

We have implemented these techniques in the Illinois Concert compiler,!® and have
used them to infer concrete types in many programs. These programs contain first class
selectors, continuations, and messages and are written in the dynamically typed concurrent
object-oriented language Concurrent Aggregates. Our empirical results indicate that the
incremental type inference algorithm is viable, practical, and productive. Our compiler
currently uses the type information to inline and statically bind functions and methods,
unbox variables and for interprocedural constant propagation. We are extending this to
include speculative compilation (splitting), and the techniques discussed in Section 6.

In the future, we intended to improve the efficiency of our implementation. First, we
are looking at ways of collecting creation points into creation sets efficiently. Our current
implementation can either split each creation point into a new creation set or split only
those which cause imprecision. While the latter produces fewer creation sets and therefore
is potentially more efficient, it increases the number of passes and so far it is slower for most
of our test cases (the reported statistics are for the former). Second, we wish to decrease
the cost of successive iterations by not verifying constraints unnecessarily. Finally, we are
looking at ways of summarizing the information for methods and functions. This would
reduce the cost of splitting and successive iterations.
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A Code for titest7.ca

This code represents the various cases of polymorphism handled by the incremental type
inference algorithm. The class D has the polymorphic instance variable d which is assigned
an instance of the class C with polymorphic instance variable c containing either an instance
of A or B. In addition, the method create::D allocates the instance of both D and C. In
order to distinguish the two different uses of ¢, we need to split the entry sets for methods:
create::D, new:D, initial D:D, new::C, initial C::C, as well as the various accessor
methods: d::D, set_d::D, c::C, and set_c::C. The creation sets for new: :D and new::C
must also be split.

(class A a
(parameters arg)
(initial

(set_a self arg)))

(class B b
(parameters arg)
(initial

(set_b self arg)))

(class C c)

(class D d
(parameters arg)
(initial
(set_d self arg)))

(method D create ()
(let* ((c1 (new C))
(d1 (new D c1)))
(reply d1)))

(method osystem initial_message ()
(let* ((va (new A 1))
(vb (new B 2))
(vdl (create D))
(vd2 (create D)))
(set_c (d vd1) va)
(set_c (d vd2) vb)
(let ((theA (c (d vd1)))
(theB (c (d vd2))))
(OUT (global console) (a thed))
(0UT (global console) (b theB))
(reply nil))))
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